Error in Phase Slowness Estimated by the Two-Station Method

William Menke, July 25, 2025

The two-station method estimates phase slowness s by using Fourier analysis to determine the phase difference $(\varphi_2 - \varphi_1)$ between observations at two locations, 1 and 2, separated by a distance X, and converting it into a slowness using $s = \omega^{-1}X^{-1}(\varphi_2 - \varphi_1)$, where ω is frequency. Here, I use classical perturbation analysis to estimate the error in such an estimate.

Consider a real field u(t), where t is time, with Fourier transform $\tilde{u}(\omega) \equiv \tilde{u}_R(\omega) + i\tilde{u}_I(\omega)$, where ω is angular frequency. Its power spectral density (psd) $|\tilde{u}|^2$ and phase φ are

$$|\tilde{u}|^2 = \tilde{u}_R^2 + \tilde{u}_I^2$$
 and $\varphi = \tan^{-1}(x)$ with $z \equiv \frac{-\tilde{u}_I}{\tilde{u}_R}$ (1)

Here, the minus sign accounts for Numpy's sign convention of +i for the inverse Fourier transform.

The first step is to use Taylor's theorem to analyze how a small perturbation $\Delta \tilde{u}$ in \tilde{u} around a reference level $\tilde{u}^{(0)}$ causes a small perturbation $\Delta \varphi$ in phase φ around a reference level $\varphi^{(0)}$

$$\varphi = \varphi^{(0)} + \frac{\partial \varphi}{\partial u_R} \Big|_{0} \left(\tilde{u}_R - \tilde{u}_R^{(0)} \right) + \frac{\partial \varphi}{\partial u_I} \Big|_{0} \left(\tilde{u}_I - \tilde{u}_I^{(0)} \right) \quad \text{or} \quad \Delta \varphi = \frac{\partial \varphi}{\partial u_R} \Big|_{0} \Delta \tilde{u}_R + \frac{\partial \varphi}{\partial u_I} \Big|_{0} \Delta \tilde{u}_I$$
with $\Delta \varphi \equiv \varphi - \varphi^{(0)}$ and $\Delta \tilde{u}_R \equiv \tilde{u}_R - \tilde{u}_R^{(0)}$ and $\Delta \tilde{u}_I \equiv \tilde{u}_I - \tilde{u}_I^{(0)}$ (2)

The derivatives are:

$$\frac{\partial z}{\partial \tilde{u}_R} = \tilde{u}_I \, \tilde{u}_R^{-2} \quad \text{and} \quad \frac{\partial z}{\partial u_I} = -\tilde{u}_R^{-1} \quad \text{and} \quad \frac{d\varphi}{dz} = \frac{1}{1+z^2}$$

$$\frac{\partial \varphi}{\partial \tilde{u}_R} = \frac{d\varphi}{dz} \frac{\partial z}{d\partial} = \frac{\tilde{u}_I \, \tilde{u}_R^{-2}}{1+\tilde{u}_I^2 \tilde{u}_R^{-2}} = \frac{\tilde{u}_I}{\tilde{u}_R^2 + \tilde{u}_I^2} = \frac{\tilde{u}_I}{|\tilde{u}|^2}$$

$$\frac{\partial \varphi}{\partial \tilde{u}_I} = \frac{d\varphi}{dz} \frac{dz}{d\tilde{u}_I} = \frac{-\tilde{u}_R^{-1}}{1+\tilde{u}_I^2 \tilde{u}_R^{-2}} = \frac{-\tilde{u}_R^{-1} \tilde{u}_R^2 \tilde{u}_R^{-2}}{1+\tilde{u}_I^2 \tilde{u}_R^{-2}} = \frac{-\tilde{u}_R}{\tilde{u}_R^2 + \tilde{u}_I^2} = \frac{-\tilde{u}_R}{|\tilde{u}|^2}$$

Hence,

$$\Delta \varphi = \frac{\tilde{u}_I^{(0)}}{\left|\tilde{u}^{(0)}\right|^2} \Delta \tilde{u}_R - \frac{\tilde{u}_R^{(0)}}{\left|\tilde{u}^{(0)}\right|^2} \Delta \tilde{u}_I$$

(4)

(3)

The slowness s of a plane wave propagating between two locations, x_1 and x_2 separated by a distance $X \equiv x_2 - x_1$ is

$$s \equiv s_0 + \Delta s$$
 with $s_0 = \omega^{-1} X^{-1} \left(\varphi_2^{(0)} - \varphi_1^{(0)} \right)$ and $\Delta s = \omega^{-1} X^{-1} (\Delta \varphi_2 - \Delta \varphi_1)$

Inserting Eqn. (4) into the formula for Δs in Eqn. (5) yields

$$\Delta s = \omega^{-1} X^{-1} \left(-\frac{\tilde{u}_{1I}^{(0)}}{\left| \tilde{u}_{1}^{(0)} \right|^{2}} \Delta \tilde{u}_{1R} + \frac{\tilde{u}_{1R}^{(0)}}{\left| \tilde{u}_{1}^{(0)} \right|^{2}} \Delta \tilde{u}_{1I} + \frac{\tilde{u}_{2I}^{(0)}}{\left| \tilde{u}_{2}^{(0)} \right|^{2}} \Delta \tilde{u}_{2R} - \frac{\tilde{u}_{2R}^{(0)}}{\left| \tilde{u}_{2}^{(0)} \right|^{2}} \Delta \tilde{u}_{2I} \right)$$
(6)

Now suppose that \tilde{u} is the sum of a deterministic signal $\tilde{u}^{(0)}$ and stationary random noise $\Delta \tilde{u}$. By the usual rule for error propagation, the variance of the phase perturbation is:

$$var \Delta s = \omega^{-2} X^{-2} (A + B)$$

$$A = \frac{\left[\tilde{u}_{1I}^{(0)}\right]^{2}}{\left|\tilde{u}_{1}^{(0)}\right|^{4}} var \Delta \tilde{u}_{1R} + \frac{\left[\tilde{u}_{1R}^{(0)}\right]^{2}}{\left|\tilde{u}_{1}^{(0)}\right|^{4}} var \Delta \tilde{u}_{1I} + \frac{\left[\tilde{u}_{2I}^{(0)}\right]^{2}}{\left|\tilde{u}_{2}^{(0)}\right|^{4}} var \Delta \tilde{u}_{2R} + \frac{\left[\tilde{u}_{2R}^{(0)}\right]^{2}}{\left|\tilde{u}_{2}^{(0)}\right|^{4}} var \Delta \tilde{u}_{2I}$$

$$B = -2 \frac{\tilde{u}_{1R}^{(0)} \tilde{u}_{1I}^{(0)}}{\left|\tilde{u}_{1}^{(0)}\right|^{4}} cov(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{1I}) - 2 \frac{\tilde{u}_{2R}^{(0)} \tilde{u}_{2I}^{(0)}}{\left|\tilde{u}_{2}^{(0)}\right|^{4}} cov(\Delta \tilde{u}_{2R}, \Delta \tilde{u}_{2I})$$

$$-2 \frac{\tilde{u}_{1I}^{(0)} \tilde{u}_{2I}^{(0)}}{\left|\tilde{u}_{2}^{(0)}\right|^{2} \left|\tilde{u}_{1}^{(0)}\right|^{2}} cov(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{2R}) - 2 \frac{\tilde{u}_{1R}^{(0)} \tilde{u}_{2R}^{(0)}}{\left|\tilde{u}_{2}^{(0)}\right|^{2} \left|\tilde{u}_{1}^{(0)}\right|^{2}} cov(\Delta \tilde{u}_{1I}, \Delta \tilde{u}_{2I})$$

$$+2 \frac{\tilde{u}_{1R}^{(0)} \tilde{u}_{2I}^{(0)}}{\left|\tilde{u}_{1}^{(0)}\right|^{2} \left|\tilde{u}_{2}^{(0)}\right|^{2}} cov(\Delta \tilde{u}_{1I}, \Delta \tilde{u}_{2R}) + 2 \frac{\tilde{u}_{1I}^{(0)} \tilde{u}_{2R}^{(0)}}{\left|\tilde{u}_{1}^{(0)}\right|^{2} \left|\tilde{u}_{2}^{(0)}\right|^{2}} cov(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{2I})$$

$$(7)$$

We assume that the real and imaginary parts of $\Delta \tilde{u}_1$ are uncorrelated and with the equal variance, and similarly for the real and imaginary parts of $\Delta \tilde{u}_2$ (that is, $\Delta \tilde{u}_1$ and $\Delta \tilde{u}_2$ are circular random numbers):

$$\operatorname{var} \Delta \tilde{u}_{1R} = \operatorname{var} \Delta \tilde{u}_{1I} \quad \text{and} \quad \operatorname{var} \Delta \tilde{u}_{2R} = \operatorname{var} \Delta \tilde{u}_{2I} \quad \text{and} \quad \operatorname{cov}(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{1I}) = \operatorname{cov}(\Delta \tilde{u}_{2R}, \Delta \tilde{u}_{2I}) = 0$$

$$\left| \tilde{u}_{1R}^{(0)} \right|^2 + \left| \tilde{u}_{1I}^{(0)} \right|^2 = \left| \tilde{u}_{1}^{(0)} \right|^2 \quad \text{and} \quad \left| \tilde{u}_{2R}^{(0)} \right|^2 + \left| \tilde{u}_{2I}^{(0)} \right|^2 = \left| \tilde{u}_{2}^{(0)} \right|^2$$

$$(8)$$

As is well-known, the sum of the variances of the real and imaginary parts of a complex number equals the variance of the complex number, itself:

$$\operatorname{var} \Delta \tilde{u}_{1R} + \operatorname{var} \Delta \tilde{u}_{1I} = \operatorname{var} \Delta \tilde{u}_1$$
 and $\operatorname{var} \Delta \tilde{u}_{2R} + \operatorname{var} \Delta \tilde{u}_{2I} = \operatorname{var} \Delta \tilde{u}_2$ (9)

Because the perturbation is stationary, its variance is independent of location. In principle, the power $\left|\tilde{u}^{(0)}\right|^2$ of the unperturbed field can vary spatially. However, we assume here that the separation distance X is sufficiently small that the power is approximately constant:

$$\operatorname{var} \Delta \tilde{u}_{1R} = \operatorname{var} \Delta \tilde{u}_{2R} \quad \text{and} \quad \operatorname{var} \Delta \tilde{u}_{1R} = \operatorname{var} \Delta \tilde{u}_{2I}$$

$$\operatorname{var} \Delta \tilde{u}_{1R} = \operatorname{var} \Delta \tilde{u}_{2R} = \operatorname{var} \Delta \tilde{u}_{1R} = \operatorname{var} \Delta \tilde{u}_{2I} = \frac{1}{2} \operatorname{var} \Delta \tilde{u}$$

$$\left| \tilde{u}_{1}^{(0)} \right|^{2} = \left| \tilde{u}_{2}^{(0)} \right|^{2} = \left| \tilde{u}^{(0)} \right|^{2}$$

$$(10)$$

With these assumptions, the factor A simplifies to:

$$A = \frac{\operatorname{var} \Delta \tilde{u}}{\left|\tilde{u}^{(0)}\right|^2} = \frac{1}{R^2} \quad \text{with} \quad R \equiv \frac{\left|\tilde{u}^{(0)}\right|}{\sqrt{\operatorname{var} \Delta \tilde{u}}}$$
(11)

Here, *R* is the signal-to-noise ratio.

In the simplest case in which the noise $\Delta \tilde{u}$ is uncorrelated between the two locations, B=0 and $\operatorname{var} \Delta s = \omega^{-2} X^{-2} R^{-2}$. In the limit $X \to \infty$, $\operatorname{var} \Delta s \to \infty$.

Now we examine the case where the perturbation $\Delta \tilde{u}$ has spatial correlation. Because $\Delta \tilde{u}_R$ and $\Delta \tilde{u}_I$ are assumed uncorrelated when both are measured at a single location x_1 , one would not expect correlation to be introduced by measuring them at two different points, x_1 and x_2 . Hence

$$cov(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{1I}) = cov(\Delta \tilde{u}_{2R}, \Delta \tilde{u}_{2I}) = 0$$
(12)

The real and imaginary parts of $\Delta \tilde{u}$ play completely symmetric roles, so we would expect their covariance to be equal.

$$cov(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{2R}) = cov(\Delta \tilde{u}_{1I}, \Delta \tilde{u}_{2I})$$
(13)

With these assumptions

$$C = -2 \frac{\left(\tilde{u}_{1R}^{(0)} \tilde{u}_{2R}^{(0)} + \tilde{u}_{1I}^{(0)} \tilde{u}_{2I}^{(0)}\right)}{\left|\tilde{u}^{(0)}\right|^4} \text{cov}(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{2R})$$
(14)

Suppose that $u^{(0)}$ is a plane wave with a Fourier transform of the form

$$\tilde{u}_{1R}^{(0)} = |\tilde{u}^{(0)}| \cos(kx + \theta) \quad \text{and} \quad \tilde{u}_{1I}^{(0)} = |\tilde{u}^{(0)}| \sin(kx + \theta)$$

$$\tilde{u}_{2R}^{(0)} = |\tilde{u}^{(0)}| \cos(kx + \theta + kX) \quad \text{and} \quad \tilde{u}_{1I}^{(0)} = |\tilde{u}^{(0)}| \sin(kx + \theta + kX)$$
(15)

Here, $k = \omega s_0$ is wavenumber and θ is an overall phase. The trigonometric identity $\cos(b - a) = \cos(a)\cos(a) + \sin(a)\sin(b)$ implies

$$\tilde{u}_{1I}^{(0)}\tilde{u}_{2I}^{(0)} + \tilde{u}_{1R}^{(0)}\tilde{u}_{2R}^{(0)} = \left|\tilde{u}^{(0)}\right|^2 \cos(kX) \tag{16}$$

and we find

$$B = -2 \frac{\cos(kX)}{\left|\tilde{u}^{(0)}\right|^2} \cot(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{2R})$$
(17)

Then

$$\operatorname{var} \Delta s = \omega^{-2} X^{-2} R^{-2} (1 - C \cos(kX)) \quad \text{with} \quad C = \frac{\operatorname{cov}(\Delta \tilde{u}_{1R}, \Delta \tilde{u}_{2R})}{\operatorname{var} \Delta \tilde{u}_{R}}$$
(18)

Here, C is a spatial correlation coefficient. Aki (1957, eqn. 42) showed that for micro-seismic noise dominated by surface waves with wavenumber k

$$C = J_0(kX) \tag{19}$$

Here, J_0 is the zeroth-order Bessel function of the first kind. We conclude that the relative error in phase velocity is:

$$\frac{\sigma_s}{s_0} \equiv \frac{\sqrt{\operatorname{var} \Delta s}}{s_0} = (kX)^{-1} R^{-1} \sqrt{F} \text{ with } F \equiv (1 - J_0(kX) \cos(kX))$$
(20)

Here, we have used $k\omega^{-1}=s_0$. Note that $\max_{kX}J_0(kX)=\max_{kX}J_0(kX)=1$, implying that F is never negative. In the limit $(kX)\to 0$, $\cos(kX)\approx 1-\frac{1}{2}(kX)^2$ and $J_0(kX)\approx 1-\frac{1}{4}(kX)^2$ so $F\approx \frac{3}{4}(kX)^2$. In this limit, the relative error is:

$$\frac{\sigma_s}{s_0} = \frac{\sqrt{3}}{2} \frac{1}{R} \approx \frac{0.866}{R}$$

The relative error in slowness is proportional to the reciprocal of the signal-to-noise ratio. In the limit $(kX) \to \infty$, $J_0(kX) \to 0$ and $(\text{var } \Delta s)/s_0^2 \to 0$. However, this latter results overlooks the problem of unwrapping the phase when the two locations are many wavelengths apart. An exemplary plot of σ_s/s_0 is shown in Figure 1.

The coherence structure of the noise is shown to be extremely important in determining the relative error in slowness for small separation distances (that is, $(kX) \ll 1$). Uncorrelated (e.g. electronic noise in the seismometer), leads to indefinitely large error at small separation, because noise-induced phase shifts overwhelm the small phase differences between the two signal. In contrast, when the noise is spatially correlated, the noise-induced phase shifts cancel at small offset. When the cancellation is strong enough, the relative error can reach a finite limit. If, when $(kX) \ll 1$, $C \approx 1 - \gamma (kX)^n$, where γ is a positive

constant and n is a positive integer, then the relative error reaches a finite limit only when $n \ge 2$. Thus, $C = J_0(kX)$ leads to a finite error, whereas $C = \exp(-kX)$ does not.

Fig. 1. Relative error in slowness σ_s/s_0 as a function of separation distance X for k=1 for a signal-to-noise ratio of R=10.

.