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This proof considers the special case of two stations observing waves from opposite directions. 

Consider the amplitude of a horizontally-propagating of a wave observed on two stations, 1 and 2.  For 

left-to-right propagation the amplitude is given by the product of a reference amplitude 𝐴0, station 

correction (1 ± 𝑆) and an attenuation exp(−𝑞): 

𝐴1 = 𝐴0(1 − 𝑆)    and   𝐴2 = 𝐴0(1 + 𝑆) exp(−𝑞) 

Note that the station correction is defined so that the average amplitude is independent of it. Taking the 

logarithm and using ln(1 ± 𝑆) ≈ ±𝑆 leads to equations 𝐸1 and 𝐸2 

𝐸1 :  ln 𝐴1 = ln𝐴0 − S   and   𝐸2 : ln 𝐴2 = ln𝐴0 + 𝑆 − 𝑞 

For right-to-left propagation the log-amplitude is given by equations 𝐸3 and 𝐸4 

𝐸3 :  ln 𝐴1
′ = ln𝐴0

′ − S − q   and   𝐸4 : ln 𝐴2
′ = ln𝐴0

′ + 𝑆 

In matrix form, 𝐸1 through 𝐸4 constitute four equations in four unknowns: 

𝐸1:
𝐸2:
𝐸3:
𝐸4:

    𝐝 ≡

[
 
 
 
ln 𝐴1

ln 𝐴2

ln 𝐴1
′

ln 𝐴2
′ ]
 
 
 
= [

1 0 −1 0
1 0 1 −1
0 1 −1 −1
0 1 1 0

] [

ln𝐴0

ln 𝐴0
′

𝑆
𝑞

] ≡ 𝐆𝐦 

The matrix 𝐆 can be upper-triangularized as follows: 

𝐸1
′ = 𝐸1:

𝐸2
′ = 𝐸4:

𝐸3
′ = 𝐸2 − 𝐸1:

𝐸4
′ = 𝐸4 − 𝐸3 − 𝐸3

′ :

    [

1 0 −1 0
0 1 1 0
0 0 2 −1
0 0 0 2

] 

The matrix can be inverted, as the diagonal elements are non-zero. Consequently, the unknowns can be 

uniquely determined. 

 


