Parameterized inversion for frequency-dependent time delay between two dispersed signals
Bill Menke, October 15, 2025

The method described here can be used to determine parameters m in a parameterized travel
time function T (w, m), where w is angular frequency, using observations of dispersed
seismograms (time series) A(t) and B(t) from two neighboring stations. The method is based
on minimizing the prediction error E using either a steepest-descent algorithm that utilizes the
derivatives dE /dm; or a Newton method algorithm that uses both dE /dm; and 0*E /0m; dm,.
Analytic formula for these derivatives are derived using frequency-domain techniques.

This method is applicable to the problem of determining the dispersive velocity function v(w),
because travel time and velocity are related by T(w) = Ax/v(w), where Ax is the distance
between stations projected onto the direction of propagation. However, in some scenarios, Ax is
initially unknown because the direction of propagation is unknown, so an inversion using T (w)
is preferred. One such case is when travel times between two pairs of stations in a triangular
array are used to solve for the direction of propagation.

Derivation

Consider real time series (seismograms) A(t) and B(t) with Fourier transforms A(w) and B(w),
respectively. A real phase delay filter £(t) has Fourier transform f(w) = exp(—in(w, m))

with m unknown. Note that fz (w) = cos(—wT(w, m)) and f;(w) = sin(—wT(w, m)). The
frequency-domain filter has unit amplitude; that is, |f(a))|2 = f(w)f*(w) = 1. For f(t) to be
real, f(—w) = f*(w) s0 T(—w,m) = T(w, m).

The model that we consider is when B(t) is a dispersively-delayed version of A(t); that is:
B(t) = A@®) = f(©)
1)

where * signifies convolution. The L, prediction error is defined as:

E= f[B(t) —A@) * f(D)]? dt = f[A(t) * f(0)]? dt+fBZ(t) dt—2f[A(t) * f(O]B(t) dt

)
Parseval’s theorem for real time series a(t) and b(t) states:
+00 1 + 00
j a(t)b(t) dt = - j d(w)b*(w) dw
©)

A real function, say h(t), has a Fourier transform with symmetry A(—w) = h* ().
Consequently:

+o0 +oo . o .
_.0[h(w) do = J. h(w) dw + _[O h(w) dw = bf h(w) dw + l; h(—w) d(—w) =

400 +o0 +o00

=f h(w) dw+f h*(w) dw = Zf Re h(w) dw

0 0

(4)

Note that in a discrete implementation in which the integrals are approximated by a Reiman sum,
the zero-frequency value is being counted once in the (—oo, +00) summation but twice in the
(—0,0) plus (0, +o0) summations. Thus, h(w = 0) must be subtracted from the latter to match
the former within computer codes that implement the algorithm.

Applying these results:

+0oo 1 +o00 i i i i
[v@rord =5 [@i i @do -

400 +oo
1 _ 1 —
— f |A<w)|2dw=—f A(w)]? do
21T T

—00 O

400

][B(t)]zdt=%] B(w)B (@) dw =

— 00

1 +oo - 2 1 - - 2
— f |B(w)| dow = —f |B(a))| dw
21 T
—00 0
+o0 1 +oo
] [A(t) * f(t)] B(t) dt = EJ Re [A(w)B*(w)f(w)] dw
—0 0
()
The product of three complex numbers has real and imaginary parts
(a+ib)(c+id)(e +if) = (ace — bde — adf — bcf) + i(ade + bce + acf — bdf)
(6)

S0
Re [A(w)B*(0)f ()] = ArBgfr — AiBi fa — ArBi fi — AiByfi

= (ARER + AIEI)fR + (ARBI - AIBR)IEI

We now differentiate E with respect to m;. As A(w) and B(w) are not functions of m;,

('?E +o0o

om, ami_f [A@®) « fF(O]B(®) dt =
1 +o0o

o |dw =

— 00

R T
—ZEZI am, [A(a))B (a))f(a))] dw =

__f (AgBy + 4 B,)—dw ——f (ArB, -

Similarly, the second derivative is:

+ +oo
dE? 2(,. - ... 0% 2(,. - . af;
amlam] - E_I (ARBR + AIBI) 0m10m] dw = Ef (ARBI - AIBR) Omlam]
0 0
By applying the chain rule, we find that the first derivative is:
0fx d , aT - d
a_mi = a—rniCOS(—(J)T((J), m)) =w Sll’l(—(A)T)a—Tni = wfl(w)a_ﬂll
af, o9 . ,
am; ~ am, sm(—wT(w, m)) = —w cos(—wT) am —wfr
and that the second derivative is:
9%f, 9 oT af (w) oT 92T
=3 [3] = 93+ RO
9%f; d T oT dfz(w) T 92T
om;0m; B _‘"a_mj[fR(‘” 0 T om aml wfa(w) om;0m;

A BR)_d(l)

dw

(7)

(8)

9)

(10)

(11)

In the special case of the linear model T (wy) = Y., GinMy:

oT 0°T

= G,; and =0

ami wp amlamj ok

(12)

Eqgns. (2)-(11) have been verified by numerically calculation. Only the first derivatives (Eqns. 8
and 10) are needed for a steepest-descent inversion for m (Menke, Geophysical Data Analysis,
2024, Sec. 11.9). For a Newton’s method inversion (Menke, Geophysical Data Analysis, 2024,
Eqgn. 11.76), the second derivatives (Eqns. 9 and 11), are needed as well. Another use of the
second derivative is to compute the covariance of the estimated m using the relationship (Menke,
Geophysical Data Analysis, 2024, Eqn. 4.76):

JE?

cov(m) = 202D~ with D;; = ————
V() O—B Wi lj amlam] mest

(13)
Here, ag is posterior variance of the data. It is approximately
2o B0
B (2N, - M)
(14)

Here, N,, is the number of non-negative frequencies in the discrete version of B(w) and M is the
number of model parameters. The factor of two arises because the data are complex; both real
and imaginary parts are noisy.

Computational efficiency can be gained by limiting the frequency-integrals to the (0, w,), where
w-, is the largest significant frequency in the data.

Numerical Test

Two exemplary dispersed seismograms (time series), A(t) and B(t), for stations with source-
receiver ranges of 5000 km and 5100 km, respectively, are calculated with Fourier methods (Fig.
1). The phase velocity decreases from 4.0 km/s at w; = 0.01 X 27 rad/s to 3.5 km/s at w, =
0.09 x 2m rad/s (values typical for Rayleigh waves). A Gaussian source time function is used,
with a standard deviation chosen so that the seismograms have little energy at frequencies above
w.

0.10 v
Station A

A(t)

0 500 1000 1500 2000 2500 3000 3500

Station B

B(t)

0 500 1000 1500 2000 2500 3000 3500

time t (s)
Fig. 1. Two dispersive seismograms, A(t) and B(t), for stations 5000 and 5100 km,
respectively, from a hypothetical earthquake.

The travel time function is parameterized as the linear function T(w, m;, m,) = m; + myw,
which varies linearly with angular frequency w with intercept m, and slope m, (Fig. 2).

| R |
| ¢ m;

T(f, w) (s)

angular frequency w (rad/s)
Fig. 2. The travel time function T (w, m;, m,) is linear in angular frequency w and is
parameterized with intercept m, and slope m,. The seismogram source has little energy
outside of the (w4, w,) interval.

The error E and its derivatives are calculated for m, = [23.80,1.0]7 by the frequency-domain
method described in the text and a time domain method that calculated derivatives using finite
differences. The quantities computed by the two methods are in close agreement (Table 1).

Table 1. Comparison of frequency-domain and time-domain values.

Domain E 0E/dm, | 0E/dm, | 0°E/0m? | 0*E/dm,0m, | 0*E/dm?
frequency | 0.4081 |-0.2202 | -0.0777 0.0351 0.0020 -0.0035
time 0.4081 |-0.2202 | -0.0777 0.0351 0.0020 -0.0035

The starting solution m, = [23.89,5.00]7 roughly aligns the seismograms. An estimate solution
me®t = [24.74,6.16]7 is calculated using a gradient-descent inversion that employs only first
derivatives. In the test shown, 60 iterations achieve an excellent match between the seismograms
(Fig. 3), with an error reduction of 97%. A Python implementation executes in about 35 ms on a
notebook computer (for w, = 0.2 X 2 rad/s). A Newton’s method solution achieves a similar
error reduction in only 6 iterations; however, as more computational effort is required per
iteration, the reduction in execution time, to 23 ms, is not proportional.

N
é> 0.10
ity
~— 0.05 1
-~
17
LY
Q000
e
=
T -0.05
N
2
p—
M -0.10-
1000 1200 1400 1600 1800 2000
iR =
+ 0.10 4
-
o 0051
A
@
< 0.00 + PR
aa]
e
S —0.05
@©
~
E -0.101
Q 1000 1200 1400 1600 1800 2000

time t (s)

Fig. 3. Results of gradient-descent method. (Top) The observed seismogram B(t) (black) and
predicted seismogram BP"¢(t, m,) (black) are only poorly aligned for the initial choice m,,.
(Bottom) The alignment is much improved with the final estimate BP"¢(t, m®5¢) .

Python code

wave function derivative (wf) functions

modify wfTandderivs () to reflect on your implementation of T (w,m)
(second derivative not needed for inversion)

decide on seismograms A, B

they optionally can be generated with wffouriersetup ()

set up by calling wfderivssetup ()

decide upon starting model (must be close enough to avoid cycle skips)
decide upon gradient descent parameters

wfinvert () to get solution

optionally, compute covariance with wfcovariance ()

def wfsynthetic(N, Dt, dist):
makes a dispersed seismogram for test purposes
hardwired with a particular v (f)
N: number of points in synthetic (I use N=3600*100)
Dt: time increment (I use Dt=0.01);
dist: source-receiver distance in km

standard frequency setup
Nsave = N;
N = 2*int (N/2);
if (N<Nsave):
N=N+1;
No2 = int (N/2);
fmax=1/(2.0*Dt) ;
Df=fmax/No2; # frequency sampling
Nf=No2+1;
f = np.zeros ((N,1));

def

f[0:N,0] = Df*np.concatenate (

(np.linspace (0,No2,Nf),np.linspace (-No2+1,-1,No2-1)), axis=0);

Dw=2*pi*Df;

w=2*pi*f;

Nw=Nf;

fpos = np.zeros ((Nf,1));

fpos[0:Nf,0] = Df * np.linspace(0,No2,Nf); # non-neg f's
wpos=2*pi*fpos; # non-negative angular frequencies

time and source pulse
t = np.zeros((N,1));
t[0:N,0] = Dt*np.linspace(0,N-1,N);

Ns = 20000;
t0 = Dt* (Ns-1);
sd0 = 3.0;

u0 = np.exp(-0.5*np.power (t-tO0*np.ones ((N,1)),2) / (sd0**2)
ult = np.fft.fft (ul,axis=0);

phase velocity
v = np.zeros((N,1));
f1 = 0.01; v1=4.0;
f2 = 0.09; v2=3.5;
for i in range (N):
fa = abs (f[1i,0]);
if(fa<fl):
v[i,0]=vl
elif (fa>f2):
v[i,0]=v2;

else:
v[i,0]= vl + (fa-fl)*(v2-vl)/(f2-f1);
s = np.reciprocal (v);
ws = np.multiply(w,s);

disperse pulse and shif to

phl = np.exp(complex(0.0,-1.0)* (ws*dist));
ult = np.multiply(uOt, phl);

ul = np.real(np.fft.ifft(ult,axis=0));

ul = np.roll(ul, -Ns, axis=0);

if (N>Nsave):

ul = ul[0:Nsave,0:1];
A = sqrt(1000.0/dist);
return (A*ul) ;

wffouriersetup(A, B, Dt, f0):

A, B: timeseries

Dt: time sampling

f0: maximum frequency to use in fitting
primary quantities

N, i = np.shape(d);

fmax = 1.0/ (2.0*Dt) ;

Df = fmax/ (N/2);

Dw = 2*pi*Df;

Nf = int(£0/Df);

wpos = 2.0*pi*eda cvec(Df*np.linspace(0,Nf-1,Nf));
At = Dt*np.fft.fft(A, axis=0);

Bt = Dt*np.fft.fft(B, axis=0);

Atpos = At[0:Nf,0:1]; # need

) ;

Btpos = Bt[0:Nf,0:1]; # need
return Dw, wpos, Atpos, Btpos;

def wfderivssetup(wpos, Atpos, Btpos):
wpos: non-negative angular frequencies, must start at 0, can

end before Nyquist

Apos, Bpos: non-negative Fourier components of A(t), B(t)
at angular frequencies wpos

wffouriersetup () can calculate these quantities

Dw = wpos[1l,0]-wpos([0,0];
AtposR = np.real (Atpos);

AtposI = np.imag (Atpos);

BtposR = np.real (Btpos);

BtposI = np.imag(Btpos) ;

Atabs2 = np.power (AtposR,2) + np.power (AtposI,?2);

Btabs2 = np.power (BtposR,2) + np.power (BtposI,?2);

EOA = (1.0/pi)*Dw* (np.sum(Atabs2) - 0.5*Atabs2[0,0]);

EOB = (1.0/pi)*Dw* (np.sum(Btabs2) - 0.5*Btabs2[0,0]);

XA = np.multiply (AtposR,BtposR)+np.multiply (AtposI,BtposI);
XB = np.multiply (AtposR,BtposI)-np.multiply (AtposI,BtposR);
return EOA, EOB, XA, XB

def wfTandderivs (wpos, m, dosecond) :
implements T (w,m), dT/dm and d2T/dm2
computes and returns d2T/dm2 only when dosecond is True
Nf,i = np.shape (wpos);
M,i = np.shape(m);
must be changed to reflect choice of T(w,m)
Tpos = m[0,0]*np.ones ((Nf,1))+m[1l,0] *wpos;
note that first derivative is G zero when T=Gm and G independent of m
dTdmi = np.zeros((Nf,M));
dTdmi[0:Nf,0:1] = np.ones ((Nf,1));
dTdmi[0:Nf,1:2] = wpos;
if dosecond
note that secong derivative is identically zero
when T=Gm and G independent of m
d2Tdmi2 = np.zeros((Nf,M,M)); # is identically zero in this case
but in general, not zero
return Tpos, dTdmi, d2TdmiZ2;
else:
return Tpos, dTdmi;

def wfderivs(wpos, Atpos, Btpos, EOA, EOB, XA, XB, m, dosecond):

derivates with respect to model parameters
M, i = np.shape (m);

Nf, i = np.shape (wpos);

Dw = wpos[1l,0]-wpos[0,0];

dEdm = np.zeros((M,1));

if dosecond:

Tpos, dTdmi, d2Tdmij = wfTandderivs (wpos,m,dosecond) ;
else:

Tpos, dTdmi = wfTandderivs (wpos,m,dosecond) ;

deoends on mi
wTpos = np.multiply (wpos, Tpos) ;
ftposR = np.cos(-wTpos);

def

ftposI = np.sin(-wTpos);

ftpos = ftposR+complex(0.0,1.0)*ftposI;

wftposR = np.multiply (wpos, ftposR);

wftposI = np.multiply (wpos, ftposI);

V1l = np.real(np.multiply(np.multiply (Atpos,np.conjugate (Btpos)), ftpos));
EOC = (2.0/pi)*Dw* (np.sum(V1)-0.5*vV1[0,0]);

EO0O = EOA+EOB-EOC;

do for each mi
for i in range (M) :
dfRdm = np.multiply(wftposI, dTdmi[0:Nf,i:i+1]);
dfIdm = -np.multiply(wftposR, dTdmi[0:Nf,i:i+1]);
IA = np.multiply(XA, dfRdm);
IB = np.multiply(XB, dfIdm);
IcC IA+IB;
dEdm[i,0] = -(2/pi)* (Dw*np.sum(IC) - 0.5*Dw*IC[0,0]);
if (dosecond):
d2Edm2 = np.zeros((M,M));
for i in range (M) :

dfRdmi = np.multiply(wftposI, dTdmi[0:Nf,i:i+17]);
dfIdmi = -np.multiply(wftposR, dTdmi[0:Nf,i:i+17]);
for j in range(i,M):
dfRdmj = np.multiply(wftposI, dTdmi[0:Nf,j:j+1]);
dfIdmj = -np.multiply(wftposR, dTdmi[0:Nf,j:j+1]);

D2ijR = np.multiply(wpos,np.multiply (dfIdmj,dTdmi[0:N£f,i:i+1]));
D2ijR = D2ijR + np.multiply(wftposI,d2Tdmij[0:Nf,i:i+1,31);
D2ijI = np.multiply(-wpos,np.multiply (dfRdmj,dTdmi[0:Nf,1:i+1]));
D2ijI = D2ijI - np.multiply(wftposR,d2Tdmij[0:Nf,i:i+1,31);
IA = np.multiply(XA, D2ijR);
IB = np.multiply(XB, D2ijI);
IC = IA+IB;
D2 = -(2/pi)* (Dw*np.sum(IC) - 0.5*Dw*IC[0,0]);
d2Edm2[i,j] = D2;
d2Edm2([j,1i] = D2;

return EO, Tpos, dEdm, d2Edm2;

else:
return EO, Tpos, dEdm;

wfinvert (wpos, Atpos, Btpos, EOA, EOB, XA, XB, mstart, dm, Niter, DEstagnate):

This version uses gradient descent, utilizing only dEdm

wpos, Atpos, Btpos, EOA, E0B, XA, XB from wfderivssetup ()

mstart: staring guess for solution

dm: starting step size (I used 1.0);

Niter: maximum number of iterations (I used 100);

DEstagnate: change in relative error below which
iterations aer terminated (I used le-3)

H H o H

gradient descent constants
mo = np.copy(mstart)

alpha = dm;

cl = 0.0001;

c2 = 0.9;

tau = 0.5;

setup for iteration

Eo, Tposo, dEdmo = wfderivs(wpos, Atpos, Btpos, EOA, EOB, XA, XB, mo, False
Estart = Eo;

Tposstart = np.copy (Tposo)

)

count=1;
for k in range (Niter) :
v = - dEdmo / sqrt(np.matmul (dEdmo.T, dEdmo) [0,0]);

backstep
for kk in range (10):
mg = mo + alpha*v;

Eg, Tposg,dEdmg = wfderivs(wpos, Atpos, Btpos, EOA, EOB, XA, XB, mg, False

count = count+1;
if(Eg <= (Eo + cl*alpha*np.matmul (v.T,dEdmo))):
break;

alpha = tau*alpha;

reduction in error during this iteration
DE = (Eo-Eg)/Eg;

update
dEdmo = dEdmg;
Tposo = Tposg;

if((DE>=0.0) and (DE<DEstagnate)):

break; # terminate iterations when change in solution is sufficiently

small
return(Tposstart, Estart, mo, Tposo, Eo, count);

def wfinvert2 (wpos, Atpos, Btpos, EOA, EOB, XA, XB, mstart, dm, Niter,
This version uses Newton's method, utilizing both dEdm and d2Edm2

wpos, Atpos, Btpos, EOA, E0B, XA, XB from wfderivssetup ()

mstart: staring guess for solution

dm: starting step size (I used 1.0);

Niter: maximum number of iterations (I used 100);

DEstagnate: change in relative error below which
iterations aer terminated (I used le-3)

HH= H= H H H H

gradient descent constants
mo = np.copy(mstart)

setup for iteration

DEstagnate) :

Eo, Tposo, dEdmo, d2Edm2o = wfderivs(wpos, Atpos, Btpos, EOA, EOB, XA, XB, mo,

True);
Estart = Eo;
Elast = Eo;
Tposstart = np.copy (Tposo)
count=1;
for k in range (Niter) :

dm -la.solve(d2Edm20, dEdmo);

mo mo + dm;

Eo, Tposo, dEdmo, d2Edm2o = wfderivs(wpos, Atpos, Btpos, EOA,
mo, True);

count=count+1;

reduction in error during this iteration
DE = (Elast-Eo)/Elast;
if(k>3): # do at least 3 iterations

EOB, XA, XB,

if((DE>=0.0) and (DE<DEstagnate)):
break; # terminate iterations when change in solution is sufficiently
small
Elast = Eo;
return(Tposstart, Estart, mo, Tposo, Eo, count);

def wfpredictedB(A, B, Dt, mo):
compute predicted seismogram Bpre
N, i = np.shape(d);
fmax = 1.0/ (2.0*Dt) ;
Df = fmax/(N/2);
Nf = int (N/2)+1;
wpos = 2.0*pi*eda cvec(Df*np.linspace(0,Nf-1,Nf)); # need
Tpos, dTdmi = wfTandderivs (wpos,mo,False);
w = np.concatenate((wpos, -np.flip(wpos[l:Nf-1],axis=0)), axis=0);
T = np.concatenate((Tpos, np.flip(Tpos[l:Nf-1],axis=0)), axis=0);
ftp = np.exp(-complex(0.0,1.0)*np.multiply(w,T));
At = np.fft.fft (A, axis=0);
Bpre = np.real(np.fft.ifft(np.multiply (At, ftp),axis=0));
return Bpre;

def wfcovariance (wpos, Atpos, Btpos, EOA, EOB, XA, XB, mo):
EO, Tpos, dEdm, d2Edm2 = wfderivs(wpos, Atpos, Btpos, EOA, EO0B, XA, XB, mo, True
Nf, i = np.shape (Btpos);
M, i = np.shape (mo);
Dw = wpos[1l,0]-wpos([0,0];
EO*Dw is the sum of squares of frequency values in Btpos-Atpos*ftpos
2Nf is the number of real and imaginary parts
so variance is EO/Dw divided by degrees of freedome 2Nf-M

sigmaB2 = EOQO/ (2*Nf-M) ;

formula for covariance from Menke 2024 Eqn 4.76
covm = 2.0*sigmaB2*la.inv (d2Edm2) ;

return sigmaB2, covm, EO;

