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The two-station method estimates phase slowness 𝑠 by using Fourier analysis to determine the phase 

difference (𝜑2 − 𝜑1) between observations at two locations, 1 and 2, separated by a distance 𝑋, and 

converting it into a slowness using 𝑠 =  𝜔−1𝑋−1(𝜑2 − 𝜑1), where 𝜔 is frequency.  Here, I use classical 

perturbation analysis to estimate the error in such an estimate. 

Consider a real field 𝑢(𝑡), where 𝑡 is time, with Fourier transform �̃�(𝜔) ≡ �̃�𝑅(𝜔) + 𝑖�̃�𝐼 (𝜔), where 𝜔 is 

angular frequency.  Its power spectral density (psd) |�̃�|2 and phase 𝜑 are 

|�̃�|2 = �̃�𝑅
2 + �̃�𝐼

2     and     𝜑 = tan−1(𝑥)     with   𝑧 ≡
−�̃�𝐼

�̃�𝑅
     

(1) 

Here, the minus sign accounts for Numpy’s sign convention of +𝑖 for the inverse Fourier transform. 

The first step is to use Taylor’s theorem to analyze how a small perturbation ∆�̃� in �̃� around a reference 

level �̃�(0) causes a small perturbation ∆𝜑 in phase 𝜑 around a reference level 𝜑(0) 
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with    ∆𝜑 ≡  𝜑 − 𝜑(0)      and     ∆�̃�𝑅 ≡ �̃�𝑅 − �̃�𝑅
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The derivatives are: 
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 Hence,  
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The slowness 𝑠 of a plane wave propagating between two locations, 𝑥1 and 𝑥2 separated by a distance 

𝑋 ≡ 𝑥2 − 𝑥1 is 

𝑠 ≡ 𝑠0 + ∆𝑠   with  𝑠0 =  𝜔−1𝑋−1 (𝜑2
(0)

− 𝜑1
(0)

)   and  ∆𝑠 =  𝜔−1𝑋−1(∆𝜑2 − ∆𝜑1) 



(5) 

Inserting Eqn. (4) into the formula for ∆𝑠 in Eqn. (5) yields 
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Now suppose that �̃� is the sum of a deterministic signal �̃�(0) and stationary random noise ∆�̃�. By the 

usual rule for error propagation, the variance of the phase perturbation is: 

var ∆𝑠 =  𝜔−2𝑋−2(𝐴 + 𝐵) 

𝐴 ≡
[�̃�1𝐼

(0)
]

2

|�̃�1
(0)

|
4 var ∆�̃�1𝑅 +

[�̃�1𝑅
(0)

]
2

|�̃�1
(0)

|
4 var ∆�̃�1𝐼 +

[�̃�2𝐼
(0)

]
2

|�̃�2
(0)

|
4 var ∆�̃�2𝑅 +

[�̃�2𝑅
(0)

]
2

|�̃�2
(0)

|
4 var ∆�̃�2𝐼 

𝐵 ≡ − 2
�̃�1𝑅

(0)
�̃�1𝐼

(0)

|�̃�1
(0)

|
4 cov(∆�̃�1𝑅, ∆�̃�1𝐼) − 2

�̃�2𝑅
(0)

�̃�2𝐼
(0)

|�̃�2
(0)

|
4 cov(∆�̃�2𝑅 , ∆�̃�2𝐼) 

− 2
�̃�1𝐼

(0)
�̃�2𝐼

(0)

|�̃�2
(0)

|
2

|�̃�1
(0)

|
2 cov(∆�̃�1𝑅, ∆�̃�2𝑅) − 2

�̃�1𝑅
(0)

�̃�2𝑅
(0)

|�̃�2
(0)

|
2

|�̃�1
(0)

|
2 cov(∆�̃�1𝐼 , ∆�̃�2𝐼) 

+2
�̃�1𝑅

(0)
�̃�2𝐼

(0)

|�̃�1
(0)

|
2

|�̃�2
(0)

|
2 cov(∆�̃�1𝐼 , ∆�̃�2𝑅) + 2

�̃�1𝐼
(0)

�̃�2𝑅
(0)

|�̃�1
(0)

|
2

|�̃�2
(0)

|
2 cov(∆�̃�1𝑅, ∆�̃�2𝐼))  
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We assume that the real and imaginary parts of ∆�̃�1 are uncorrelated and with the equal variance, and 

similarly for the real and imaginary parts of ∆�̃�2 (that is, ∆�̃�1 and ∆�̃�2 are circular random numbers): 

var ∆�̃�1𝑅 = var ∆�̃�1𝐼     and    var ∆�̃�2𝑅 = var ∆�̃�2𝐼    and   cov(∆�̃�1𝑅 , ∆�̃�1𝐼) = cov(∆�̃�2𝑅 , ∆�̃�2𝐼) = 0 
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As is well-known, the sum of the variances of the real and imaginary parts of a complex number equals 

the variance of the complex number, itself: 

var ∆�̃�1𝑅 + var ∆�̃�1𝐼 = var ∆�̃�1     and    var ∆�̃�2𝑅 + var ∆�̃�2𝐼 = var ∆�̃�2 

(9) 

Because the perturbation is stationary, its variance is independent of location. In principle, the power 

|�̃�(0)|
2
 of the unperturbed field can vary spatially.  However, we assume here that the separation distance 

𝑋 is sufficiently small that the power is approximately constant: 



var ∆�̃�1𝑅 = var ∆�̃�2𝑅    and   var ∆�̃�1𝑅 = var ∆�̃�2𝐼 

var ∆�̃�1𝑅 = var ∆�̃�2𝑅 = var ∆�̃�1𝑅 = var ∆�̃�2𝐼 = ½ var ∆�̃� 
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(10) 

With these assumptions, the factor 𝐴 simplifies to: 

𝐴 =
var ∆�̃�

|�̃�(0)|
2 =

1

𝑅2
     with   𝑅 ≡

|�̃�(0)|

√var ∆�̃�
 

(11) 

Here, 𝑅 is the signal-to-noise ratio. 

In the simplest case in which the noise ∆�̃� is uncorrelated between the two locations, 𝐵 = 0 and  

var ∆𝑠 =  𝜔−2𝑋−2𝑅−2. In the limit 𝑋 → ∞, var ∆𝑠 → ∞. 

Now we examine the case where the perturbation ∆�̃� has spatial correlation. Because ∆�̃�𝑅 and ∆�̃�𝐼 are 

assumed uncorrelated when both are measured at a single location 𝑥1, one would not expect correlation to 

be introduced by measuring them at two different points, 𝑥1 and 𝑥2.  Hence 

cov(∆�̃�1𝑅, ∆�̃�1𝐼) = cov(∆�̃�2𝑅, ∆�̃�2𝐼) = 0 

(12) 

The real and imaginary parts of ∆�̃� play completely symmetric roles, so we would expect their covariance 

to be equal. 

cov(∆�̃�1𝑅, ∆�̃�2𝑅) = cov(∆�̃�1𝐼 , ∆�̃�2𝐼) 

(13) 

With these assumptions 
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(14) 

Suppose that  𝑢(0) is a plane wave with a Fourier transform of the form 

�̃�1𝑅
(0)

= |�̃�(0)| cos(𝑘𝑥 + 𝜃)    and   �̃�1𝐼
(0)

= |�̃�(0)| sin(𝑘𝑥 + 𝜃) 

�̃�2𝑅
(0)

= |�̃�(0)| cos(𝑘𝑥 + 𝜃 + 𝑘𝑋)    and   �̃�1𝐼
(0)

= |�̃�(0)| sin(𝑘𝑥 + 𝜃 + 𝑘𝑋) 

(15) 

Here, 𝑘 = 𝜔𝑠0 is wavenumber and 𝜃 is an overall phase. The trigonometric identity cos(𝑏 − 𝑎) =

cos(𝑎) cos(𝑎) + sin(𝑎) sin(𝑏) implies 



�̃�1𝐼
(0)

�̃�2𝐼
(0)

+ �̃�1𝑅
(0)

�̃�2𝑅
(0)

= |�̃�(0)|
2

cos(𝑘𝑋) 

(16) 

and we find 

𝐵 = − 2
cos(𝑘𝑋)

|�̃�(0)|
2 cov(∆�̃�1𝑅, ∆�̃�2𝑅) 

(17) 

Then 

var ∆𝑠 =  𝜔−2𝑋−2𝑅−2(1 − 𝐶cos(𝑘𝑋))   with    𝐶 =
cov(∆�̃�1𝑅 , ∆�̃�2𝑅)

var ∆�̃�𝑅
 

(18) 

Here, 𝐶 is a spatial correlation coefficient. Aki (1957, eqn. 42) showed that for micro-seismic noise 

dominated by surface waves with wavenumber 𝑘 

𝐶 = 𝐽0(𝑘𝑋) 

(19) 

Here, 𝐽0 is the zeroth-order Bessel function of the first kind. We conclude that the relative error in phase 

velocity is:  

𝜎𝑠

𝑠0
≡

√var ∆𝑠

𝑠0
=  (𝑘𝑋)−1𝑅−1√𝐹  with   𝐹 ≡ (1 − 𝐽0(𝑘𝑋) cos(𝑘𝑋)) 

(20) 

Here, we have used  𝑘𝜔−1 = 𝑠0. Note that max
𝑘𝑋

𝐽0(𝑘𝑋) = max
𝑘𝑋

𝐽0(𝑘𝑋) = 1, implying that 𝐹 is never 

negative. In the limit (𝑘𝑋) → 0,  cos(𝑘𝑋) ≈  1 − ½(𝑘𝑋)2 and  𝐽0(𝑘𝑋) ≈ 1 − ¼(𝑘𝑋)2 so 𝐹 ≈ ¾(𝑘𝑋)2 . 

In this limit, the relative error is: 

𝜎𝑠

𝑠0
=

√3

2

1

𝑅
≈

0.866

𝑅
 

The relative error in slowness is proportional to the reciprocal of the signal-to-noise ratio. In the limit 

(𝑘𝑋) → ∞, 𝐽0(𝑘𝑋) → 0 and (var ∆𝑠) 𝑠0
2⁄ → 0.  However, this latter results overlooks the problem of 

unwrapping the phase when the two locations are many wavelengths apart.  An exemplary plot of 𝜎𝑠 𝑠0⁄  

is shown in Figure 1. 

The coherence structure of the noise is shown to be extremely important in determining the relative error 

in slowness for small separation distances (that is, (𝑘𝑋) ≪ 1).  Uncorrelated (e.g. electronic noise in the 

seismometer), leads to indefinitely large error at small separation, because noise-induced phase shifts 

overwhelm the small phase differences between the two signal.  In contrast, when the noise is spatially 

correlated, the noise-induced phase shifts cancel at small offset.  When the cancellation is strong enough, 

the relative error can reach a finite limit. If, when (𝑘𝑋) ≪ 1,  𝐶 ≈ 1 − 𝛾(𝑘𝑋)𝑛, where 𝛾 is a positive 



constant and 𝑛 is a positive integer, then the relative error reaches a finite limit only when 𝑛 ≥ 2 .  Thus, 

𝐶 = 𝐽0(𝑘𝑋) leads to a finite error, whereas 𝐶 = exp(−𝑘𝑋) does not. 

 
Fig. 1. Relative error in slowness 𝜎𝑠 𝑠0⁄  as a function of separation distance 𝑋 for 𝑘 = 1 for a signal-to-

noise ratio of 𝑅 = 10. 

. 

 

 

 


