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Suppose that one has data 𝐝 of length 𝑁 and covariance 𝐂𝑑. One can transform into a 

new set of variables 𝐝′ = 𝐓𝐝, also of length 𝑁, that is uncorrelated and with uniform 

variance 𝐂𝑑′ = 𝐈.  The transformation 𝐓 can be defined in a variety of ways.  The choice 

𝐓 = 𝐂𝑑
−½ (where this is the symmetric square root) works, because by the usual rule of 

error propagation 𝐂𝑑′ = 𝐓𝐂ℎ𝐓𝑇 = 𝐂𝑑
−½𝐂𝑑𝐂𝑑

−½𝑇 = 𝐈.  The choice 𝐓 = 𝚲−½𝐕𝑇 also 

works, where 𝚲 and 𝐕 are the eigenvalues and eigenvectors, respectively, of 𝐂𝑑 because 

𝐂𝑑′ = 𝐓𝐂𝑑𝐓𝑇 = [𝚲−½𝐕𝑇][𝐕𝚲𝐕𝑇][𝐕𝚲−½] = 𝐈. Here, we have made use of the 

orthonormality of the eigenvectors; that is, 𝐕𝑇𝐕 = 𝐕𝐕 = 𝐈. In this discussion, we focus 

on the second transformation. 

The inverse transformation is 𝐝 = 𝐓−1𝐝′, where 𝐓−1 = 𝐂𝑑
½ or 𝐓−1 = 𝐕𝚲½, depending 

on whether the first or second version of 𝐓 is used.  This formula provides a simple 

method of creating a realization of 𝐝. One simply generates the uncorrelated, unit 

variance vector 𝐝′ using a random number generator, and then transforms it to 𝐝. 

Only some of the eigenvalues of the covariance 𝐂𝑑 are numerically large, representing 

the fact that a correlated timeseries has fewer degrees of freedom than an uncorrelated 

one.  One could ask how 𝐝 can be represented given a 𝐝′ of length 𝑁′ < 𝑁.    We start 

partitioning the transformation matrix and the transformed data 

𝐓−1 ≡ [𝐕0, 𝐕𝑝] [
𝚲0

½ 𝟎

𝟎 𝚲𝑝
½] = [𝐕0𝚲0

½, 𝐕𝑝𝚲p
½ ] = [𝐓0

−1, 𝐓𝑝
−1]   and    𝐝′ = [

𝐝0
′

𝐝𝑝
′ ] 

Here, the subscript 𝑝 denotes the 𝑁′ largest eigenvalue and the subscript 0 indicates the 

smaller ones.  We now solve the equation 𝐝 = 𝐓𝑝
−1𝐝𝑝

′  by least squares: 

𝐝𝑝
′ = [𝐓𝑝

−1𝑇𝐓𝑝
−1]

−1
𝐓𝑝

−1𝑇𝐝 = [𝚲p
½𝐕𝑝

𝑇𝐕𝑝𝚲p
½]

−1
𝚲p

½𝐕𝑝
𝑇𝐝 = 𝚲p

−½𝐕𝑝
𝑇𝐝 

The least squares solution is 𝐝𝑝
′ = 𝐓𝑝𝐝𝑝 with 𝐓𝑝 ≡ 𝚲p

−½𝐕𝑝
𝑇, which is to say, the same 

result as one would achieve by simply setting 𝐝0
′ = 0.  This behavior occurs in least 

squares problems whenever the columns of the data kernel are orthogonal, which is the 

case here for the data kernel 𝐓−1. 

In the untransformed domain, the time series predicted by 𝐝𝑝
′  is 

𝐝𝑝 ≡ 𝐓−1 [
𝟎

𝐝𝑝
′ ] = [𝐕0𝚲0

½, 𝐕𝑝𝚲p
½ ] [

𝟎
𝚲p

−½𝐕𝑝
𝑇𝐝] 

= 𝐕𝑝𝚲p
½𝚲p

−½𝐕𝑝
𝑇𝐝𝑝 = 𝐕𝑝𝐕𝑝

𝑇𝐝𝑝 ≡ 𝐑𝐝 



Here, 𝐑 ≡ 𝐕𝑝𝐕𝑝
𝑇 is a resolution matrix.  Note as 𝑁′ → 𝑁 is 𝐕𝑝 → 𝐕 and 𝐑 → 𝐈.   

The error 𝐸 between 𝐝𝑝 and 𝐝 is  

𝐸 = [𝐝 − 𝐝𝑝]
𝑇

[𝐝 − 𝐝𝑝] = [(𝐈 − 𝐑)𝐝]𝑇(𝐈 − 𝐑)𝐝 

  Note that 𝐈 = 𝐕0𝐕0
𝑇 + 𝐕𝑝𝐕𝑝

𝑇, so that (𝐈 − 𝐑) = 𝐕0𝐕0
𝑇.  Then,  

𝐸 = [𝐕0𝐕0
𝑇𝐝]𝑻[𝐕0𝐕0

𝑇𝐝] = 𝐝𝑇𝐕0𝐕0
𝑇𝐕0𝐕0

𝑇𝐝 = 𝐝𝑇𝐕0𝐕0
𝑇𝐝𝑇 = [𝐕0

𝑇𝐝]𝑻[𝐕0
𝑇𝐝] 

= [𝚲0
½𝐝0

′ ]
𝑇

[𝚲0
½𝐝0

′ ] = 𝐝0
′𝑇𝚲0𝐝0

′  

Let the largest eigenvalue in 𝚲0 be 𝜆0
𝑚𝑎𝑥.  The vector 𝐝0

′  is of length 𝐾 = (𝑁 − 𝑁′) and 

has elements with zero mean and unit variance, so the quantity 𝐝0
′𝑇𝐝0

′  is a chi-squared 

distributed random variable with mean 𝐾.  Consequently, 

𝐸 =  𝐝0
′𝑇𝚲0𝐝0

′ <  𝜆0
𝑚𝑎𝑥𝐝0

′𝑇𝐝0
′ ≈ 𝐾𝜆0

𝑚𝑎𝑥 

Presuming that the eigenvalues are ordered by increasing size, 𝐸 decreases monotonically 

as 𝑁′ → 𝑁, because both 𝜆0
𝑚𝑎𝑥 and 𝐾 decrease with increasing 𝑁′. 

The weighted energy 𝛷 = 𝐝𝑇𝐂𝑑
−1𝐝 is invariant under the transformation 𝐓 = 𝚲−½𝐕𝑇 

𝛷 = 𝐝𝑇𝐂𝑑
−1𝐝 = 𝐝𝑇𝐕𝚲−1𝐕𝑇𝐝 = [𝚲−½𝐕𝑇𝐝]𝑇[𝚲−½𝐕𝑇𝐝] = 𝐝′𝑇𝐝′ = 𝛷′ 

As 𝐝′is of length 𝑁 with elements that are uncorrelated and of unit variance, 𝛷′ is chi-

squared distributed with 𝑁 degrees of freedom. As 𝛷 = 𝛷′, the untransformed quantity 𝛷 

is chi-squared distributed with 𝑁 degrees of freedom, too.   

Similarly, the weighted energy 

𝛷𝑝 = 𝐝𝑝
𝑇𝐕𝑝𝚲𝑝

−1𝐕𝑝
𝑇𝐝𝑝 = [𝚲𝑝

−½𝐕𝑝
𝑇𝐝𝑝]

𝑇
[𝚲𝑝

−½𝐕𝑝
𝑇𝐝𝑝] = 𝐝𝑝

′𝑻𝐝𝑝
′ = 𝛷𝑝

′  

is invariant under the transformation 𝐓𝑝 = 𝚲𝑝
−½𝐕𝑝

𝑇.  As 𝐝𝑝
′  is a length 𝑁′ time series with 

elements that are uncorrelated and of unit variance, 𝛷𝑝 = 𝛷𝒑
′  is chi-squared distributed 

with  𝑁′ degrees of freedom. 

The elements of 𝐝𝑝 are not linearly independent. A total of 𝐾 = (𝑁 − 𝑁′) linear 

combinations are prescribed by the condition 𝐕0
𝑇𝐝𝑝 = 0.  This condition can be 

demonstrated by multiplying the equation 𝐝𝑝 = 𝐕𝑝𝚲𝑝
½𝐝𝑝

′  by 𝐕0
𝑇 to yields 𝐕0

𝑇𝐝𝑝 =

𝐕0
𝑇𝐕𝑝𝚲𝑝

½𝐝𝑝
′ = 0 (as 𝐕0 and 𝐕𝑝 are orthogonal so 𝐕0

𝑇𝐕𝑝 = 0  ). In contrast, the elements of 

𝐝 are linearly independent, for this is just the limiting case of 𝑁′ = 𝑁 (in which case 𝐾 =

0).  An exception is when 𝐂𝑑 has, say, 𝐿 > 0 identically-zero eigenvalues (in which case, 

the transformation 𝐓 does not exist, but 𝐓𝑝 does exist). These eigenvalues must be 

included in 𝚲0, in which case 𝐾 = 𝐿.  



Consider the special case where 𝐂𝑑 has unit variance and a correlation length of 𝑠, 

meaning that 𝐽 ≈ 2𝑠 neighboring points in the time series are approximately equal. Then, 

one would expect that the time series 𝐝̃ of length 𝑀 ≈ 𝑁/𝐽 and consisting of every 𝐽th 

element of 𝐝 would be approximately uncorrelated. Consequently, the unweighted energy 

Ψ̃ = 𝐝̃𝑇𝐝̃ is chi-squared distributed with 𝑀 degrees of freedom.  The unweighted energy 

Ψ = 𝐝𝑇𝐝 of the original time series 𝐝 is 𝐽 times larger.  Consequently, Ψ/𝐽 is 

approximately chi-squared distributed with 𝑀 degrees of freedom. 

As an example, we consider a time series of length 𝑁 = 100 and exponential covariance 

(Figure 1) 

[𝐂𝑑]𝑖𝑗 = 𝜎𝑑
2 exp{−|𝑖 − 𝑗|/𝑠} 

Here, 𝜎𝑑
2 = 1 is a variance and 𝑠 = 5 is a scale factor that governs the degree of 

correlation of neighboring points in the time series. 

 
Fig. 1. Exemplary covariance matrix 𝐂𝑑. 

 

Only about 20 of the 100 eigenvalues of this covariance matrix are numerically large 

(Figure 2). 

 
Fig. 2. Eigevalues 𝜆𝑖 of the exemplary covariance matrix 𝐂𝑑. 



 

A realization of this time series is created by randomly generating 𝐝′ and then 

transforming to 𝐝 (Figure 3, black curve).  The approximation 𝐝𝑝 then can be generated 

by for an arbitrary value of 𝑁′ (Figure 3, red curves).  The larger the value of 𝑁′, the 

better the approximation. 

 

 
Fig. 3. A realization of the time series 𝐝 (black curve) and two approximations 𝐝𝑝 of it 

(red curves) for 𝑁′ = 10 (smoother curve) and  𝑁′ = 30 (rougher curve). 

 

The empirical p.d.f. of the weighted energy 𝛷𝑝 (for 𝑁′ = 30) is generated by binning  

values derived from 10,000 randomly-generated realizations of 𝐝𝑝. It compares well with 

the predicted chi-squared p.d.f. (Figure 4). 

 
Fig. 4. Empirical p.d.f. (black curve) of the weighted energy 𝛷𝑝 for 10,000 realizations 

of the time series 𝐝𝑝 (with  𝑁′ = 30). It agrees well with the chi-squared p.d.f. 𝑝(χ𝑁′
2 ) 



(red curve). Vertical tick marks are the mean of the empirical (black) and chi-squared 

(red) p.d.f.s, respectively. 

 

The empirical p.d.f. of the unweighted energy Ψ is generated by binning 10,000 values 

derived from randomly-generated realizations of 𝐝. It compares fairly well with the 

predicted chi-squared p.d.f. (Figure 5).  The means of the two p.d.f.s match well, but the 

empirical p.d.f. is somewhat narrower than the chi-squared p.d.f. 

 
Fig. 5. Empirical p.d.f. (black curve) of the unweighted energy 𝛹 for 10,000 

realizations of the time series 𝐝 and the scaled chi-squared p.d.f. (red curve) described 

in the text. Vertical tick marks are the mean of the empirical (black) and chi-squared 

(red) p.d.f.s, respectively. 

 

The most important part of the Pythin code is 

# x-axis 

Nx = 100; 

xmin = 0.0; 

xmax = 1.0*Nx; 

Dx = (xmax-xmin)/(Nx-1); 

x = gda_cvec( np.linspace( xmin, xmax, Nx ) ); 

 

# number of data and their x-positions 

Nd = Nx; 

xd = gda_cvec(np.linspace(xmin,xmax,Nd)); 

 

# covariance of data 

Cd = np.zeros( (Nd,Nd) ); 

g2 = 1.0;  # diagonal 

sx = 5.0;  # scale factor 

for i in range(Nd): 

    for j in range(i,Nd): 

        Cd[i,j] = g2*exp( - np.abs(xd[i,0]-xd[j,0]) / sx ); 

        Cd[j,i] = Cd[i,j]; 

     

# eigenvale decomposition of covariance 

lam, v = la.eigh(Cd); 

lammax = np.max(lam); 



 

# transformations for d = Tp dp   and   dp = T d 

Tp = np.matmul( v, np.diag(np.sqrt(lam)) );  

 

# primed data, uncorrelated with unit variance 

dp = np.random.normal( loc=0.0, scale=1.0, size=(Nd,1) ); 

 

# transform to unprimed data 

d = np.matmul( Tp, dp ); 

dabsmax = np.max( np.abs(d) ); 

 

# loop over reducion in the number of primed data 

Ndnew = 30; 

dpnew = dp[Nd-Ndnew:Nd,0:1]; 

 

# reduce size of eigen-matices 

lamnew = np.copy( lam[Nd-Ndnew:Nd] ); 

vnew = np.copy( v[0:Nd,Nd-Ndnew:Nd] ); 

 

# now build transformation that operates on Ndnew data      

# dnew = Tpnew dpnew = sqrt(Cd) dpnew = vnew * sqrt(lamnew) 

Tpnew = np.matmul( vnew, np.diag(np.sqrt(lamnew)) ); 

dnew = np.matmul( Tpnew, dpnew ) ; 

 


