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Summary:  We construct the set 𝑍𝑁 of real, 𝑁th order polynomials 𝑧(𝑥, 𝐫, 𝐑) that map the (0,1) interval 

onto itself.  Here, 𝐫 is a complex vector of length 𝐾 and 𝐑 is a real vector of length 𝐿 that parameterize the 

map (with 𝑁 = 2𝐾 + 𝐿 + 1).  We also derive the sensitivities of such a polynomial to perturbations in 

(𝐫, 𝐑); that is, the partial derivatives of 𝑧 with respect to the real and imaginary parts of the elements of 𝐫 

and the elements of 𝐑. 

Theory 

Consider a real 𝑁th order polynomial 𝑝(𝑥). Its slope 𝑠(𝑥) ≡ 𝑑𝑝 𝑑𝑥⁄  is a real (𝑁 − 1)-order polynomial, 

with roots that either are purely real or occur in complex conjugate pairs. In order for 𝑝(𝑥) to be 

monotonically-increasing on the interval (0,1), its slope must be everywhere non-negative on that interval.  

Consequently, 𝑠(𝑥) may have no zeros on the (0,1) interval of the real axis, unless they occur in pairs (in 

which case 𝑝(𝑥) has an inflection point). 

Such a polynomial can be constructed from the product of 𝐾 quadratic polynomials (each with its two roots 

occurring in complex conjugate pairs) and 𝐿 monomials (each with a real root) 

𝑠(𝑥, 𝐫, 𝐑) ≡ ∏ 𝑞(𝑥, 𝑟𝑘)

𝐾

𝑘

∏ 𝑚(𝑥, 𝑅𝑙)

𝐿

𝑙

 

with    𝑞(𝑥, 𝑟𝑘) ≡ (𝑥 − 𝑟𝑘)(𝑥 − 𝑟𝑘
∗) = [(𝑟𝑘

𝑅)
2

+ (𝑟𝑘
𝐼)

2
] − 2𝑟𝑘

𝑅𝑥 + 𝑥2    and    𝑚(𝑥, 𝑅𝑙) ≡ (𝑥 − 𝑅𝑙) 

Here, we assume that the 𝑟s are distinct and the 𝑅s are outside the (0,1) interval of the real axis. This 

polynomial has order 𝑁 = 2𝐾 + 𝐿. 

The polynomials 𝑝(𝑥, 𝐫, 𝐑) can be constructed using Vieta's formula to calculate the polynomial 

coefficients of 𝑠(𝑥, 𝐫, 𝐑), and then integrating to 𝑝(𝑥, 𝐫, 𝐑) by modifying the coefficients 

given  𝑐𝑖    such that    
𝑑𝑠

𝑑𝑟𝑖
𝑅 = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥2 + ⋯    then   

𝑑𝑝

𝑑𝑟𝑖
𝑅 = 𝑐0 + 𝑐1𝑥 +

𝑐2

2
𝑥2 +

𝑐3

3
𝑥3 + ⋯ 

The integration constant 𝑐0 is zero because, by assumption, 𝑝(𝑥 = 0, 𝐫) = 0. The polynomial 

𝑧(𝑥, 𝐫, 𝐑) ≡ 𝑝(𝑥, 𝐫, 𝐑) 𝑝(𝑥 = 1, 𝐫, 𝐑)⁄  

Is of order 𝑁 = 2𝐾 + 𝐿 + 1, is monotonically-increasing and satisfies both 𝑧(𝑥 = 0, 𝐫, 𝐑) = 0 and 

𝑧(𝑥 = 1, 𝐫, 𝐑) = 1; that is, it maps the (0,1) interval onto itself.  Notice that the linear increasing mapping 

function 𝑧(𝑥) = 𝑥 corresponds to a single quadratic with 𝑟1
𝑅 = 0 and 𝑟1

𝐼 ≫ 1. 

The set 𝑍𝑁 contains all such real, 𝑁th order polynomials, with 𝑁 = (2𝐾 + 𝐿 + 1), that map the (0,1) 

interval onto itself.  For 𝑁 odd, this set contains (𝑁 2⁄ + 1) polynomials; that it (𝐾, 𝐿) = (0, 𝑁), (1, 𝑁 − 2), 

⋯ (𝑁 2⁄ , 0).  For 𝑁 even, it contains ((𝑁 − 1) 2⁄ + 1) polynomials. 



In order to use the nonlinear least squares method to estimate the values of (𝐫, 𝐑) that best-fit 𝑧(𝑥, 𝐫, 𝐑) to 

𝑁𝑥 observations 𝑧𝑖
𝑜𝑏𝑠(𝑥𝑖), one must be able to calculate the sensitivity of 𝑧(𝑥, 𝐫, 𝐑) due to perturbations in 

(𝐫, 𝐑).  These partial derivatives are calculated in a sequence of steps. 

First, consider the real monomial 𝑚(𝑥, 𝑅𝑗), with real root 𝑅𝑗 lying outside the (0,1) interval.  The derivative 

with respect to the root is 

𝜕𝑚

𝜕𝑅𝑗
= −1 

Only one of the monomials in 𝑠(𝑥, 𝐫) contains a given 𝑅𝑗; the others are not dependent upon it.  

Consequently 

𝜕𝑠

𝜕𝑟𝑗
𝑅 = − ∏ 𝑞(𝑥, 𝑟𝑘)

𝐾

𝑘

∏ 𝑚(𝑥, 𝑅𝑙)

𝐿

𝑙 ≠ 𝑗

 

Note that the derivative is a polynomial. 

Second, consider the real quadratic polynomial 𝑞(𝑥, 𝑟𝑗), with roots 𝑟𝑗 ≡ 𝑟𝑗
𝑅 + 𝑖𝑟𝑗

𝐼 and 𝑟𝑖
∗ ≡ 𝑟𝑗

𝑅 − 𝑖𝑟𝑗
𝐼. The 

derivative with respect to the real and imaginary parts of the roots are 

𝜕𝑞

𝜕𝑟𝑗
𝑅 = 2𝑟𝑗

𝑅 − 2𝑥    and    
𝜕𝑞

𝜕𝑟𝑗
𝐼 = 2𝑟𝑗

𝐼 

Only one of the quadratics in 𝑠(𝑥, 𝐫) contains a given 𝑟𝑗; the others are not dependent upon it.  Consequently 

𝜕𝑠

𝜕𝑟𝑗
𝑅 = −2(𝑥 − 𝑟𝑗

𝑅) ∏ 𝑞(𝑥, 𝑟𝑘)

𝐾

𝑘 ≠ 𝑗

∏ 𝑚(𝑥, 𝑅𝑙)

𝐿

𝑙

    and    
𝜕𝑠

𝜕𝑟𝑗
𝐼 = 2𝑟𝑗

𝐼 ∏ 𝑞(𝑥, 𝑟𝑘)

𝐾

𝑘 ≠ 𝑗

∏ 𝑚(𝑥, 𝑅𝑙)

𝐿

𝑙

 

Note that both derivatives are polynomials. 

Third, the derivatives of 𝑝(𝑥, 𝐫) are most efficiently found by reversing the order of integration and 

differentiation 

𝜕𝑝

𝜕𝑟𝑗
𝑅 =

𝜕

𝜕𝑟𝑗
𝑅 ∫ 𝑠(𝑥′, 𝐫) 𝑑𝑥′

𝑥

0

= ∫
𝜕𝑠

𝜕𝑟𝑗
𝑅  𝑑𝑥′

𝑥

0

 

and similarly for 𝜕𝑝 𝜕𝑟𝑗
𝐼⁄  and 𝜕𝑝 𝜕𝑅𝑖⁄ , where the integration constant is chosen so that 𝜕𝑝 𝜕𝑟𝑖

𝑅⁄ = 0 at 𝑥 =

0. 

Finally, defining 

𝑧(𝑥, 𝐫, 𝐑) ≡ 𝐴𝐵−1   with    𝐴 ≡ 𝑝(𝑥, 𝐫, 𝐑)    and    𝐵 ≡ 𝑝(𝑥 = 1, 𝐫, 𝐑) 

the chain rule gives the derivative with respect to the real part of 𝑟𝑖 as 

𝜕𝑧

𝜕𝑟𝑖
𝑅 =

𝜕𝐴

𝜕𝑟𝑖
𝑅 𝐵−1 − 𝐴

𝜕𝐵

𝜕𝑟𝑖
𝑅 𝐵−2   with  

𝜕𝐴

𝜕𝑟𝑖
𝑅 ≡

𝜕

𝜕𝑟𝑖
𝑅 𝑝(𝑥, 𝐫, 𝐑)   and   

𝜕𝐵

𝜕𝑟𝑖
𝑅 =

𝜕

𝜕𝑟𝑖
𝑅 𝑝(𝑥 = 1, 𝐫, 𝐑) 

and similarly for 𝜕𝑧 𝜕𝑟𝑖
𝐼⁄  and 𝜕𝑧 𝜕𝑅𝑖⁄ . 



Test of formulas.  We examine an exemplary case (Fig. 1), with 

𝐾 = 3   and   [

𝑟0
𝑅

𝑟1
𝑅

𝑟2
𝑅

] = [
0.0
0.2
0.8

]    and   [

𝑟0
𝐼

𝑟1
𝐼

𝑟2
𝐼

] = [
4.0
0.5

0.25
]     and   𝐿 = 2    and   [

𝑅0

𝑅1
] =  [

−0.5
1.7

] 

The corresponding function 𝑧(𝑥) is shown in Fig. 2 and selective sensitivities are shown in Figs. 3 and 4.  

The sensitivities agree well with a numerical result calculated with finite differences. 

 

Fig. 1.  Positions of complex pairs of 

zeros (red) and unpaired zeros (blue) for 

the exemplary case discussed in the text. 

 

Fig. 2.  Exemplary function 

𝑧(𝑥) calculated using the algorithm 

described in this paper.  The two identical 

versions are for the implementations in 

the mapping() method (black curve) 

and the mappingderiv() method (red 

dashed curve).  The function  𝑧(𝑥) = 𝑥 

(green curve) is shown for comparison. 

 

 

Fig. 3.  (Top plot) Partial derivative 

𝜕𝑧 𝜕𝑟𝑖
𝑅⁄  (red dashed curve) for the 

exemplary function 𝑧(𝑥) and 𝑖 = 1, 

calculated using the algorithm described 

in the paper as implemented by the 

mappingderiv() method.  The partial 

derivative agrees well with a finite 

difference approximation (black curve). 

(Bottom plot) Same as top plot, except for 

𝜕𝑧 𝜕𝑟𝑖
𝐼⁄  (blue dashed curve). 



 

 

Fig. 4.  Partial derivative 𝜕𝑧 𝜕𝑅𝑖⁄  (green 

dashed curve) for the exemplary function 

𝑧(𝑥) and 𝑖 = 0, calculated using the 

algorithm described in the paper as 

implemented by mappingderiv() 

method.  The partial derivative agrees 

well with a finite difference 

approximation (black curve). 

 

Appendix 1:  Formula for the quadratic polynomial 

𝑞(𝑥, 𝑟𝑖) = (𝑥 − 𝑟𝑖)(𝑥 − 𝑟𝑖
∗) = (𝑥 − 𝑟𝑖

𝑅 − 𝑖𝑟𝑖
𝐼)(𝑥 − 𝑟𝑖

𝑅 + 𝑖𝑟𝑖
𝐼) = 

= 𝑥2 − 𝑥𝑟𝑖
𝑅 + 𝑖𝑥𝑟𝑖

𝐼 −   𝑥𝑟𝑖
𝑅 + (𝑟𝑖

𝑅)
2

− 𝑖𝑟𝑖
𝑅𝑟𝑖

𝐼  − 𝑖𝑟𝑖
𝐼𝑥 + 𝑖𝑟𝑖

𝑅𝑟𝑖
𝐼 − 𝑖𝑖(𝑟𝑖

𝐼)
2

= 

= [(𝑟𝑖
𝑅)

2
+ (𝑟𝑖

𝐼)
2

] − 2𝑟𝑖
𝑅𝑥 + 𝑥2 

Appendix 2:  Effect of reversing the order of integration in the (𝐾, 𝐿) = (1,0) (quadratic, only) case. 

Case 1: Integration first 

𝑠(𝑥, 𝑟1) = [(𝑟1
𝑅)2 + (𝑟1

𝐼)2] − 2𝑟1
𝑅𝑥 + 𝑥2 

𝑝(𝑥, 𝑟1) = [(𝑟1
𝑅)2 + (𝑟1

𝐼)2]𝑥 − 𝑟1
𝑅𝑥2 +

1

3
𝑥3 

𝑧(𝑥, 𝑟1) = 𝐴𝐵−1   with   𝐴 ≡ 𝑝(𝑥, 𝑟1) = [(𝑟1
𝑅)2 + (𝑟1

𝐼)2]𝑥 − 𝑟1
𝑅𝑥2 +

1

3
𝑥3  

and   𝐵 ≡ 𝑝(𝑥 = 1, 𝑟1) = [(𝑟1
𝑅)2 + (𝑟1

𝐼)2] − 𝑟1
𝑅 +

1

3
 

𝑑𝑧

𝑑𝑟1
𝑅 =

𝑑𝐴𝑅

𝑑𝑟1
𝑅 𝐵𝑅

−1 − 𝐴𝑅

𝑑𝐵𝑅

𝑑𝑟1
𝑅 𝐵𝑅

−2   with  
𝑑𝐴𝑅

𝑑𝑟1
𝑅 =

𝑑𝑝

𝑑𝑟𝑖
𝑅 = 2𝑟1

𝑅𝑥 − 𝑥2   and   
𝑑𝐵𝑅

𝑑𝑟1
𝑅 =

𝑑𝑝

𝑑𝑟𝑖
𝑅|

𝑥=1

= 2𝑟1
𝑅 − 1 

At 𝑥 = 0, 𝐴𝑅 = 𝑑𝐴𝑅 𝑑𝑟1
𝑅⁄ = 0 so 𝑑𝑧 𝑑𝑟1

𝑅 = 0⁄ . 

At 𝑥 = 1,  𝐴𝑅 = 𝐵𝑅 so 𝑑𝑧 𝑑𝑟1
𝑅⁄ =

𝑑𝐴𝑅

𝑑𝑟1
𝑅 𝐴𝑅 −

𝑑𝐴𝑅

𝑑𝑟1
𝑅 𝐴𝑅 = 0 

𝑑𝑧

𝑑𝑟1
𝐼 =

𝑑𝐴𝐼

𝑑𝑟1
𝐼 𝐵𝐼

−1 − 𝐴𝐼

𝑑𝐵𝐼

𝑑𝑟1
𝐼 𝐵𝐼

−2   with  
𝑑𝐴𝐼

𝑑𝑟1
𝐼 =

𝑑𝑝

𝑑𝑟𝑖
𝐼 = 2𝑟1

𝐼𝑥   and   
𝑑𝐵𝑅

𝑑𝑟1
𝐼 =

𝑑𝑝

𝑑𝑟𝑖
𝐼|

𝑥=1

= 2𝑟1
𝐼 

At 𝑥 = 0, 𝐴𝐼 = 𝑑𝐴𝐼 𝑑𝑟1
𝐼⁄ = 0 so 𝑑𝑧 𝑑𝑟1

𝐼 = 0⁄ . 



At 𝑥 = 1,  𝐴𝐼 = 𝐵𝐼 so 𝑑𝑧 𝑑𝑟1
𝑅⁄ =

𝑑𝐴𝐼

𝑑𝑟1
𝐼 𝐴𝐼 −

𝑑𝐴𝐼

𝑑𝑟1
𝐼 𝐴𝐼 = 0. 

Case 2: Differentiation first: 

𝑑𝑠

𝑑𝑟𝑖
𝑅 = 2𝑟𝑖

𝑅 − 2𝑥   and    
𝑑𝑠

𝑑𝑟𝑖
𝐼 = 2𝑟𝑖

𝐼 

𝑑𝑝

𝑑𝑟𝑖
𝑅 = 2𝑟𝑖

𝑅𝑥 − 𝑥2 + 𝐶1    and    
𝑑𝑝

𝑑𝑟𝑖
𝐼 = 2𝑟𝑖

𝐼𝑥 + 𝐶2 

The requirement at 𝑥 = 0, 𝑑𝐴 𝑑𝑟1
𝑅⁄ = 0 inplies 𝐶1 = 𝐶2 = 0 

𝑑𝐴𝑅

𝑑𝑟1
𝑅 ≡

𝑑𝑝

𝑑𝑟𝑖
𝑅 = 2𝑟𝑖

𝑅𝑥 − 𝑥2    and    
𝑑𝐴𝐼

𝑑𝑟1
𝐼 ≡

𝑑𝑝

𝑑𝑟𝑖
𝐼 = 2𝑟𝑖

𝐼𝑥 

Note that this result matches the integration-first case. 

Python methods 

# 2024/09/26 -  Monotonic Polynomial code, by W. Menke 

 

import numpy as np                    # matrices & etc 

from numpy.polynomial import polynomial as pol   # polynomicals 

 

# Mapping function z(x) 

# Input: 

# srr, sri: real and imaginary parts of complex roots, 

#           need to be the same length, say K, and may be empty 

# sR: real roots of length, say L, may be empty 

# x: positions at which to evaluate z(x) and its derivatives, say of length Nx 

# Output: 

# zx          (Nx,1) vector of z(x)` 

def mapping( srr, sri, sR, x ): 

    Nx, i = np.shape(x); 

    sr = croots(srr,sri,sR); 

    sC = pol.polyfromroots(sr);   

    sx = pol.polyval( x, sC ); 

    pIC = pol.polyint(sC); 

    pIx = pol.polyval( x, pIC); 

    zx = pIx / pIx[Nx-1,0]; 

    return( np.real(zx) ); 

 

# Mapping function z(x) and its partial derivatives 

# Input: 

# srr, sri: real and imaginary parts of complex roots, need to be the same length, 

#           say K, and may be empty 

# sR: real roots of length, say L, may be empty 

# x: positions at which to evaluate z(x) and its derivatives, say of length Nx 

# Output: 

# zx          (Nx,1) vector of z(x) 

# dzdrr_xm:   (Nx,K) vetor of d z / d srr 

# dzdri_xm:   (Nx,K) vetor of d z / d sri 

# dzdR_xm:    (Nx,L) vetor of d z / d srr 

def mappingderiv( srr, sri, sR, x ): 

    Nx, i = np.shape(x); 

     

    # map function z(x) 



    K, = np.shape(srr); 

    L, = np.shape(sR); 

    sr = croots(srr,sri,sR);        # roots of slope polynomial 

    sC = pol.polyfromroots(sr);  # coefficients of slope polynomial 

    pC = pol.polyint(sC);        # integrate, but results will not obey p(x=1)=1 

    px = pol.polyval( x, pC);   # evaluate polunomial 

    zx = px / px[Nx-1,0];      # normalize so z(x=1)=1 

     

    # sensitivities are returned in matrices dzdrr_xm(x, k), 

    # matrices dzdri_xm(x, k), dzdR_xm(x,L) 

    # (which can be empty if K, L are zero) 

    dzdrr_xm = np.zeros( (Nx, K) ); 

    dzdri_xm = np.zeros( (Nx, K) ); 

    dzdR_xm = np.zeros( (Nx, L) ); 

     

    # derivatives with respect to real and imaginary parts of 

    # complex root associated with quadratic 

    for k in range(K): 

        # setup for dp/droot; part of polynomial not containing that root 

        srrnotk = np.concatenate( (srr[0:k],srr[k+1:K]), axis=0 ); 

        srinotk = np.concatenate( (sri[0:k],sri[k+1:K]), axis=0 ); 

        srnotk = croots(srrnotk,srinotk,sR); 

        # real part of dp/droot has the leading factor -2(x-rr) 

        v =  np.zeros((1),dtype=complex); 

        v[0] = complex(srr[k],0); 

        # append root rr onto polynomial 

        dsdrr_roots = np.concatenate( (srnotk, v), axis=0 );  

        dsdrr_coefs = -2.0*pol.polyfromroots(dsdrr_roots); 

        dpdrr_coefs = pol.polyint(dsdrr_coefs); 

        dpdrr_x = pol.polyval( x, dpdrr_coefs); 

        dzdrr_x = dpdrr_x/px[Nx-1,0] - px*dpdrr_x[Nx-1,0]*(px[Nx-1,0]**-2); # chain rule 

        dzdrr_xm[0:Nx,k:k+1] = np.real(dzdrr_x); 

        # imaginary part 

        dsdri_roots = np.copy( srnotk ); 

        dsdri_coefs = 2.0*sri[k]*pol.polyfromroots(dsdri_roots); 

        dpdri_coefs = pol.polyint(dsdri_coefs); 

        dpdri_x = pol.polyval( x, dpdri_coefs); 

        dzdri_x = dpdri_x/px[Nx-1,0] - px*dpdri_x[Nx-1,0]*(px[Nx-1,0]**-2); # chain rule 

        dzdri_xm[0:Nx,k:k+1] = np.real(dzdri_x); 

    # derivatives with respect to real root associated with monomial 

    # setup for dp/droot; part of polynomial not containing that root 

    for l in range(L): 

        sRnotl = np.concatenate( (sR[0:l],sR[l+1:L]), axis=0 ); 

        srnotl = croots(srr,sri,sRnotl); 

        # derivative 

        dsdR_roots = np.copy( srnotl ); 

        dsdR_coefs = -pol.polyfromroots(dsdR_roots); 

        dpdR_coefs = pol.polyint(dsdR_coefs); 

        dpdR_x = pol.polyval( x, dpdR_coefs); 

        dzdR_x = dpdR_x/px[Nx-1,0] - px*dpdR_x[Nx-1,0]*(px[Nx-1,0]**-2); # chain rule 

        dzdR_xm[0:Nx,l:l+1] = np.real(dzdR_x); 

 

    return( zx, dzdrr_xm, dzdri_xm, dzdR_xm ); 

 

# (for internal use) 

# construct array of (2K+L) complex roots where 

# L occur in complex conjugate pairs with real 

# and imaginary parts rr and ri, and L are on 



# the real asis with values R 

def croots( rr, ri, R ): 

    K, = np.shape(rr); 

    L, = np.shape(R); 

    r = np.zeros((2*K+L),dtype=complex); 

    j=0; 

    for i in range(K): 

        r[j] = rr[i] + complex(0.0,1.0)*ri[i]; 

        j=j+1; 

        r[j] = rr[i] + complex(0.0,-1.0)*ri[i]; 

        j=j+1; 

    for i in range(L): 

        r[j] = R[i]; 

        j=j+1; 

    return(r); 

 

 

 


