Derivative of the Surface Wave Wave-function with Respect to Horizontal Wavenumber

Bill Menke, August 10, 2024

Previous work (Menke Research Note 284, 2014, Sec. A.7,), concerning the amplitude sensitivity of surface waves, defines the quantity

$$R \equiv \frac{u_i}{\sqrt{F_T}} = \frac{u_i}{\sqrt{Ec}} = \frac{u_i}{\sqrt{E}} c^{-\frac{1}{2}}$$
(1)

where u_i is the displacement wave-function, F_T is the vertically-integrated horizontal energy flux density, E is the vertically-integrated energy density, $c \equiv \omega/k_x$ is the phase velocity, ω is angular frequency, and k_x is horizontal wavenumber. Previously, I computed the derivative dR/dk_x along the dispersion curve $\omega(k_x)$ by finite differences. Here, I present an alternate method, based on solving a differential equation.

The vertically integrated energy density is

$$E = \omega^2 I \quad \text{with} \quad I \equiv \langle u_i^* u_i \rangle = \int_0^\infty \rho u_i^* u_i dz$$
(2)

Suppose now that u_i has been normalized so that I = 1. Then, $E = \omega^2$, $F_T = \omega^2 c$ and $R = \omega^{-1}c^{-\frac{1}{2}}u_i$. The derivative is

$$\frac{dR}{dk_x} = \omega^{-1} c^{-\frac{1}{2}} \frac{du_i}{dk_x} - \omega^{-2} c^{-\frac{1}{2}} u_i \frac{d\omega}{dk_x} - \frac{1}{2} u_i c^{-\frac{3}{2}} \frac{dc}{dk_x}$$
(3)

The derivative of the phase velocity is

$$\frac{dc}{dk_x} = \frac{d}{dk_x} (\omega k_x^{-1}) = k_x^{-1} \frac{d\omega}{dk_x} - \omega k_x^{-2}$$

$$\tag{4}$$

Consequently, for a specified point $(k_x^{ref}, \omega^{ref})$ on the dispersion curve, all quantities, except du_i/dk_x , appearing in Eqn. (3) can be calculated by known methods.

We now show how to compute $g_i \equiv du_i/dk_x$ (with the understanding that u_i is normalized so that that I = 1).

Part 1. General method

Suppose that the displacement satisfies the homogenous linear differential equation,

$$\mathcal{L}_{pi}(z, k_x, \omega) \ u_i(z, k_x, \omega) = 0$$

(5)

With homogenous boundary conditions

$$\mathcal{B}_{pi}^{(0)}(z=0 \ k_x, \omega) = 0 \quad \text{and} \quad \mathcal{B}_{pi}^{(\infty)}(z \to \infty \ k_x, \omega) = 0.$$
(6)

Here, \mathcal{L}_{pi} , $\mathcal{B}_{pi}^{(0)}$ and $\mathcal{B}_{pi}^{(\infty)}$ are linear differential operators. Taken together, Eqns. (5-6) are an eigenvalue problem that defines the dispersion relation $\omega(k_x)$ and the wave-function $u_i(z, k_x)$ (up to a multiplicative constant). Subsequently, we shall drop ω from the variable lists as it is now considered a function of k_x .

We differentiate Eqns. (5) with respect to wavenumber (along the dispersion curve), to find

$$\mathcal{L}_{pi}(z,k_x) g_i = f_p \text{ with } f_p \equiv -\left(\frac{d}{dk_x}\mathcal{L}_{pi}(z,k_x)\right) u_i(z,k_x)$$
(7)

Eqn. (7) an inhomogeneous equation for the derivative $g_i \equiv du_i/dk_x$. Note that it has the same differential operator as the equation for u_i (Eqn. 5). To first order

$$u_i(z,k_x) = u_i(z,k_x^{ref}) + g_i(z,k_x^{ref}) \Delta k_x \quad \text{with } \Delta k_x \equiv k_x - k_x^{ref}$$
(8)

Applying the boundary conditions yields

$$\mathcal{B}_{pi}^{(0)} u_i(z, k_x) = 0 = \mathcal{B}_{pi}^{(0)} u_i(z, k_x^{ref}) + \mathcal{B}_{pi}^{(0)} g_i(z, k_x^{ref}) \Delta k_x$$
$$\mathcal{B}_{pi}^{(\infty)} u_i(z, k_x) = 0 = \mathcal{B}_{pi}^{(\infty)} u_i(z, k_x^{ref}) + \mathcal{B}_{pi}^{(\infty)} g_i(z, k_x^{ref}) \Delta k_x$$
(9)

As the boundary conditions on u_i must be satisfied irrespective of Δk_x , $\mathcal{B}_{pi}^{(0)}g_i = \mathcal{B}_{pi}^{(\infty)}g_i = 0$; that is, g_i must satisfy the same boundary conditions at z = 0 and $z \to \infty$ as does u_i . As g_i and u_i have the same differential operator and same boundary conditions, $g_i^H = u_i$ is a solution to the homogeneous version of Eqn. (7).

Eqn. (7) can be solved numerically discretizing $\mathcal{L}_{pi} g_i = f_p$ into the matrix equation $\mathbf{L} \mathbf{g} = \mathbf{f}$ (say, with increment Δz) and solving it with standard linear algebraic methods. Suppose that a particular solution g_i^{par} has been constructed. The general solution is

$$g_i = g_i^{par} + \alpha u_i$$

The parameter α is determined by the requirement that $u_i(z, k_x)$ in Eqn. (8) has I = 1 irrespective of the value of Δk_x :

$$I = 1 = \langle \{u_i^* + [\{g_i^{par*} + \alpha u_i^*\}]\Delta k_x\}\{u_i + [g_i^{par} + \alpha u_i]\Delta k_x\}\rangle \approx \{\langle u_i^* u_i\rangle + [\langle u_i^* g_i^{par}\rangle + \alpha \langle u_i^* u_i\rangle]\Delta k_x\} + \{[\langle u_i g_i^{par*}\rangle + \alpha \langle u_i^* u_i\rangle]\Delta k_x\} = 1 + [\langle u_i^* g_i^{par}\rangle + \alpha]\Delta k_x + [\langle u_i g_i^{par*}\rangle + \alpha]\Delta k_x = 1 + [\langle u_i^* g_i^{par}\rangle + \langle u_i g_i^{par*}\rangle + 2\alpha]\Delta k_x 1 + [2 \operatorname{real} \langle u_i^* g_i^{par}\rangle + 2\alpha]\Delta k_x$$
(11)

Consequently,

$$\alpha = -\operatorname{real} \langle u_i^* g_i^{par} \rangle \tag{12}$$

Part 2, Example of Acoustic Surface Waves.

Consider the simplified case of an acoustic surface wave propagating in layer over a half-space, with the wave-function corresponding to pressure p(z), where z is depth. The equation of motion is (Menke and Abbott, 1989, Eqn. 8.4.4):

$$p(z) = \frac{k_x^2}{\omega^2} \frac{\lambda(z)}{\rho(z)} p(z) - \frac{\lambda(z)}{\omega^2} \frac{d}{dz} \frac{1}{\rho(z)} \frac{d}{dz} p(z)$$
(13)

where λ is incompressibility, ρ is density and ω is angular frequency. This equation can be manipulated into the equivalent form

$$\left\{ \left(\frac{\omega^2}{c^2} - k_x^2 \right) + \frac{d^2}{dz^2} - \frac{1}{\rho} \frac{d\rho}{dz} \frac{d}{dz} \right\} p(z) = 0 \text{ or}$$

$$\mathcal{L} p(z) = 0$$
(14)

Here, $c \equiv \sqrt{\lambda/\rho}$ is the local acoustic velocity, and \mathcal{L} is shorthand for the differential operator in the braces. This equation, together with the boundary conditions p(z = 0) = 0 and $p(z \to \infty) = 0$ can be satisfied only by certain combinations of (k_x, ω) . For a layer of thickness *H* and material properties (λ_1, ρ_1) over a half-space of material properties (λ_2, ρ_1) , and with $c_1 < c_2$, the dispersion function $k_x(\omega)$ satisfies a known transcendental equation of the form $D(k_x, \omega) = 0$ (Menke and Abbott, 1989, Eqn. 8.5.9) that is easy to solve numerically. Furthermore, the

vertical wave-function is known analytically, being sinusoidal in the layer and exponentiallydecaying in the half-space. Conventionally, the vertical wave-function is normalized so that

$$I \equiv \langle p^2 \rangle \equiv \int_0^\infty \frac{p^2}{\lambda} dz = 1$$
(15)

A differential equation for the derivative $g(z) \equiv dp/dk_x$ can be found by differentiating Eqn. (14):

$$\left\{ \left(\frac{\omega^2}{c^2} - k_x^2 \right) + \frac{d^2}{dz^2} - \frac{1}{\rho} \frac{d\rho}{dz} \frac{d}{dz} \right\} g(z) = -2 \left(\frac{\omega}{c^2} \frac{d\omega}{dk_x} - k_x \right) p(z)$$
or
$$\mathcal{L} g(z) = f(z)$$
(15)

Note that $d\omega/dk_x$ is the group velocity. The boundary conditions on p(z) are independent of horizontal wavenumber, implying that g(z = 0) = 0 and $g(z \to 0) = 0$. Note that p(z) and g(z) have the same differential operator and boundary conditions. Consequently, the homogeneous solution to Eqn. (15) is $g_H \equiv p$. Eqn. (15) can be solved numerically for an particular solution g^{par} by discretizing $\mathcal{L} g(z) = f(z)$ into the matrix equation $\mathbf{L} \mathbf{g} = \mathbf{f}$, say with increment Δz) and solving it with standard linear algebraic methods. The general solution is then

$$g(z) = g^{par} + \alpha g_H \tag{16}$$

where α is an as-yet-undetermined parameter.

Given the wave-function $p(z, k_x^{ref})$ for a particular reference wavenumber k_x^{ref} , the wave-function at a neighboring wavenumber $k_x^{ref} + \Delta k_x$ is

$$p(z, k_x^{ref} + \Delta k_x) \approx p(z, k_x^{ref}) + g(z, k_x^{ref}) \Delta k_x$$

or
$$p(z, k_x^{ref} + \Delta k_x) \approx p(z, k_x^{ref}) + \left(g^{par}(z, k_x^{ref}) + \alpha g_H(z, k_x^{ref})\right) \Delta k_x$$
(17)

The parameter α is determined by the condition that I = 1 irrespectice of the value of Δk_x :

$$I = 1 = \langle \left(p(z, k_x^{ref}) + \left(g^{par}(z, k_x^{ref}) + \alpha g_H(z, k_x^{ref}) \right) \Delta k_x \right)^2 \rangle$$

(18)

After identifying $g_H(z, k_x^{ref}) = p(z, k_x^{ref})$ and assuming that $\langle (p^2(z, k_x^{ref})) \rangle = 1$, Eqn. (7) becomes

$$1 + \{\langle g^{par}(z, k_x^{ref}) p(z, k_x^{ref}) \rangle + \alpha\} \Delta k_x \approx 1$$
(19)

which implies

$$\alpha = -\langle g^{par}(z, k_x^{ref}) p(z, k_x^{ref}) \rangle$$
(20)

We test this procedure for a layer with H = 40,000 m, $c_1 = 6,500$ m/s and $\rho_1 = 2,500$ kg/m³ above a half-space of $c_2 = 8,000$ m/s and $\rho_1 = 3,000$ kg/m³. After specifying a reference frequency ω^{ref} =, the corresponding k_x^{ref} is determined by solving $D(k_x, \omega) = 0$ using Newton's method and the normalized vertical wave-function is constructed (Fig. 1, top). The group velocity $d\omega/dk_x$ is also determined by standard means. The wave-function is then entered into the source term in Eqn. (4), the equation is discretizing using a distance increment $\Delta z =$ 2000 m, and solved by standard linear-algebraic means. Finally, the parameter α is calculated by approximating the integral in Eqn. (9) by Riemann's rule, allowing the derivative dp/dk_x (Fig. 1, bottom, black curve) to be constructed via Eqn. (5).

The derivative is tested against the finite difference approximation (Fig. 1, bottom, red-dashed curve), by differencing $p(z, k_x^{ref})$ and $p(z, k_x^{ref} + \Delta k_x)$, where Δk_x is a small increment. The two results agree very well.

Part 3, Operator and right hand side for the general form of the wave equation

The elastic wave equation is

$$-\omega^2 \rho u_i = \left(c_{ijpq} u_{p,q}\right)_{,j} = c_{ijpq,j} u_{p,q} + c_{ijpq} u_{p,qj}$$

$$\tag{21}$$

Considering c_{ijpq} to be a function of z, only:

$$-\omega^2 \rho u_i = c_{i3pq,3} u_{p,q} + c_{ijpq} u_{p,qj}$$
(22)

Assuming that u_i has no y-dependence

$$-\omega^{2}\rho u_{i} = (c_{i3p1,3}u_{p,1} + c_{i3p3,3}u_{p,3}) + (c_{i1p1}u_{p,11} + c_{i1p3}u_{p,13} + c_{i3p1}u_{p,31} + c_{i3p3}u_{p,33})$$
(23)

Assuming a wave-function of the form $u_i = U_i(z) \exp(ik_x x)$

$$-\omega^{2}\rho U_{i} = \left(ik_{x}c_{i3p1,3}U_{p} + c_{i3p3,3}U_{p,3}\right) + \left(-k_{x}^{2}c_{i1p1}U_{p} + ik_{x}c_{i1p3}U_{p,3} + ik_{x}c_{i3p1}U_{p,3} + c_{i3p3}U_{p,33}\right)$$
(24)

Which simplified to

$$0 = (k_x^2 c_{i1p1} U_p - \omega^2 \rho \delta_{ip} - i k_x c_{i3p1,3}) U_p$$
$$-i k_x (c_{i3p3,3} + c_{i1p3} + c_{i3p1}) U_{p,3} - c_{i3p3} U_{p,33} U_{p,33}$$
(25)

In elastic problems, one typically uses the normalization

$$I = \langle U_i^* U_i \rangle \equiv \int_0^\infty \rho U_i^* U_i dz = 1$$
(26)

Taking the derivative $g_p \equiv dU_p/dk_x$ with respect to wavenumber k_x leads to $\mathcal{L}_{ip} g_p = f_i$ with \mathcal{L}_{ip} unchanged and

$$f_{i} = 2\left(k_{x}c_{i1p1} - \omega\frac{d\omega}{dk_{x}}\rho\delta_{ip}\right)U_{p} + i\left(c_{i3p3,3} + c_{i1p3} + c_{i3p1}U_{p,3}\right)U_{p,3}$$
(27)

References

Menke, W., 2024, Menke Research Note 284, Frequency Dependence of Rayleigh Wave Amplification by Variation in Earth Structure,

https://www.ldeo.columbia.edu/~menke/www_users_menke/research_notes/menke_research_no te284.pdf

Menke, W. and D. Abbott, Geophysical Theory (Textbook), Columbia University Press, 458p, 1989