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The two-station method estimates phase slowness s by using Fourier analysis to determine the phase
difference (¢, — ¢,) between observations at two locations, 1 and 2, separated by a distance X, and
converting it into a slowness using s = w~1X"1(¢, — ¢,), where w is frequency. Here, | use classical
perturbation analysis to estimate the error in such an estimate.

Consider a real field u(t), where t is time, with Fourier transform ii(w) = tiz (w) + iti; (w), where w is
angular frequency. Its power spectral density (psd) |1i|? and phase ¢ are
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Here, the minus sign accounts for Numpy’s sign convention of +i for the inverse Fourier transform.

The first step is to use Taylor’s theorem to analyze how a small perturbation Ati in @ around a reference
level 7(®) causes a small perturbation Ag in phase ¢ around a reference level ¢(©
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The slowness s of a plane wave propagating between two locations, x; and x, separated by a distance
X=x,—xqI8

s =5y +As with sy = 0™ 1x71 ((péo) - (pfo)) and As = 0w X 1(Ap, — Ap,)
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Inserting Eqn. (4) into the formula for As in Eqgn. (5) yields
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Now suppose that i is the sum of a deterministic signal #(®) and stationary random noise Aii. By the
usual rule for error propagation, the variance of the phase perturbation is:
varAs = 0 2X"2(A+ B)
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We assume that the real and imaginary parts of Aii; are uncorrelated and with the equal variance, and
similarly for the real and imaginary parts of Ati, (that is, Afi, and Ati, are circular random numbers):

var AﬁlR = var AleI and var AﬂZR = var Aﬁz[ and COV(AﬁlR,Aﬁu) = COV(AﬁZR, Aﬁz[) = O

29+ |29 = [z and [ + 59| = [&

Uzg
(8)
As is well-known, the sum of the variances of the real and imaginary parts of a complex number equals
the variance of the complex number, itself:
var Aii;p + var Atiy; = varAti;, and varAii,g + var Aiiy; = var Aii,
(9)

Because the perturbation is stationary, its variance is independent of location. In principle, the power
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|a(°>| of the unperturbed field can vary spatially. However, we assume here that the separation distance
X is sufficiently small that the power is approximately constant:



varAfi;p = varAfi,p and var Al g = var Aily;

var Ati, g = var Ati,p = var Ati g = var Atiy; = Y2var Al
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With these assumptions, the factor A simplifies to:
varAti 1 _ _a@]
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Here, R is the signal-to-noise ratio.

In the simplest case in which the noise Aii is uncorrelated between the two locations, B = 0 and
varAs = w 2X72R72. Inthe limit X = oo, var As — oo.

Now we examine the case where the perturbation At has spatial correlation. Because Atip and Ati; are
assumed uncorrelated when both are measured at a single location x;, one would not expect correlation to
be introduced by measuring them at two different points, x; and x,. Hence

COV(AﬁlR,AﬁII) = COV(AﬁZR, Aﬁz[) =0
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The real and imaginary parts of Afi play completely symmetric roles, so we would expect their covariance
to be equal.

cov(Afiyg, Aflyp) = cov(Atly, Atiy;)
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With these assumptions
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Suppose that u(® is a plane wave with a Fourier transform of the form
pp p
N(O) = || cos(kx + 6) and ~(0) = |a@| sin(kx + 6)
~(0) = |a®| cos(kx + 6 + kX) and 5‘,’) = |a©|sin(kx + 6 + kX)
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Here, k = ws, is wavenumber and 8 is an overall phase. The trigonometric identity cos(b — a) =
cos(a) cos(a) + sin(a) sin(b) implies
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and we find
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Then
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Here, C is a spatial correlation coefficient. Aki (1957, eqn. 42) showed that for micro-seismic noise
dominated by surface waves with wavenumber k
C =Jo(kX)
(19)

Here, J, is the zeroth-order Bessel function of the first kind. We conclude that the relative error in phase
velocity is:
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Here, we have used kw™! = s,. Note that n}c?{X]O(kX) = r?c?(xjo(kX) = 1, implying that F is never

negative. In the limit (kX) - 0, cos(kX) = 1 — %(kX)? and Jo(kX) = 1 — Y%(kX)?s0 F ~ 3%(kX)? .
In this limit, the relative error is:
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The relative error in slowness is proportional to the reciprocal of the signal-to-noise ratio. In the limit
(kX) - o0, Jo(kX) = 0 and (var As)/s3 — 0. However, this latter results overlooks the problem of
unwrapping the phase when the two locations are many wavelengths apart. An exemplary plot of o¢/s,

is shown in Figure 1.

The coherence structure of the noise is shown to be extremely important in determining the relative error
in slowness for small separation distances (that is, (kX) <« 1). Uncorrelated (e.g. electronic noise in the
seismometer), leads to indefinitely large error at small separation, because noise-induced phase shifts
overwhelm the small phase differences between the two signal. In contrast, when the noise is spatially
correlated, the noise-induced phase shifts cancel at small offset. When the cancellation is strong enough,
the relative error can reach a finite limit. If, when (kX) « 1, € = 1 — y(kX)™, where y is a positive



constant and n is a positive integer, then the relative error reaches a finite limit only whenn > 2. Thus,
C = Jo(kX) leads to a finite error, whereas C = exp(—kX) does not.
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Fig. 1. Relative error in slowness g, /s, as a function of separation distance X for k = 1 for a signal-to-
noise ratio of R = 10.




