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A.1 Energy Density and Energy Flux Density. In a possibly-anisotropic elastic medium, particle 

displacement 𝐮 satisfies the wave equation 𝜌�̈�𝑖 = 𝜏𝑖𝑗,𝑗 where 𝜏𝑖𝑗 = 𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞 is the stress tensor 

(which is symmetric) and 𝑐𝑖𝑗𝑝𝑞 is the Hooke’s  law tensor (which has symmetries 𝑐𝑖𝑗𝑝𝑞 = 𝑐𝑗𝑖𝑝𝑞, 

𝑐𝑖𝑗𝑝𝑞 = 𝑐𝑖𝑗𝑞𝑝 and  𝑐𝑖𝑗𝑝𝑞 = 𝑐𝑝𝑞𝑖𝑗).  Here, we have used Einstein notation in which repeated indices 

are summed, a comma indicates spatial differentiation 𝜕 𝜕𝑥𝑖⁄  and a dot temporal differentiation 

𝜕 𝜕𝑡⁄ .  Synge (1956-1957) showed that energy density, 𝐸 and an energy flux density 𝐞 are 

𝐸 = ½𝜏𝑖𝑗𝑢𝑖,𝑗 + ½ρ�̇�𝑖�̇�𝑖     and     𝑒𝑖 = −𝜏𝑖𝑗�̇�𝑗 

(A.1a,b) 

such that the two are related by the standard conservation equation 

�̇� = −𝑒𝑖,𝑖 

(A.2) 

This relationship can be proved by using the chain rule to take the divergence of the energy flux 

density  

−𝑒𝑖,𝑖 = (𝜏𝑖𝑗�̇�𝑗)
,𝑖

= 𝜏𝑖𝑗,𝑖�̇�𝑗 + 𝜏𝑖𝑗�̇�𝑗,𝑖 

(A.3) 

where the last term arises from substituting the equation of motion. Thus, 

−𝑒𝑖,𝑖 = 𝜌�̈�𝑖�̇�𝑖 + 𝜏𝑖𝑗�̇�𝑗,𝑖 =
𝜕

𝜕𝑡
(½𝜌�̇�𝑖�̇�𝑖) + 𝜏𝑖𝑗�̇�𝑗,𝑖 

(A.4) 

Inserting Hooke’s law 𝜏𝑖𝑗 = 𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞 yields 𝜏𝑖𝑗�̇�𝑗,𝑖 = 𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞�̇�𝑗,𝑖.  As long as 𝑐𝑖𝑗𝑝𝑞 is not a 

function of time, and utilizing the symmetry 𝑐𝑖𝑗𝑝𝑞 = 𝑐𝑝𝑞,𝑖𝑗, we find 

𝜕

𝜕𝑡
(𝜏𝑖𝑗𝑢𝑗,𝑖) =

𝜕

𝜕𝑡
(½𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞𝑢𝑗,𝑖) = ½𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞�̇�𝑗,𝑖 + ½𝑐𝑖𝑗𝑝𝑞�̇�𝑝,𝑞𝑢𝑗,𝑖 = 

½𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞�̇�𝑗,𝑖 + ½𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞�̇�𝑗,𝑖 = 𝜏𝑖𝑗�̇�𝑗,𝑖 
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(A.5) 

Consequently,  

−𝑒𝑖,𝑖 =
𝜕

𝜕𝑡
(½𝜌�̇�𝑖�̇�𝑖) + 𝜕 𝜕𝑡⁄ (𝜏𝑖𝑗𝑢𝑗,𝑖) = �̇� 

(A.6) 

Note that nothing in this derivation precludes 𝑐𝑖𝑗𝑝𝑞 or 𝜌 from being functions of position. 

Consequently, the definition of energy density and energy flux density in Equation (A.1) are 

correct in heterogeneous and anisotropic elastic media. 

An important special case is that of the horizontally-propagating harmonic wave 𝑢𝑖 =
𝑈𝑖(𝑘, 𝜔, 𝑧) exp(𝑖𝑘𝑥 − 𝑖𝜔𝑡), where 𝑘 is horizontal wavenumber and 𝜔 is angular frequency. Such 

a wave can be a solution to the wave equation only when the medium is vertically-stratified; that 

is, when 𝑐𝑖𝑗𝑝𝑞 and 𝜌 depend upon depth, only.  When the harmonic wave has the additional 

property of having zero vertical energy flux, energy density and energy flux density are related 

by 

𝐞 = 𝑣𝑥𝐸[1 0 0]𝑇 

(A.7) 

Here, 𝑣𝑥 ≡ 𝜔 𝑘⁄  is the horizontal phase velocity. We now prove this result. When motions are 

confined to the (𝑥, 𝑧) plane and are independent of the 𝑦-coordinate, 𝑢𝑦 = 𝑢𝑥,𝑦 = 𝑢𝑧,𝑦 = 0.  

Neither the energy density nor the energy flux density depends upon 𝑢𝑦, as it is zero, or upon 

𝜏𝑥𝑦, 𝜏𝑧𝑦 or 𝜏𝑦𝑦, as they are all multiplied by quantities that are zero: 

𝜏𝑖𝑗𝑢𝑖,𝑗 = 𝜏𝑥𝑦𝑢𝑥,𝑦 + 𝜏𝑦𝑥𝑢𝑦,𝑥 + 𝜏𝑧𝑦𝑢𝑥,𝑦 + 𝜏𝑦𝑧𝑢𝑦,𝑧  𝜏𝑦𝑦𝑢𝑦,𝑦 + other terms = 0 + other terms 

�̇�𝑖�̇�𝑖 = �̇�𝑦�̇�𝑦 + other terms = 0 + other terms 

𝑒𝑥 = −𝜏𝑥𝑦�̇�𝑦 + other terms = 0 + other terms 

𝑒𝑧 = −𝜏𝑧𝑦�̇�𝑦 + other terms = 0 + other terms 

(A.8) 

The proof makes use of the fact that derivatives of a quantity, say 𝑓, with respect to horizontal 

position 𝑥 and time 𝑡 can be performed trivially, as 𝑓,𝑥 = 𝑖𝑘𝑓 and 𝑓̇ = −𝑖𝜔𝑓. The horizontal 

component of the energy flux density 𝑒𝑥 = −𝜏𝑥𝑗�̇�𝑗  is then: 

𝑒𝑥 = 𝑖𝜔[𝜏𝑥𝑥𝑢𝑥 + 𝜏𝑥𝑧𝑢𝑧]     so    [𝜏𝑥𝑥𝑢𝑥 + 𝜏𝑥𝑧𝑢𝑧] =
𝑒𝑥

𝑖𝜔
 

(A.9) 

As the vertical energy flux density is assumed to be zero, 𝑒𝑧 = −𝜏𝑧𝑗�̇�𝑗 = 0 and we can write 

𝑒𝑧 = 0 = 𝑖𝜔[𝜏𝑥𝑧𝑢𝑥 + 𝜏𝑧𝑧𝑢𝑧]      so      [𝜏𝑥𝑧𝑢𝑥 + 𝜏𝑧𝑧𝑢𝑧] = 0 

(A.10) 
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The energy density equation  𝐸 = ½𝜏𝑖𝑗𝑢𝑖,𝑗 + ½ρ�̇�𝑖�̇�𝑖 becomes 

2𝐸 = 𝜏𝑥𝑥𝑢𝑥,𝑥 + 𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑥𝑧𝑢𝑧,𝑥 + 𝜏𝑧𝑧𝑢𝑧,𝑧 + ½ρ�̇�𝑥�̇�𝑥 + ½ρ�̇�𝑧�̇�𝑧 

(A.11) 

Performing the 𝑥-derivatives yields: 

2𝐸 = 𝑖𝑘[𝜏𝑥𝑥𝑢𝑥 + 𝜏𝑥𝑧𝑢𝑧] + [𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑧𝑧𝑢𝑧,𝑧] − ρ𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] 

(A.12) 

Substituting Eqn. (A.9) yields 

2𝐸 =
𝑘

𝜔
𝑒𝑥 + [𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑧𝑧𝑢𝑧,𝑧] − ρ𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] 

(A.13) 

We now differentiate Eqn. (A.10) with respect to 𝑧: 

[𝜏𝑥𝑧𝑢𝑥 + 𝜏𝑧𝑧𝑢𝑧],𝑧 = 0 = [𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑧𝑧𝑢𝑧,𝑧] + [𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] 

[𝜏𝑥𝑧𝑢𝑥,𝑧 + 𝜏𝑧𝑧𝑢𝑧,𝑧] = −[𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] 

(A.14) 

Substituting this result into Eqn. (A.13) yields 

2𝐸 =
𝑘

𝜔
𝑒𝑥 − [𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] − ρ𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] 

(A.15) 

The equations of motion are −𝜌𝜔2𝑢𝑥 = 𝜏𝑥𝑥,𝑥 + 𝜏𝑥𝑧,𝑧 and  −𝜌𝜔2𝑢𝑧 = 𝜏𝑥𝑧,𝑥 + 𝜏𝑧𝑧,𝑧. Summing 

them yields: 

−𝜌𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] = [𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] + [𝜏𝑥𝑥,𝑥𝑢𝑥 + 𝜏𝑥𝑧,𝑥𝑢𝑧] 

or 

−[𝜏𝑥𝑧,𝑧𝑢𝑥 + 𝜏𝑧𝑧,𝑧𝑢𝑧] = 𝜌𝜔2[𝑢𝑥𝑢𝑥 + 𝑢𝑧𝑢𝑧] + [𝜏𝑥𝑥,𝑥𝑢𝑥 + 𝜏𝑥𝑧,𝑥𝑢𝑧] 

(A.16) 

Substituting this result into Eqn. (A.15) and performing the 𝑥 derivatives yield 

(A.17) 

2𝐸 =
𝑘

𝜔
𝑒𝑥 + 𝑖𝑘[𝜏𝑥𝑥𝑢𝑥 + 𝜏𝑥𝑧𝑢𝑧] 

(A.18) 

Substituting Eqn. (A.9) yields 
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2𝐸 =
𝑘

𝜔
𝑒𝑥 + 𝑖𝑘

𝑒𝑥

𝑖𝜔
= 2

𝑘

𝜔
𝑒𝑥 

(A.19) 

 

which equals Eqn. (A.7) and competes the proof.  Note that the result is correct for any 

vertically-stratified possibly-anisotropic elastic medium, but requires that the harmonic wave 

have no vertical energy flux density. 

As the formula for energy density 𝐸 is more complicated than the equation for energy flux 

density 𝐞, Eqn. (A.7) arguably offers no computational advantage.  An advantage of computing 

energy flux directly from Eqn. (A1b) is that one can check that 𝑒𝑧 actually is zero. 

A.2 Energy Flux Density of a Plane Shear Wave in a Homogeneous, Isotropic Whole Space. We 

first consider the concept of energy flux density with a simple example of a horizontally 

propagating, vertically polarized shear wave with 𝐮 = [0,0, 𝑈𝑧]𝑇 cos(𝜔𝑥 𝛽⁄ − 𝜔𝑡), where 𝛽 ≡

√𝜇 𝜌⁄  is shear velocity and 𝜇 is shear modulus. The non-zero components of stress and 

displacement are: 

𝜏𝑥𝑧 = 𝜇 (
𝜕𝑢𝑧

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑧
) = −𝜔𝜌𝑏𝑈𝑧 sin(𝜔𝑥 𝛽⁄ − 𝜔𝑡) 

�̇�𝑧 = 𝜔𝑈𝑧 sin(𝜔𝑥 𝛽⁄ − 𝜔𝑡) = �̇�𝑧 sin(𝜔𝑥 𝛽⁄ − 𝜔𝑡)    with   �̇�𝑧
2 ≡ 𝜔2𝑈2 

(A.20) 

The energy flux density is 

𝑒𝑥 = −𝜏𝑥𝑧�̇�𝑧 = 2𝐹 sin2(𝜔𝑥 𝛽⁄ − 𝜔𝑡)     with     𝐹 ≡ 𝜌𝛽�̇�𝑧
2 = 𝜌½𝜇½�̇�𝑧

2 

(A.21) 

and the time-averaged energy flux density function is 𝐹 (because a factor of ½ arises from the 

time-averaging of the sinusoid).  

A.3 Conservation of Energy for Seismic Rays. We start be examining the case of the scalar wave 

equation 𝜌�̈� = 𝑀∇2𝜑 + ∇M ∙ ∇𝜑 where 𝑀 is an elastic modulus and both 𝑀 and 𝜌 are functions 

of position 𝐱, as is the velocity is 𝑐 = 𝑀½𝜌−½. This is a scalar analogue to the vector elastic 

wave equation that shares with it the feature that both density and modulus are spatially variable. 

Ray theory, which is a high-frequency approximation, the scalar field is parameterized as a series 

in inverse powers of angular frequency, 𝜔 

𝜑(𝐱, 𝑡) = ∑(𝑖𝜔)−𝑛𝐴𝑛(𝐱) exp{𝑖𝜔(𝑇(𝐱) − 𝑡)}

∞

𝑛=0

 

(A.22) 

Here, 𝑇(𝐱) is travel time and the 𝐴𝑛(𝐱) are amplitudes (with only 𝐴0 being important at high 

frequencies). After inserting this parameterization into the wave equation and equating terms of 

equal powers of 𝜔, the following three equations arise 
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∇𝑇 =
𝐭

𝑐
    and    

𝑑𝐭

𝑑𝑠
= 𝐭 × [𝐭 × 𝑐−1∇𝑐 ] 

and    
∇𝐴0

2

𝐴0
∙ 𝐭 = −𝑐∇ ∙ (

𝐭

𝑐
) − 𝑀−1∇M ∙ 𝐭 

(A.23a,b,c) 

Here 𝐭 is a unit vector parallel to the ray and 𝑠 is arc-length along the ray (Fig. A.1). Eqn. (A.23a) 

indicates that travel time advances in the ray direction at a rate given by the local slowness 

(reciprocal velocity). The equation (not shown) that results from taking the squared length of 

Eqn (A.23a) is called the Eikonal equation. Equation (A.23b) (the ray equation) provides a 

method for calculating ray paths and Eqn. (A.23c) (the transport equation) provides a method for 

calculating amplitudes. 

 

 
Fig. A.1.  Ray with arc length 𝑠 propagating in the 𝐭 direction, surrounded by a ray tube with 

cross-sectional area 𝑆𝐴 at position 𝐱𝐴 and area 𝑆𝐵 at position 𝐱𝐵.  This ray is defocusing, as 

𝑆𝐵 > 𝑆𝐴. 

 

We now show that the transport equation implies conservation of an energy flux density scalar 𝐹.  

We note that both ray and transport equations involve only relative changes is velocity and 

modulus, and so are insensitive to absolute size of those quantities.  Consequently, ray theory can 

constrain energy flux density only up to a multiplicative constant. Motivated by our result from 

the plane shear wave (Eqn. A21), we write the amplitude as 𝐴0
2 = 𝑐𝑀−1𝐹𝑓0

−1, where 𝐹 is energy 

flux density scalar and 𝑓0 is a constant.  The transport equation becomes 

∇(𝑐𝑀−1𝐹𝑓
0
−1)

𝑐𝑀−1𝐹𝑓
0
−1 ∙ 𝐭 = −𝑐  ∇ ∙ (

𝐭

𝑐
) − 𝑐𝑀−1∇M ∙ (

𝐭

𝑐
) 

(A24) 

Applying the chain rule yields 
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(
∇𝐹

𝐹
) ∙ 𝐭 + 𝑐−1∇𝑐 ∙ 𝐭 + 𝑀∇𝑀−1 ∙ 𝐭 = −∇ ∙ 𝐭 + 𝑐−1∇c ∙ 𝐭 + 𝑀∇𝑀−1 ∙ 𝐭 

(A25) 

Here, we have used the identity 𝐵∇𝐵−1 = −𝐵−1∇𝐵. After canceling two pairs of terms, the 

equation becomes 

∇𝐹

𝐹
∙ 𝐭 = − ∇ ∙ 𝐭 

(A26) 

This equation implies that the energy flux density 𝐞 ≡ 𝐹𝐭 is conserved; that is: 

∇ ∙ 𝐞 = ∇ ∙ (𝐹𝐭) = ∇𝐹 ∙ 𝐭 + 𝐹∇ ∙ 𝐭 = 0 

(A.27) 

As was hypothesized, energy flux density function is 𝐹 = 𝑓0𝑐−1𝑀𝐴0
2 = 𝑓0𝜌½𝑀½𝐴0

2, with the constant 

𝑓0 undetermined. 

In ray theory, energy propagates parallel to the ray direction and is conserved. Furthermore, the 

energy density 𝐸 has no time dependence, as the conservation equation 𝜕𝐸 𝜕𝑡⁄ + ∇ ∙ 𝐞 = 0 

reduces to 𝜕𝐸 𝜕𝑡⁄ = 0.  There is no sense of energy storage in ray theory. 

Continuing the shear wave example, we consider an isotropic elastic medium with shear modulus 

𝜇(𝑥, 𝑦) and density 𝜌(𝑥, 𝑦) (that is, no 𝑧-dependence) and a horizontally-propagating, vertically 

polarized shear wave.  The wave equation 𝜌�̈�𝑧 = 𝜏𝑧𝑥,𝑥 + 𝜏𝑧𝑦,𝑦 has no 𝜏𝑧𝑧,𝑧 term because no 

quantity varies with 𝑧. The stress-displacement relationships are 𝜏𝑧𝑥 = 𝜇𝑢𝑧,𝑥 and 𝜏𝑧𝑦 = 𝜇𝑢𝑧,𝑦. 

Differentiating them and inserting them into the wave equation yields 𝜌�̈�𝑧 = 𝜇∇2𝑢𝑧 + ∇𝜇 ∙ ∇𝑢𝑧 

(where ∇ is two-dimensional). Equating 𝜑 = 𝑢𝑧, 𝑀 = 𝜇 and 𝐴0 = 𝑈𝑧 we obtain  

𝐹 = 𝑓
0
𝜌½𝜇0

½𝑈𝑧
2 

  (A.28) 

This result matches the result from wave theory (Eqn. A.21) after the undetermined constant is 

set to 𝑓0 = 𝜔2. 

The conservation equation ∇ ∙ (𝐹𝐭) = 0 has a simple interpretation in terms of the change in 

cross-sectional area 𝑆 of the ray tube formed from a group of neighboring rays (Fig. A.1). 

Integrating the conservation equation over the volume of the ray tube and applying Gauss’ 

theorem yields 

0 = ∭ ∇ ∙ (𝐹𝐭)

 

ray tube

 d𝑉 = ∬ 𝐹𝐭 ∙ (−𝐭) d𝑆
 

𝑆𝐴

+ ∬ 𝐹𝐭 ∙ 𝐭 d𝑆
 

𝑆𝐵

≈ −𝑆𝐴𝐹𝐴 + 𝑆𝐵𝐹𝐵 

(A.29) 

Here we have used the fact that the surface integral involving the conical side of tube is zero, as 

its surface normal is perpendicular to the ray direction, and have assumed that the ray tube is 
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sufficiently thin that 𝐹 is approximately constant over each of the end caps (with values 𝐹𝐴 and 

𝐹𝐵, respectively).  Thus, 

𝐹𝐵

𝐹𝐴
=

𝑆𝐴

𝑆𝐵
 

(A.30) 

That is, the flux 𝐹 varies in inverse proportion to the cross-sectional area 𝑆 of the ray tube (a 

behavior called geometrical spreading). 

The amplitude 𝐴 = (𝐹𝑓0
−1𝜌−½𝑀−½)½ can change either because the energy flux density 𝐹 

changes as rays converse/diverge or because material parameters, say 𝜌 and 𝑀, are varied. 

Giving the material parameters the generic names 𝑚1 and 𝑚2, we can write 

𝑑𝐴 =
𝜕𝐴

𝜕𝐹
|

𝑚1,𝑚1

d𝐹 +  
𝜕𝐴

𝜕𝑚1
|

𝐹,𝑚2

d𝑚1 +
𝜕𝐴

𝜕𝑚2
|

𝐹,𝑚1

d𝑚2 

(A.31) 

To first order, each effect operates independently.  

A.4 Amplitude Sensitivity. The amplitude sensitivity is defined as the fractional change in 

amplitude with respect to changes in a material property, at constant energy flux density. In order 

for the sensitivity to be well-defined, both the material property that is being varied and the one 

being held constant needs to be specified. In our notation, notation, 𝑠𝑚1|𝑚2
≡ 𝐴−1𝜕𝐴 𝜕𝑚1⁄ |𝑚2

 is 

the is the sensitivity to changes in material property 𝑚1 at constant 𝑚2. 

We first consider the case of a plane shear wave as it propagates from one region to another of 

constant density 𝜌0 but varying rigidity 𝜇. If reflections and conversions at boundaries are 

neglected, so that the flux 𝐹 = 𝜌0
½𝜇½�̇�𝑧

2 is constant, then 

𝑑𝐹 = 0 = ½𝜌0
½𝜇−½�̇�2𝑑𝜇 + 2𝜌0

½𝜇½�̇�𝑑�̇� 

(A.32) 

Hence the sensitivity to rigidity (at constant density) is 

𝑠𝜇|𝜌 ≡
1

�̇�

𝑑�̇�

𝑑𝜇
= −

¼𝜌0
½𝜇−½�̇�

𝜌0
½𝜇½�̇�

= −
1

4𝜇
 

(A.33) 

As 𝜇 = 𝛽2𝜌0, we can use the derivative  𝑑𝜇 𝑑𝛽⁄ = 2𝛽𝜌0 = (2𝛽2𝜌0) 𝛽⁄ = 2𝜇 𝛽⁄  to convert to an 

expression involving shear velocity: 

𝑠𝜇|𝜌 ≡
1

�̇�

𝑑�̇�

𝑑𝛽
=

1

�̇�

𝑑�̇�

𝑑𝜇

𝑑𝜇

𝑑𝛽
= −

1

4𝜇

2𝜇

𝛽
= −

1

2𝛽
 

(A.34) 
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So, as velocity increases, amplitude decreases. Similarly, at constant energy flux density and with 

constant 𝜇0 and variable 𝜌  

𝑑𝐹 = 0 = ½𝜌−½𝜇0
½�̇�2𝑑𝜌 + 2𝜌½𝜇0

½�̇�𝑑�̇� 

(A.35) 

So, the sensitivity to density (at constant rigidity) is: 

𝑠𝜌|𝜇 ≡
1

�̇�

𝑑�̇�

𝑑𝜌
= −

½𝜌−½𝜇0
½�̇�

2𝜌½𝜇0
½�̇�

= −
1

4𝜌
 

(A.36) 

As 𝜌 = 𝜇0𝛽−2, we can use the derivative  𝑑𝜌 𝑑𝛽⁄ = −2𝜇0𝛽−3 = − (2𝛽−2𝜇0) 𝛽⁄ = − 2𝜌 𝛽⁄  to 

convert to an expression involving shear velocity: 

𝑠𝜌|𝜇 ≡
1

�̇�

𝑑�̇�

𝑑𝛽
=

1

�̇�

𝑑�̇�

𝑑𝜌

𝑑𝜌

𝑑𝛽
= (−

1

4𝜌
) (−

2𝜌

𝛽
) =

1

2𝛽
 

(A.37) 

So, as velocity increases, amplitude increases.  

A.5 Ratio of Amplitude to Square Root of Flux. The ratio 𝑅 of the amplitude to the square root of 

energy flux density is a useful quantity because it depends only on material properties.  For a 

plane shear wave with amplitude �̇� and energy flux density scaler  𝐹 = ½𝜌½𝜇½�̇�2 (Eqn. A.21) 

this ratio is: 

𝑅 ≡
�̇�

√𝐹
= (𝜌𝛽)−½ = (𝜌𝜇)−¼ 

(A.38) 

When a plane shear wave passes from medium 𝐴 to medium 𝐵, and if reflections and 

conversions are neglected so that the flux is constant, then 

𝐹 = 𝜌𝐴𝛽𝐴�̇�𝐴
2 = 𝜌𝐵𝛽𝐵�̇�𝐵

2 

𝑅𝐵

𝑅𝐴
=

�̇�𝐵

�̇�𝐴

= (
𝜌𝐴𝛽𝐴

𝜌𝐵𝛽𝐵
)

½

= (
𝜌𝐴𝜇𝐴

𝜌𝐵𝜇𝐵
)

¼

 

(A.39) 

Suppose that the wave propagated from a reference region, where it has ratio 𝑅𝑟𝑒𝑓 into another, 

where it has ratio 𝑅.  We can write: 

𝑅𝑟𝑒𝑓 ≡
�̇�𝑟𝑒𝑓

√𝐹𝑟𝑒𝑓

   and   𝑅 ≡
�̇�

√𝐹
       and    �̇�𝑟𝑒𝑓 = 𝑅𝑟𝑒𝑓√𝐹𝑟𝑒𝑓   and   �̇� = 𝑅√𝐹   

log �̇�𝑟𝑒𝑓 = log 𝑅𝑟𝑒𝑓 + ½ log 𝐹𝑟𝑒𝑓    and   log �̇� = log 𝑅 + ½ log 𝐹    
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(A.40) 

If the flux of the wave is equal in these two regions, 𝐹𝑟𝑒𝑓 = 𝐹, and 

1

�̇�
∆�̇� = ∆ log �̇� = log 𝑅𝐵 − log 𝑅𝐴 = log(𝑅𝐵 𝑅𝐴⁄ ) 

(A.41) 

Given a change in material property, say ∆𝑚 ≡ 𝑚 − 𝑚𝑟𝑒𝑓, the amplitude sensitivity can be 

approximated using the finite difference derivative  

𝑠 ≡
1

�̇�

𝑑�̇�

𝑑𝑚
≈

1

�̇�

∆�̇�

∆𝑚
=

∆ log �̇�

∆𝑚
=

log 𝑅 − log 𝑅𝑟𝑒𝑓

∆𝑚
=

log(𝑅 𝑅𝑟𝑒𝑓⁄ )

∆𝑚
 

(A.42) 

A.6 Total Energy Flux Density of a Rayleigh Wave. We consider a plane Rayleigh wave 

propagating in the 𝑥-direction in an isotropic medium with vertically stratified material 

properties, e.g. 𝜌(𝑧), where 𝑧 is depth. Our goal is to compute the ratio 𝑅 of the vertical 

displacement to the square root of the total horizontal energy flux. The Rayleigh wave motions 

can be expressed in the frequency-horizontal wavenumber domain, using the displacement-stress 

vector approach, with vector 

𝐝(𝜔, 𝑘, 𝑧) ≡ [𝑈𝑥 −𝑖𝑈𝑧 𝑇𝑥𝑧 −𝑖𝑇𝑧𝑧 ]𝑇 

(A.43) 

Here, 𝑈𝑥 and 𝑈𝑧 are displacement amplitudes, 𝑇𝑥𝑧 and 𝑇𝑧𝑧 are stress amplitudes, 𝜔 is angular 

frequency and 𝑘𝑥 is horizontal wavenumber. We calculate energy flux density using the approach 

of Synge (1956-1957) and Menke and Rhoads (2023). The displacement associated with the 

positive and negative frequencies is 

𝑢𝑥 = 2𝑈𝑥
𝑅 cos(𝜔𝑡) + 2𝑈𝑥

𝐼 sin(𝜔𝑡) 

𝑢𝑧 = 2𝑈𝑧
𝑅 cos(𝜔𝑡) + 2𝑈𝑧

𝐼 sin(𝜔𝑡) 

(A.44) 

Here, superscripts 𝑅 and 𝐼 refer to real and imaginary parts, respectively. The squared amplitude 

is  

𝑢𝑥
2 = 4(𝑈𝑥

𝑅)2 cos2(𝜔𝑡) + 4(𝑈𝑥
𝐼 )2 sin2(𝜔𝑡) + 4𝑈𝑥

𝑅𝑈𝑥
𝐼 cos(𝜔𝑡) sin(𝜔𝑡) 

(A.45) 

An analogous expression holds for 𝑢𝑧
2.  The time-averaged values are 

〈𝑢𝑥
2〉 = 2(𝑈𝑥

𝑅)2 + 2(𝑈𝑥
𝐼 )2   and   〈𝑢𝑧

2〉 = 2(𝑈𝑧
𝑅)2 + 2(𝑈𝑧

𝐼)2 

(A.46) 

and the root-mean-squared amplitudes are 
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𝑢𝑥
𝑟𝑚𝑠 = [2(𝑈𝑥

𝑅)2 + 2(𝑈𝑥
𝐼 )2]½   and   𝑢𝑧

𝑟𝑚𝑠 = [2(𝑈𝑧
𝑅)2 + 2(𝑈𝑧

𝐼)2]½ 

(A.47) 

The time averaged energy flux density of the positive and negative frequencies is calculated in a 

similar wave and is found to me 

𝑒𝑖 = −2𝜔(𝑇𝑖𝑗
𝑅𝑈𝑗

𝐼 − 𝑇𝑖𝑗
𝐼 𝑈𝑗

𝑅) 

(A.48) 

The energy flux density scalar is the energy flux density in the 𝑥-direction is 

𝐹 = 𝑒𝑥 = −2𝜔(𝑇𝑥𝑥
𝑅 𝑈𝑥

𝐼 + 𝑇𝑥𝑧
𝑅 𝑈𝑧

𝐼 − 𝑇𝑥𝑥
𝐼 𝑈𝑥

𝑅 − 𝑇𝑥𝑧
𝐼 𝑈𝑧

𝑅) 

(A.49) 

and the total, vertically integrated horizontal flux is 

𝐹𝑇 = ∫ 𝐹 d𝑧
∞

0

 

(A.50) 

The displacement-to-square-root-of-flux ratio 𝑅 and sensitivity 𝑠 can then be defined as 

𝑅 ≡
𝑢𝑧

𝑟𝑚𝑠

√𝐹𝑇

    and   𝑠 ≡
1

𝑢𝑧
𝑟𝑚𝑠

𝜕𝑢𝑧
𝑟𝑚𝑠

𝜕𝑣𝑟
|

𝑧=0

 

(A.51) 

Here 𝑣𝑟 is the phase velocity of the Rayleigh wave. 

Although the motion-stress vector does not include an explicit entry for 𝑇𝑥𝑥, it can be calculated 

from known quantities, starting with the definition of stress 

𝜏11 = (𝜆 + 2𝜇) 
𝜕𝑢1

𝜕𝑥1
+ 𝜆

𝜕𝑢3

𝜕𝑥3
    and    𝜏33 = 𝜆 

𝜕𝑢1

𝜕𝑥1
+ (𝜆 + 2𝜇)

𝜕𝑢3

𝜕𝑥3
 

(A.52) 

We first note that 𝜕𝑢1 𝜕𝑥1⁄ = 𝑖𝜔𝑝𝑈1, where 𝑝 ≡ 𝑘𝑥 𝜔⁄  is horizontal slowness, so it can be 

calculated from 𝐝. Solving the 𝜏33 for 𝜕𝑢3 𝜕𝑥3⁄ , substituting the result into the 𝜏11 equation, and 

rearranging yields  

𝜏11 = 𝜆(𝜆 + 2𝜇)−1𝜏33 + [(𝜆 + 2𝜇)  − 𝜆2(𝜆 + 2𝜇)−1] 
𝜕𝑢1

𝜕𝑥1
 

(A.53) 

 

A.7 Perturbative Formula for Amplitude Sensitivity The formula for sensitivity (Eqn. A.42) is 

based on a direct (or finite-difference) approach, in the sense that both numerator and 
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denominator in the ratio 𝑅 𝑅𝑟𝑒𝑓⁄  are computed directly using the propagator matrix method.  

Such an approach is cumbersome in geo-tomography, as 𝑅 needs to be computed numerous 

times. Here we use perturbation theory to derive a formula for 𝑅 that only involves quantities 

that can be computed from the reference model, together with the asserted vertically-stratified 

perturbations in elastic moduli 𝛿𝜆 and 𝛿𝜇 and density 𝛿𝜌.  Key to our derivation is the 

calculation of the change in the displacement wave function 𝐮(𝜔, 𝑧) arising from the 

perturbation in Earth structure. 

Consider a dispersion curve 𝜔(𝑘) (Fig. A.2, black curve) that is perturbed to 𝜔(𝑘) + ∆𝜔(𝑘) (red 

curve) by a “fast” perturbation in Earth structure. At constant frequency, a reference point 

(𝑘𝑟𝑒𝑓, 𝜔𝑟𝑒𝑓) (black circle) on the unperturbed curve moves to the point (𝑘𝑝, 𝜔𝑟𝑒𝑓) (red circle) on 

the perturbed curve. The wavenumber is reduced and the phase velocity is increased. This point 

has the same wavenumber, but higher frequency and velocity, than the point (𝑘𝑝, 𝜔𝑎) (grey 

circle) on the unperturbed dispersion curve. 

The displacement wave function 𝐮(𝜔, 𝑧) and its stress 𝛕(𝜔, 𝑧) differs between points (𝑟𝑒𝑓) and 

(a), but as they are both points on the unperturbed curves, they are known by assumption. 

Consequently, 𝑅𝑟𝑒𝑓 and 𝑅𝑎 are known, too. However, rather than to tabulate 𝑅𝑎 along the curve, 

we use a first-order approximation to calculate 𝑅𝑎 from 𝑅𝑟𝑒𝑓 and its derivative with respect to 

wavenumber.  In contrast, the wavefunctions at points (𝑎) and (𝑝) are equal, at least if one 

ignores the contribution of higher modes (overtones), as only modes with the same wavenumber 

couple for a vertically-stratified perturbation in structure (owing to the orthogonality of the 

horizontal wavefunctions).   

The following quantities can be calculated along the unperturbed dispersion curve: the phase 

velocity  𝑐(𝜔) = 𝜔 𝑘(𝜔)⁄ ; the vertically-integrated energy flux 𝐹(𝜔); the quantity 𝑅𝑟𝑒𝑓(𝜔) =

𝑢3
𝑟𝑚𝑠,𝑟𝑒𝑓

√𝐹𝑟𝑒𝑓⁄   where 𝑢3
𝑟𝑚𝑠,𝑟𝑒𝑓(𝜔) is measured at 𝑧 = 0; and the energy integrand 

𝐺(𝑧, 𝜔) =
[𝑢1

𝑟𝑚𝑠(𝑧)]2 + [𝑢3
𝑟𝑚𝑠(𝑧)]2

[𝑢3
𝑟𝑚𝑠(𝑧 = 0)]2

 

(A.54) 

 

 



12 
 

 
Fig. A.2. Unperturbed dispersion curve 𝜔(𝑘) (black curve) and dispersion curve 𝜔(𝑘) +
∆𝜔(𝑘) (red curve) after a perturbation in Earth structure. Lines of constant phase velocity 𝑐 =

𝜔 𝑘⁄  (blue lines) are also shown. A reference point (𝑘𝑟𝑒𝑓, 𝜔𝑟𝑒𝑓) (black circle) on the 

unperturbed dispersion curve has the same frequency as the point (𝑘𝑝, 𝜔𝑟𝑒𝑓) (red circle) on the 

perturbed dispersion curve. The point (𝑘𝑝, 𝜔𝑟𝑒𝑓 − ∆𝜔) on the unperturbed curve (grey circle) 

with wavenumber 𝑘𝑝 has frequency less by the amount ∆𝜔𝑝,𝑎. 

 

Using finite differences, the derivative 𝑑𝑅 𝑑𝜔⁄  and the group velocity 𝑑𝑘 𝑑𝜔⁄  can also be 

calculated.  Then, using the chain rule 

𝑑𝑅

𝑑𝑘
= (

𝑑𝑅

𝑑𝜔
) (

𝑑𝑘

𝑑𝜔
)⁄  

(A.55) 

Now consider a vertically-stratified perturbation in material properties that shifts the dispersion 

curve to (Fig. A.2, red curve) 

𝑐𝑝 = 𝑐𝑟𝑒𝑓 + ∆𝑐𝑝,𝑟𝑒𝑓 

(A.56) 

We assume that ∆𝑐𝑝,𝑟𝑒𝑓 has been calculated from (𝛿𝜆, 𝛿𝜇, 𝛿𝜌 ) and 𝐮𝑟𝑒𝑓(𝜔, 𝑧) and 𝛕𝑟𝑒𝑓(𝜔, 𝑧) 

using the well-known perturbative formula (e.g. Aki and Richards, 2009, their Section 7.3.2). 

At constant frequency 𝜔𝑟𝑒𝑓, the shift in wavenumber is 

∆𝑘𝑝,𝑟𝑒𝑓 = 𝑘𝑝 − 𝑘𝑟𝑒𝑓 = 𝜔𝑟𝑒𝑓[𝑐𝑟𝑒𝑓 + ∆𝑐𝑝,𝑟𝑒𝑓]
−1

−
𝜔𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
= 

𝜔𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
[1 +

∆𝑐𝑝,𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
]

−1

−
𝜔𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
=

𝜔𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
[1 −

∆𝑐𝑝,𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
] −

𝜔𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
= −

𝜔𝑟𝑒𝑓∆𝑐𝑝,𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
2  

(A.57) 
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or 

∆𝑘𝑝,𝑟𝑒𝑓

𝑘𝑟𝑒𝑓
= −

∆𝑐𝑝,𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
 

(A.58) 

At wavenumber 𝑘𝑎 on the unperturbed dispersion curve, the ratio 𝑅 is to first order 

𝑅𝑎 = 𝑅𝑟𝑒𝑓 +
𝑑𝑅

𝑑𝑘
|

𝑘𝑟𝑒𝑓

∆𝑘𝑎,𝑟𝑒𝑓 ≡ 𝑅𝑟𝑒𝑓 + ∆𝑅𝑎,𝑟𝑒𝑓 

(A.59) 

In order to calculate 𝑅𝑝 from 𝑅𝑎, we use the rule 𝐹 = 𝐸𝑐, where 𝐸 is the vertically-integrated 

energy density, together with the fact that time-averaged kinetic and potential energies of a mode 

are equal: 

𝑅 =
𝑢3

𝑟𝑚𝑠(𝑧 = 0)

√𝐸𝑐
= 𝑢3

𝑟𝑚𝑠(𝑧 = 0) (𝑐 ∫ 𝜔2𝜌{[𝑢1
𝑟𝑚𝑠(𝑧)]2 + [𝑢3

𝑟𝑚𝑠(𝑧)]2}
∞

0

𝑑𝑧)

−½

= 𝑐−½𝜔−1𝐼−½ 

with   𝐼 ≡ ∫ 𝜌
[𝑢1

𝑟𝑚𝑠(𝑧)]2 + [𝑢3
𝑟𝑚𝑠(𝑧)]2

[𝑢3
𝑟𝑚𝑠(𝑧 = 0)]2

∞

0

𝑑𝑧 

(A.60) 

Then, 𝑅𝑟𝑒𝑓 is calculated by first perturbing 𝑅𝑟𝑒𝑓  to 𝑅𝑎 via Eqn. (5) and then perturbing to 𝑅𝑎 to 

𝑅𝑝 by replacing 𝑐𝑎 with 𝑐𝑝, 𝜔𝑎 with 𝜔𝑝 and 𝐼𝑎 with 𝐼𝑝: 

𝑅𝑝 = (𝑅𝑟𝑒𝑓 +
𝑑𝑅

𝑑𝑘
∆𝑘𝑝,𝑟𝑒𝑓) (

𝑐𝑝

𝑐𝑎
)

−½

(
𝜔𝑝

𝜔𝑎
)

−1

(
𝐼𝑝

𝐼𝑎
)

−½

 

(A.61) 

As points (𝑝) and (𝑎)  have the same wavenumber, 𝜔𝑝 𝜔𝑎⁄ = 𝑐𝑝 𝑐𝑎⁄ .  As no mode mixing 

occurs, 𝑢𝑖
𝑝 = 𝑢𝑖

𝑎 and 

𝐼𝑝 = 𝐼𝑎 + ∆𝐼𝑝,𝑎 = ∫ 𝜌𝑟𝑒𝑓 𝐺𝑎(𝑧) 𝑑𝑧 
∞

0

+ ∫ 𝛿𝜌 𝐺𝑎(𝑧) 𝑑𝑧
∞

0

=  

𝐼𝑟𝑒𝑓 + (∫ 𝜌𝑟𝑒𝑓  
𝑑𝐺

𝑑𝑘
|

𝑟𝑒𝑓
 𝑑𝑧

∞

0

) ∆𝑘𝑎,𝑟𝑒𝑓 + (∫ 𝛿𝜌 𝐺𝑟𝑒𝑓(𝑧) 
∞

0

𝑑𝑧) = 

≡ 𝐼𝑟𝑒𝑓 + 𝐽𝑟𝑒𝑓∆𝑘𝑝,𝑟𝑒𝑓 + 𝐾𝑟𝑒𝑓 

(A.62) 

The ratio 𝑅𝑝 is then 

𝑅𝑝 = (𝑅𝑟𝑒𝑓 +
𝑑𝑅

𝑑𝑘
∆𝑘𝑎,𝑟𝑒𝑓) (

𝑐𝑝

𝑐𝑎
)

−3/2

(
𝐼𝑝

𝐼𝑎
)

−½

= 
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𝑅𝑟𝑒𝑓 (1 +
1

𝑅𝑟𝑒𝑓

𝑑𝑅

𝑑𝑘
∆𝑘𝑝,𝑟𝑒𝑓) (𝑐𝑟𝑒𝑓 + ∆𝑐𝑝,𝑟𝑒𝑓)

−
3
2 (𝑐𝑟𝑒𝑓 +

𝑑𝑐

𝑑𝑘
∆𝑘𝑝,𝑟𝑒𝑓)

3
2

× 

(𝐼𝑟𝑒𝑓 + 𝐽𝑟𝑒𝑓∆𝑘𝑝,𝑟𝑒𝑓 + 𝐾𝑟𝑒𝑓∆𝑘𝑝,𝑟𝑒𝑓)
−½

(𝐼𝑟𝑒𝑓 + 𝐽𝑟𝑒𝑓∆𝑘𝑝,𝑟𝑒𝑓)
½

= 

𝑅𝑟𝑒𝑓 (1 +
1

𝑅𝑟𝑒𝑓

𝑑𝑅

𝑑𝑘
∆𝑘𝑝,𝑟𝑒𝑓 −

3

2

∆𝑐𝑝,𝑟𝑒𝑓

𝑐𝑟𝑒𝑓
+

3

2

1

𝑐𝑟𝑒𝑓

𝑑𝑐

𝑑𝑘
∆𝑘𝑝,𝑟𝑒𝑓 −

1

2

𝐾𝑟𝑒𝑓

𝐼𝑟𝑒𝑓
) 

(A.63) 

We can write this result succinctly as 

𝑅𝑝 𝑅𝑟𝑒𝑓⁄ = (1 + 𝑇1 − 𝑇2 + 𝑇3 − 𝑇4) 

(A.64) 

where the 𝑇s correspond to the terms of Eqn. (10). This result is valid irrespective of whether the 

medium is isotropic or anisotropic, with the caveat that for anisotropic models ∆𝑐𝑝,𝑟𝑒𝑓 must be 

properly computed. Term 𝑇1 is strongly frequency dependent. Terms 𝑇2 and 𝑇3 are unequal, as 

they represent points on different dispersion curves, and (−𝑇2 + 𝑇3) is very weakly frequency-

dependent.  Term 𝑇4 depend on density, only, and is zero when 𝛿𝜌 = 0, implying that the 

behavior of 𝑅𝑝 𝑅𝑟𝑒𝑓⁄  depends on whether the elastic moduli or density is being perturbed. 

As a validation test, we use Eqn. (A.63) to compute 𝑅 𝑅𝑟𝑒𝑓⁄  for a simple layer-over-a-half-space 

Earth model (the same Case 1, described in a subsequent section), alternately with a 5% increase 

in elastic moduli or 5% decrease in density.  The prediction agrees well with those of the direct 

method (Fig. A.3). 

 
Fig. A.3. Comparison of direct and perturbative calculation of the ratio 𝑅 𝑅𝑟𝑒𝑓⁄ , for the 

reference Earth model of Case 1. (A) The elastic moduli are perturbed by 5% and the density 

is held constant. (B) The elastic moduli are held constant and the density is perturbed by 5%. 

In both cases, the direct (red curves) perturbative (green curves) calculations match well.  

Omitting all terms except 𝑇2 and 𝑇3 leads to a frequency-independent result (blue curves). 

 


