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Previous work (Menke Research Note 284, 2014, Sec. A.7,), concerning the amplitude 

sensitivity of surface waves, defines the quantity 

𝑅 ≡
𝑢𝑖

√𝐹𝑇

=
𝑢𝑖

√𝐸𝑐
=

𝑢𝑖

√𝐸
𝑐−½ 

(1) 

where 𝑢𝑖 is the displacement wave-function, 𝐹𝑇 is the vertically-integrated horizontal energy flux 

density, 𝐸 is the vertically-integrated energy density, 𝑐 ≡ 𝜔 𝑘𝑥⁄  is the phase velocity, 𝜔 is 

angular frequency, and 𝑘𝑥 is horizontal wavenumber.  Previously, I computed the derivative 

𝑑𝑅 𝑑𝑘𝑥⁄  along the dispersion curve 𝜔(𝑘𝑥) by finite differences. Here, I present an alternate 

method, based on solving a differential equation. 

The vertically integrated energy density is 

𝐸 = 𝜔2𝐼     with    𝐼 ≡ 〈𝑢𝑖
∗𝑢𝑖〉 = ∫ 𝜌𝑢𝑖

∗𝑢𝑖𝑑𝑧
∞

0

 

(2) 

Suppose now that 𝑢𝑖 has been normalized so that 𝐼 = 1. Then, 𝐸 = 𝜔2, 𝐹𝑇 = 𝜔2𝑐 and 𝑅 =

𝜔−1𝑐−½𝑢𝑖.  The derivative is 

𝑑𝑅

𝑑𝑘𝑥
= 𝜔−1𝑐−½

𝑑𝑢𝑖

𝑑𝑘𝑥
− 𝜔−2𝑐−½𝑢𝑖

𝑑𝜔

𝑑𝑘𝑥
− ½𝑢𝑖𝑐

−3/2
𝑑𝑐

𝑑𝑘𝑥
 

(3) 

The derivative of the phase velocity is 

𝑑𝑐

𝑑𝑘𝑥
=

𝑑

𝑑𝑘𝑥

(𝜔𝑘𝑥
−1) = 𝑘𝑥

−1
𝑑𝜔

𝑑𝑘𝑥
− 𝜔𝑘𝑥

−2 

(4) 

Consequently, for a specified point (𝑘𝑥
𝑟𝑒𝑓

, 𝜔𝑟𝑒𝑓) on the dispersion curve, all quantities, except 

𝑑𝑢𝑖 𝑑𝑘𝑥⁄ , appearing in Eqn. (3) can be calculated by known methods. 

We now show how to compute 𝑔𝑖 ≡ 𝑑𝑢𝑖 𝑑𝑘𝑥⁄  (with the understanding that 𝑢𝑖 is normalized so 

that that 𝐼 = 1). 

Part 1.  General method 

Suppose that the displacement satisfies the homogenous linear differential equation, 



ℒ𝑝𝑖(𝑧, 𝑘𝑥, 𝜔)  𝑢𝑖(𝑧, 𝑘𝑥, 𝜔) = 0 

(5) 

With homogenous boundary conditions 

ℬ𝑝𝑖
(0)(𝑧 = 0 𝑘𝑥, 𝜔) = 0    and    ℬ𝑝𝑖

(∞)(𝑧 → ∞ 𝑘𝑥, 𝜔) = 0. 

(6) 

Here, ℒ𝑝𝑖, ℬ𝑝𝑖
(0)

 and ℬ𝑝𝑖
(∞)

 are linear differential operators.  Taken together, Eqns. (5-6) are an 

eigenvalue problem that defines the dispersion relation 𝜔(𝑘𝑥) and the wave-function 𝑢𝑖(𝑧, 𝑘𝑥) 

(up to a multiplicative constant).  Subsequently, we shall drop 𝜔 from the variable lists as it is 

now considered a function of 𝑘𝑥. 

We differentiate Eqns. (5) with respect to wavenumber (along the dispersion curve), to find 

ℒ𝑝𝑖(𝑧, 𝑘𝑥) 𝑔𝑖  = 𝑓𝑝  with   𝑓𝑝 ≡ − (
𝑑

𝑑𝑘𝑥
ℒ𝑝𝑖(𝑧, 𝑘𝑥)) 𝑢𝑖(𝑧, 𝑘𝑥) 

(7) 

Eqn. (7) an inhomogeneous equation for the derivative  𝑔𝑖 ≡ 𝑑𝑢𝑖 𝑑𝑘𝑥⁄ . Note that it has the same 

differential operator as the equation for 𝑢𝑖 (Eqn. 5). To first order 

𝑢𝑖(𝑧, 𝑘𝑥) = 𝑢𝑖(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) + 𝑔𝑖(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) ∆𝑘𝑥    with  ∆𝑘𝑥 ≡ 𝑘𝑥 − 𝑘𝑥
𝑟𝑒𝑓

 

(8) 

Applying the boundary conditions yields  

ℬ𝑝𝑖
(0)

 𝑢𝑖(𝑧, 𝑘𝑥) = 0 = ℬ𝑝𝑖
(0)

𝑢𝑖(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) + ℬ𝑝𝑖
(0)

𝑔𝑖(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) ∆𝑘𝑥 

ℬ𝑝𝑖
(∞)

 𝑢𝑖(𝑧, 𝑘𝑥) = 0 = ℬ𝑝𝑖
(∞)

𝑢𝑖(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) + ℬ𝑝𝑖
(∞)

𝑔𝑖(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) ∆𝑘𝑥 

(9) 

As the boundary conditions on 𝑢𝑖 must be satisfied irrespective of ∆𝑘𝑥, ℬ𝑝𝑖
(0)

𝑔𝑖 = ℬ𝑝𝑖
(∞)

𝑔𝑖 = 0; 

that is, 𝑔𝑖 must satisfy the same boundary conditions at 𝑧 = 0 and 𝑧 → ∞ as does 𝑢𝑖.  As 𝑔𝑖 and 

𝑢𝑖 have the same differential operator and same boundary conditions, 𝑔𝑖
𝐻 = 𝑢𝑖 is a solution to 

the homogeneous version of Eqn. (7). 

Eqn. (7) can be solved numerically discretizing  ℒ𝑝𝑖 𝑔𝑖  = 𝑓𝑝 into the matrix equation 𝐋 𝐠 = 𝐟 

(say, with increment ∆𝑧) and solving it with standard linear algebraic methods. Suppose that a 

particular solution 𝑔𝑖
𝑝𝑎𝑟

 has been constructed.  The general solution is 

𝑔𝑖 = 𝑔𝑖
𝑝𝑎𝑟

+ 𝛼𝑢𝑖 



(10) 

The parameter 𝛼 is determined by the requirement that 𝑢𝑖(𝑧, 𝑘𝑥) in Eqn. (8) has 𝐼 = 1 

irrespective of the value of ∆𝑘𝑥: 

𝐼 = 1 = 〈{𝑢𝑖
∗ + [{𝑔𝑖

𝑝𝑎𝑟∗ + 𝛼𝑢𝑖
∗} ]∆𝑘𝑥}{𝑢𝑖 + [𝑔𝑖

𝑝𝑎𝑟 + 𝛼𝑢𝑖] ∆𝑘𝑥}〉 ≈ 

{〈𝑢𝑖
∗𝑢𝑖〉 + [〈𝑢𝑖

∗𝑔𝑖
𝑝𝑎𝑟〉 + 𝛼〈𝑢𝑖

∗𝑢𝑖〉] ∆𝑘𝑥} + {[〈𝑢𝑖𝑔𝑖
𝑝𝑎𝑟∗〉 + 𝛼〈𝑢𝑖

∗𝑢𝑖〉] ∆𝑘𝑥} = 

1 + [〈𝑢𝑖
∗𝑔𝑖

𝑝𝑎𝑟〉 + 𝛼] ∆𝑘𝑥 + [〈𝑢𝑖𝑔𝑖
𝑝𝑎𝑟∗〉 + 𝛼] ∆𝑘𝑥 = 

1 + [〈𝑢𝑖
∗𝑔𝑖

𝑝𝑎𝑟〉 + 〈𝑢𝑖𝑔𝑖
𝑝𝑎𝑟∗〉 + 2𝛼] ∆𝑘𝑥 

1 + [2 real  〈𝑢𝑖
∗𝑔𝑖

𝑝𝑎𝑟〉 + 2𝛼] ∆𝑘𝑥 

(11) 

Consequently,  

𝛼 = − real  〈𝑢𝑖
∗𝑔𝑖

𝑝𝑎𝑟〉 

(12) 

Part 2, Example of Acoustic Surface Waves. 

Consider the simplified case of an acoustic surface wave propagating in layer over a half-space, 

with the wave-function corresponding to pressure 𝑝(𝑧), where 𝑧 is depth.  The equation of 

motion is (Menke and Abbott, 1989, Eqn. 8.4.4): 

𝑝(𝑧) =
𝑘𝑥

2

𝜔2

𝜆(𝑧)

𝜌(𝑧)
𝑝(𝑧) −

𝜆(𝑧)

𝜔2

𝑑

𝑑𝑧

1

𝜌(𝑧)

𝑑

𝑑𝑧
𝑝(𝑧) 

(13) 

where 𝜆 is incompressibility, 𝜌 is density and 𝜔 is angular frequency.  This equation can be 

manipulated into the equivalent form 

{(
𝜔2

𝑐2
− 𝑘𝑥

2) +
𝑑2

𝑑𝑧2
−

1

𝜌

𝑑𝜌

𝑑𝑧

𝑑

𝑑𝑧
} 𝑝(𝑧) = 0 or 

ℒ 𝑝(𝑧) = 0 

(14) 

Here, 𝑐 ≡ √𝜆 𝜌⁄  is the local acoustic velocity, and ℒ is shorthand for the differential operator in 

the braces. This equation, together with the boundary conditions 𝑝(𝑧 = 0) = 0 and 𝑝(𝑧 → ∞) =

0 can be satisfied only by certain combinations of (𝑘𝑥, 𝜔).  For a layer of thickness 𝐻 and 

material properties (𝜆1, 𝜌1) over a half-space of material properties (𝜆2, 𝜌1), and with 𝑐1 < 𝑐2, 

the dispersion function 𝑘𝑥(𝜔) satisfies a known transcendental equation of the form 𝐷(𝑘𝑥, 𝜔) =

0 (Menke and Abbott, 1989, Eqn. 8.5.9) that is easy to solve numerically. Furthermore, the 



vertical wave-function is known analytically, being sinusoidal in the layer and exponentially-

decaying in the half-space.  Conventionally, the vertical wave-function is normalized so that 

𝐼 ≡ 〈𝑝2〉 ≡ ∫
𝑝2

𝜆
𝑑𝑧

∞

0

= 1 

(15) 

A differential equation for the derivative 𝑔(𝑧) ≡ 𝑑𝑝 𝑑𝑘𝑥⁄  can be found by differentiating Eqn. 

(14): 

{(
𝜔2

𝑐2
− 𝑘𝑥

2) +
𝑑2

𝑑𝑧2
−

1

𝜌

𝑑𝜌

𝑑𝑧

𝑑

𝑑𝑧
} 𝑔(𝑧) = −2 (

𝜔

𝑐2

𝑑𝜔

𝑑𝑘𝑥
− 𝑘𝑥) 𝑝(𝑧) 

or 

ℒ 𝑔(𝑧) = 𝑓(𝑧) 

(15) 

Note that 𝑑𝜔 𝑑𝑘𝑥⁄  is the group velocity. The boundary conditions on  𝑝(𝑧) are independent of 

horizontal wavenumber, implying that  𝑔(𝑧 = 0) = 0 and 𝑔(𝑧 → 0) = 0. Note that 𝑝(𝑧) and 

𝑔(𝑧) have the same differential operator and boundary conditions. Consequently, the 

homogeneous solution to Eqn. (15) is 𝑔𝐻 ≡ 𝑝. Eqn. (15) can be solved numerically for an 

particular solution 𝑔𝑝𝑎𝑟 by discretizing  ℒ 𝑔(𝑧) = 𝑓(𝑧) into the matrix equation 𝐋 𝐠 = 𝐟, say 

with increment ∆𝑧) and solving it with standard linear algebraic methods. The general solution is 

then 

𝑔(𝑧) = 𝑔𝑝𝑎𝑟 + 𝛼𝑔𝐻 

(16) 

where 𝛼 is an as-yet-undetermined parameter. 

Given the wave-function 𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) for a particular reference wavenumber 𝑘𝑥
𝑟𝑒𝑓

, the wave-

function at a neighboring wavenumber 𝑘𝑥
𝑟𝑒𝑓

+ ∆𝑘𝑥 is 

 𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

+ ∆𝑘𝑥) ≈ 𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) + 𝑔(𝑧, 𝑘𝑥
𝑟𝑒𝑓

)∆𝑘𝑥 

or 

𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

+ ∆𝑘𝑥) ≈ 𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) + (𝑔𝑝𝑎𝑟(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) + 𝛼𝑔𝐻(𝑧, 𝑘𝑥
𝑟𝑒𝑓

)) ∆𝑘𝑥 

(17) 

The parameter 𝛼 is determined by the condition that 𝐼 = 1 irrespectice of the value of  ∆𝑘𝑥: 

𝐼 = 1 = 〈(𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) + (𝑔𝑝𝑎𝑟(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) + 𝛼𝑔𝐻(𝑧, 𝑘𝑥
𝑟𝑒𝑓

)) ∆𝑘𝑥)
2

〉 



(18) 

After identifying 𝑔𝐻(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) = 𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) and assuming that 〈(𝑝2(𝑧, 𝑘𝑥
𝑟𝑒𝑓

))〉 = 1, Eqn. (7) 

becomes 

1 + {〈𝑔𝑝𝑎𝑟(𝑧, 𝑘𝑥
𝑟𝑒𝑓

)𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

)〉 + 𝛼}∆𝑘𝑥 ≈ 1 

(19) 

which implies 

𝛼 = −〈𝑔𝑝𝑎𝑟(𝑧, 𝑘𝑥
𝑟𝑒𝑓

)𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

)〉 

(20) 

We test this procedure for a layer with 𝐻 = 40,000 m, 𝑐1 = 6,500 m/s and 𝜌1 = 2,500 kg/m3 

above a half-space of 𝑐2 = 8,000 m/s and 𝜌1 = 3,000 kg/m3.  After specifying a reference 

frequency 𝜔𝑟𝑒𝑓 =, the corresponding 𝑘𝑥
𝑟𝑒𝑓

is determined by solving 𝐷(𝑘𝑥, 𝜔) = 0 using 

Newton’s method and the normalized vertical wave-function is constructed (Fig. 1, top).  The 

group velocity 𝑑𝜔 𝑑𝑘𝑥⁄  is also determined by standard means. The wave-function is then entered 

into the source term in Eqn. (4), the equation is discretizing using a distance increment ∆𝑧 =

2000 m, and solved by standard linear-algebraic means. Finally, the parameter 𝛼 is calculated by 

approximating the integral in Eqn. (9) by Riemann’s rule, allowing the derivative 𝑑𝑝 𝑑𝑘𝑥⁄  (Fig. 

1, bottom, black curve) to be constructed via Eqn. (5). 

The derivative is tested against the finite difference approximation (Fig. 1, bottom, red-dashed 

curve), by differencing 𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

) and 𝑝(𝑧, 𝑘𝑥
𝑟𝑒𝑓

+ ∆𝑘𝑥), where ∆𝑘𝑥 is a small increment.  The 

two results agree very well. 



 
(Top) Normalized pressure 𝑝 as a function of depth 𝑧 for the fundamental acoustic wave mode 

at angular frequency 𝜔 = 1.22 𝑠−1. (Bottom) The derivative 𝑑𝑝 𝑑𝑘𝑥⁄ , calculated by the direct 

method (black) and by finite differences (red-dashed  curve).  Note the excellent agreement 

between the two methods. 

 

Part 3, Operator and right hand side for the general form of the wave equation 

The elastic wave equation is 

−𝜔2𝜌𝑢𝑖 = (𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞)
,𝑗

= 𝑐𝑖𝑗𝑝𝑞,𝑗𝑢𝑝,𝑞 + 𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞𝑗 

(21) 

Considering 𝑐𝑖𝑗𝑝𝑞 to be a function of 𝑧, only: 

−𝜔2𝜌𝑢𝑖 = 𝑐𝑖3𝑝𝑞,3𝑢𝑝,𝑞 + 𝑐𝑖𝑗𝑝𝑞𝑢𝑝,𝑞𝑗 

(22) 

Assuming that 𝑢𝑖 has no 𝑦-dependence 

−𝜔2𝜌𝑢𝑖 = (𝑐𝑖3𝑝1,3𝑢𝑝,1 + 𝑐𝑖3𝑝3,3𝑢𝑝,3) + 

(𝑐𝑖1𝑝1𝑢𝑝,11 + 𝑐𝑖1𝑝3𝑢𝑝,13 + 𝑐𝑖3𝑝1𝑢𝑝,31 + 𝑐𝑖3𝑝3𝑢𝑝,33) 

(23) 

 



Assuming a wave-function of the form 𝑢𝑖 = 𝑈𝑖(𝑧) exp(𝑖𝑘𝑥𝑥)  

−𝜔2𝜌𝑈𝑖 = (𝑖𝑘𝑥𝑐𝑖3𝑝1,3𝑈𝑝 + 𝑐𝑖3𝑝3,3𝑈𝑝,3) + 

(−𝑘𝑥
2𝑐𝑖1𝑝1𝑈𝑝 + 𝑖𝑘𝑥𝑐𝑖1𝑝3𝑈𝑝,3 + 𝑖𝑘𝑥𝑐𝑖3𝑝1𝑈𝑝,3 + 𝑐𝑖3𝑝3𝑈𝑝,33) 

(24) 

Which simplified to 

0 = (𝑘𝑥
2𝑐𝑖1𝑝1𝑈𝑝 − 𝜔2𝜌𝛿𝑖𝑝 − 𝑖𝑘𝑥𝑐𝑖3𝑝1,3)𝑈𝑝 

−𝑖𝑘𝑥(𝑐𝑖3𝑝3,3 + 𝑐𝑖1𝑝3 + 𝑐𝑖3𝑝1)𝑈𝑝,3 − 𝑐𝑖3𝑝3𝑈𝑝,33𝑈𝑝,33 

(25) 

In elastic problems, one typically uses the normalization 

𝐼 = 〈𝑈𝑖
∗𝑈𝑖〉 ≡ ∫ 𝜌𝑈𝑖

∗𝑈𝑖𝑑𝑧
∞

0

= 1 

(26) 

Taking the derivative 𝑔𝑝 ≡ 𝑑𝑈𝑝 𝑑𝑘𝑥⁄  with respect to wavenumber 𝑘𝑥 leads to ℒ𝑖𝑝 𝑔𝑝 = 𝑓𝑖 with 

ℒ𝑖𝑝 unchanged and 

𝑓𝑖 = 2 (𝑘𝑥𝑐𝑖1𝑝1 − 𝜔
𝑑𝜔

𝑑𝑘𝑥
𝜌𝛿𝑖𝑝) 𝑈𝑝 + 𝑖(𝑐𝑖3𝑝3,3 + 𝑐𝑖1𝑝3 + 𝑐𝑖3𝑝1𝑈𝑝,3)𝑈𝑝,3 

(27) 
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