Derivative of the Surface Wave Wave-function with Respect to Horizontal Wavenumber

Bill Menke, August 10, 2024

Previous work (Menke Research Note 284, 2014, Sec. A.7,), concerning the amplitude
sensitivity of surface waves, defines the quantity
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where u; is the displacement wave-function, F; is the vertically-integrated horizontal energy flux
density, E is the vertically-integrated energy density, ¢ = w/k, is the phase velocity, w is
angular frequency, and k, is horizontal wavenumber. Previously, | computed the derivative
dR/dk, along the dispersion curve w(k,) by finite differences. Here, | present an alternate
method, based on solving a differential equation.

The vertically integrated energy density is

E =w?l with I=(ujy) =f pu;u;dz
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Suppose now that u; has been normalized so that I = 1. Then, E = w?, F; = w?cand R =
w~tc™"u;. The derivative is
dR du; dw dc
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The derivative of the phase velocity is
dc d dw
- = k—l — k—l _ k—2
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Consequently, for a specified point (k;ef, wref) on the dispersion curve, all quantities, except
du;/dk,, appearing in Eqn. (3) can be calculated by known methods.

We now show how to compute g; = du;/dk, (with the understanding that u; is normalized so
that that I = 1).

Part 1. General method

Suppose that the displacement satisfies the homogenous linear differential equation,



Li(z,ky, w) u;j(z,ky, w) =0
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With homogenous boundary conditions
Bz()?)(z =0k, w)=0 and Bz(jo)(z ook, w)=0.

(6)
Here, L,;, Bgz) and Bgf) are linear differential operators. Taken together, Egns. (5-6) are an
eigenvalue problem that defines the dispersion relation w(k, ) and the wave-function u;(z, k,.)
(up to a multiplicative constant). Subsequently, we shall drop w from the variable lists as it is
now considered a function of k,.
We differentiate Eqns. (5) with respect to wavenumber (along the dispersion curve), to find
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Eqgn. (7) an inhomogeneous equation for the derivative g; = du;/dk,. Note that it has the same
differential operator as the equation for u; (Eqn. 5). To first order

w; (2, k) = w(2, k) + gi(2, k") Ak, with Ak, = ky — ki

(8)
Applying the boundary conditions yields
BI(,?) u;(z, k) =0 = 'B;?)ui (2 k) + 'ng)gi(z, ko) Ak,
BI(;QO) u;i(z,k,) =0 = Bz(goio)ui (z k) + Bz(,cf) 9i(z k) Ak,
(9)

As the boundary conditions on u; must be satisfied irrespective of Ak, Bz(,?) gi = Bz(,‘f’) gi = 0;

that is, g; must satisfy the same boundary conditions at z = 0 and z — oo as does u;. As g; and
u; have the same differential operator and same boundary conditions, g = u; is a solution to
the homogeneous version of Eqgn. (7).

Eqgn. (7) can be solved numerically discretizing L,; g; = f, into the matrix equation L g = f
(say, with increment Az) and solving it with standard linear algebraic methods. Suppose that a

particular solution g”*" has been constructed. The general solution is

L
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The parameter « is determined by the requirement that u;(z, k,) in Eqn. (8) has I =1
irrespective of the value of Ak, :

I=1={w+[{g’"" + au;} |Ak J{w; + [gF" + aw;| Ak, }) =
{(wiw) + [(urgl™) + a(ujw)] Aky ) + {[(uig? ™) + auiw)| Ak, } =
1+ [(uigl™) + a] Ak, + [(wig?™") + a] Ak, =
1+ [ gP™y + (wigP™™) + 2a] Ak,
1+ [2real (ujgP"") + 2a| Ak,

(11)

Consequently,

a = —real (ujg'"")
(12)

Part 2, Example of Acoustic Surface Waves.

Consider the simplified case of an acoustic surface wave propagating in layer over a half-space,
with the wave-function corresponding to pressure p(z), where z is depth. The equation of
motion is (Menke and Abbott, 1989, Eqgn. 8.4.4):
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where A is incompressibility, p is density and w is angular frequency. This equation can be
manipulated into the equivalent form
w? d> 1dp d
- k2 = =
{(cz kx> iz pdz dz}p(z) Oor
Lp(z)=0
(14)

Here, ¢ = \/m is the local acoustic velocity, and £ is shorthand for the differential operator in
the braces. This equation, together with the boundary conditions p(z = 0) = 0 and p(z —» o) =
0 can be satisfied only by certain combinations of (k,, w). For a layer of thickness H and
material properties (14, p;) over a half-space of material properties (4,, p;), and with ¢; < ¢,
the dispersion function k, (w) satisfies a known transcendental equation of the form D (k,, w) =
0 (Menke and Abbott, 1989, Eqgn. 8.5.9) that is easy to solve numerically. Furthermore, the



vertical wave-function is known analytically, being sinusoidal in the layer and exponentially-
decaying in the half-space. Conventionally, the vertical wave-function is normalized so that
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A differential equation for the derivative g(z) = dp/dk, can be found by differentiating Eqn.

(14):
w? 2 +d2 1dp d ) = Z(wdw k)()
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or

Lg(2) = f(2)
(15)

Note that dw /dk, is the group velocity. The boundary conditions on p(z) are independent of
horizontal wavenumber, implying that g(z = 0) = 0 and g(z — 0) = 0. Note that p(z) and
g(2) have the same differential operator and boundary conditions. Consequently, the
homogeneous solution to Eqgn. (15) is gy = p. Egn. (15) can be solved numerically for an
particular solution gP%" by discretizing £ g(z) = f(z) into the matrix equation L g = f, say
with increment Az) and solving it with standard linear algebraic methods. The general solution is
then

9(2) = g + agy

(16)
where « is an as-yet-undetermined parameter.
Given the wave-function p(z, k,°’) for a particular reference wavenumber k°/, the wave-
function at a neighboring wavenumber k' + Ak, is

p(z, kT + Aky) = p(2, k) + g(2, kL) Ak,
or
p(z, k;ef + Aky) = p(z, k;ef) + (gpar(z, k;ef) + agy(z, k;ef)) Ak,
17)

The parameter « is determined by the condition that I = 1 irrespectice of the value of Ak,:

1= 1= ((p(2. ) + (g7 (2. k1) + g (2 1)) By ) )



(18)

After identifying gy (2, k;*") = p(z, kL") and assuming that ((pz(z, k;ef))) =1, Eqn. (7)
becomes

1+ {(gpar(z’ k;ef)p(z' k;ef» + Q}Akx ~1
(19)

which implies

a=—(g" (2.1 Jp(z. k)
(20)

We test this procedure for a layer with H = 40,000 m, ¢; = 6,500 m/s and p; = 2,500 kg/m?3
above a half-space of ¢, = 8,000 m/s and p; = 3,000 kg/m3. After specifying a reference
frequency w™®/ =, the corresponding k;efis determined by solving D (k,, w) = 0 using
Newton’s method and the normalized vertical wave-function is constructed (Fig. 1, top). The
group velocity dw/dk, is also determined by standard means. The wave-function is then entered
into the source term in Eqn. (4), the equation is discretizing using a distance increment Az =
2000 m, and solved by standard linear-algebraic means. Finally, the parameter « is calculated by
approximating the integral in Eqn. (9) by Riemann’s rule, allowing the derivative dp/dk, (Fig.
1, bottom, black curve) to be constructed via Eqgn. (5).

The derivative is tested against the finite difference approximation (Fig. 1, bottom, red-dashed

curve), by differencing p(z, k;°") and p(z, kL + Ak,.), where Ak, is a small increment. The
two results agree very well.
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(Top) Normalized pressure p as a function of depth z for the fundamental acoustic wave mode
at angular frequency w = 1.22 s~1. (Bottom) The derivative dp/dk,, calculated by the direct
method (black) and by finite differences (red-dashed curve). Note the excellent agreement
between the two methods.

Part 3, Operator and right hand side for the general form of the wave equation
The elastic wave equation is
—w’pu; = (Ciquup,q),j = Cijpg,jUpa t CijpaUpaj
(21)
Considering c;;,q to be a function of z, only:
—w?pU; = Cizpq3Upq + CijpaUpaj
(22)
Assuming that u; has no y-dependence
—w?py; = (Ci3p1,3up,1 + Ci3p3,3up,3) +

(Cilplup,ll + Ci1p3Up,13 T Cizp1Upz1 + Ci3p3up,33)

(23)



Assuming a wave-function of the form u; = U;(2) exp(ik,x)
_(UZPUi = (ikxci3p1,3Up + Ci3p3,3Up,3) +

2 . .
(_kxcilplup + lkxci1p3Up,3 + lkxci3p1Up,3 + Ci3p3Up,33)

(24)

Which simplified to
0= (kJ%CilplUp - w2p6ip - ikxci3p1,3)Up
_ikx(ci3p3,3 + Ci1pz + Ci3p1)Up,3 — Cizp3Up33Up 33

(25)

In elastic problems, one typically uses the normalization
0
(26)

Taking the derivative g, = dU,/dk, with respect to wavenumber k, leads to £;,, g, = f; with
L;, unchanged and

dw ]
fi=2 (kxcilpl - wﬁP&p) U, + l(Ci3p3,3 + Citpz t+ Ci3p1Up,3)Up,3
X
(27)
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