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ABSTRACT 

Radioactive disequilibrium of 23Su nuclides is commonly observed in young lavas and has often been used to infer the 
rates of melting and melt migration. However, previous calculations do not actually include melt transport. Here we explore 
the behaviour of short-lived radionuclides in a new calculation that includes the fluid dynamics of melt segregation. We 
emphasize that series disequilibrium results from the differences in residence time of parent and daughter nuclides. Unlike 
previous models, contrasts in residence times are controlled by differences in transport velocities caused by melt separation 
and continued melt-solid interaction throughout the melting column. This "chromatographic" effect can produce larger 
excesses of both 23°Th and 226Ra within the same physical regime compared to previous calculations which do not include 
melt transport. Using this effect to account for U-series excesses leads to radically different inferences about the rates of 
melt migration. Where previous models require rapid melt extraction, our calculation can produce larger excesses with slow 
melt extraction. Nevertheless, reproducing the large (226Ra/Z3°Th) activity ratios observed in fresh mid-ocean ridge glasses 
is still problematic if the residence times are controlled solely by bulk equilibrium partitioning. While it still remains to be 
shown conclusively that the large 226Ra excesses are produced during melting, our calculation only requires differences in 
transport velocities to produce secular disequilibrium. Thus we speculate that other processes, such as crystal surface 
interaction, may also contribute to the production of the observed excesses. 

1. Introduction 

238U decays to stable 2°6pb via a chain of 
short-lived intermediate nuclides which includes 
23°Th and 226Ra. In a closed system, such a decay 
series evolves to a state of secular equilibrium 
where the decay rate (activity) of each intermedi- 
ate nuclide equals its production rate due to the 
decay of its respec~ve parent element. Therefore, 
in secular equilibrium~the ratio of activities of any 
two nuclides in the chain are unity. If such a 
system is disturbed, excesses (activity ratios > 1) 
will relax towards unity on a time-scale that is of 
the order of the half-life of the daughter nuclide. 
The half-lives 23°Th of and 226Ra are 75,380 and 
1600 yr, respectively, which makes them particu- 
larly useful for investigating melting and melt 
migration processes. Moreover, these nuclides are 
short-lived relative to time-scales of mantle evo- 
lution so that a mantle source is very likely to be 
in secular equilibrium before melting commences. 

Thus, unlike most geochemical systems, the 23SU 
series nuclides have a well constrained source 
composition and provide information about the 
rates of geophysical processes. 

Secular disequilibrium is commonly observed 
in fresh lavas from mid-ocean ridges, arcs and 
ocean-islands [see for reviews 1,2]. Here we dis- 
cuss a range of processes that can occur in all 
magrnatic settings; however, we will focus.princi- 
pally on series data from mid-ocean ridge basalts 
because the physical parameters controlling melt- 
ing beneath ridges are best constrained. Figure 1 
shows the available data for samples of axial 
ridge basalts where full U - T h - R a  isotope sys- 
tematics have been measured by either alpha 
counting [3-5] or by mass spectrometry [6]. While 
the data show considerable scatter, all points 
show both 23°Th and 226Ra excesses (within error). 
The principal problems posed by these observa- 
tions is how to explain the apparent fractiona- 
tions of very incompatible elements in large de- 
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Fig. 1. Activity ratios of (23°Th/238U) and for (226Ra/23°Th) 
axial mid-ocean ridge basalts from the East Pacific Rise ( • ) ,  
Juan de Fuca Ridge (zx) and Gorda Ridge (©). Measure- 
ments are made using u-counting [3-5] (solid symbols) and 
mass spectrometry [6] (open symbols) and are shown with 2~r 
error bars. The activity ratio of any two elements is the ratio 
of their decay rates, e.g., (23°Th/238U) = ATh[23°Th]/AU[238U] 
where square brackets denote atomic concentrations and A is 
the decay constant. In general, young mid-ocean ridge basalts 
show excesses of both 23°Th and 226Ra with little apparent 
correlation between the two activity ratios. The grey circle 
marks the reference activity ratios of (23°Th/23Su) = 1.1 and 
(226Ra/23°Th) = 2.25 that appear in subsequent contour plots. 

2. Description of the model 

The specific model we consider, calculates the 
melting, transport and decay of a series of ele- 
ments 

(238 u 2 a + 2  4 230T h ~ 226Ra) 

in a one-dimensional, steady-state upwelling col- 
umn where we explicitly calculate the flow of 
melt and solid. The model and its behaviour are 
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gree melts and how to.preserve large 226Ra ex- 
cesses given its short half-life of 1600 yr. 

This paper explores a range of processes that 
can cause secular disequilibrium in young lavas. 
Previous calculations have suggested that 239Th 
excesses can be produced by slow equilibrium 
melting and instantaneous melt extraction [7,8]. 
Other  models have invoked rapid disequilibrium 
melting [9]. While these previous calculations have 
been used to infer the rates of melting and melt 
extraction, it is important to note that none of 
these models actually include the fluid dynamics 
of melting and transport. The principal purpose 
of this paper is to illustrate how melt transport 
affects the behaviour of radiogenic nuclides and 
can lead to significantly different interpretations 
of the data. 

daughter parent 

Fig. 2. A schematic diagram to illustrate the effect of melt 
transport with continuous melt-solid interaction on parent 
and daughter activities, (%) and (cd) , in a steady-state, one- 
dimensional melting column. The important property of this 
calculation is that different elements can travel at different 
velocities due to the "chromatographic effect" [e.g., 10,11] 
and therefore have different residence times in the column. 
The vertical arrows show the distance each element travels 
before a fixed percentage decays. The short curved arrows 
denote this decay. In the unmelted region below the solidus, 
both parent and daughter travel at the same velocity and can 
maintain secular equilibrium by decaying at the same rate. In 
the melting column, however, the daughter is less compatible 
and travels faster than the parent. In this case, the original 
daughter nuclides that enter the bottom can be extracted 
before they decay. This initial daughter, however, will be 
augmented by the decay of its parent, which spends more time 
in the column. This process is indicated by the increasing 
width of the daughter arrow. Thus the total concentration of 
the daughter at the surface will be enriched relative to the 

concentration at the base (here by a factor of ~ 3). 
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concentration of component i in melt 
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= c{/c{o dimensionless melt concentration 
dimensionless melt concentration for a stable element 
concentration of component i in solid 
depth to the solidus 
bulk parti t ion coefficient of element i 
diffusivity of element i in solid 
diffusivity of element i in melt 
= F ( z )  = Fmar( ,  degree of melting at height z 
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shown schematically in Fig. 2. The elements are 
assumed to be in secular equilibrium when they 
begin melting. If all the elements continued to 
travel together as a closed system, they would 
decay at the same rate and remain in secular 
equilibrium. However, once the nuclides enter 
the partially molten region, they travel at differ- 
ent velocities due to the "chromatographic effect" 
described by many authors [e.g., 10,11]. Because 
of their different transport velocities, each ele- 
ment has a different residence time in the melt- 
ing column. If the parent spends more time in the 
column than the daughter, it will have more time 
to decay and thus will produce an excess of 
daughter nuclide. Here we develop the simplest 
quantitative description of this conceptual model 
to illustrate the fundamental effects of transport. 

We begin with the general equation governing 
conservation of mass for each parent -daughter  
pair in a decay series of radioactive elements 

~- [ Pf~ + ps(1 - ~b) Di] cfi + V 

• [pfc~v + ps(1 - dp)DiV]c [ 

= Ai_,[pf~b +Ps(1 - qb)Di_l]Cfi_l 

-- )ti[ Pfq~ + Ps( 1 -- qb)Di] c~ (1) 

Here  Pe and Ps are the densities of the melt and 
solid, respectively, th is the volume fraction of 
melt (porosity), v is the melt velocity and V is the 
solid velocity. For each element i =  1,2,3..• in 
the decay series, D i is its bulk partition coeffi- 
cient, cfi is its concentration in the melt and )ti is 
its decay constant. Additional parameters and 
notation are given in Table 1. The first nuclide in 
the decay chain, 23Su, has no parent and there- 
fore )t o = 0. For simplicity, eq. (1) disregards dif- 
fusion, and assumes that the concentration of 
element i in the melt and in the solid can always 
be related by a bulk partition coefficient D i. 
Equation (1) states that changes in the total mass 
of element i depend on variations in the fluxes of 
melt and solid and on the balance of production 
by its parent (element i - 1) and its own decay. 

Of the principal unknowns in eq. (1), the 
porosity and the melt and solid velocities are 
readily calculated given a mass-conservative the- 
ory of magma migration [12-17]. Appendix A 
shows that for a one-dimensional, steady-state 

melting column, the flux of melt and solid as a 
function of height, z, in the column can be writ- 
ten: 

pfCw = r0z (2) 

ps(1 - 6 ) w =  a W o  - r0z (3) 

where w is the one-dimensional melt velocity and 
W is the solid velocity [see also 18]. The term 

PsWoF~ax 
F° d (4) 

is the constant melting rate in the column. Equa- 
tion (4) approximates melting by adiabatic de- 
compression by setting the melting rate propor- 
tional to the mantle upwelling rate, W o. Fma x is 
the maximum degree of melting attained at the 
top of the column (i.e., at height z = d). Here the 
melting rate is constant, but these equations can 
be readily extended to include variable melting 
rates (see Appendix A). 

Equations (2) and (3) show that the melt and 
solid fluxes simply balance melt production and 
vary linearly with height in the column. In partic- 
ular, eq. (2) shows that the melt flux increases 
with z but at any height, the product of porosity 
and melt velocity is fixed. If we note that F = 
Fmaxz/d is the degree of melting at height z, 
then eqs. (2) and (4) can be combined to show 
that the relationship between melt velocity and 
porosity in steady state is: 

w = w 0  ' ( 5 )  
Pfq) 

If the melt does not separate from the solid 
(w ~ W 0) then the porosity will be comparable to 
the degree of melting (~b ~ F). Very efficient melt 
extraction (w >> W 0) implies that the residual 
porosity must be very small and ~b << F. Once 
F ( z ) / c b ( z )  is known at any height, the melt veloc- 
ity is determined. 

To determine ~b(z) requires an additional 
functional relationship between porosity and melt 
and solid velocities. Here  we use a simplified 
form of Darcy's law 

ck(w - W )  = k°ck"(1 - ck)Apg (6) 
Ix 

to govern the separation of melt from solid, k 0 
controls the permeability and depends upon the 
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spacing of melt channels [19],/z is the melt viscos- 
ity and n is the power law exponent in the 
permeability that reflects the microscopic geome- 
try of the melt distribution. If the melt is dis- 
tributed in tubes n ~ 2. If it is in veins or sheets 
n ~ 3 [e.g., 20]. Throughout  this paper we use 
n = 2, although calculations using n = 3 produce 
nearly identical results. Given eqs. (2), (3) and (6) 
the porosity as a function of height is given im- 
plicitly by: 

Pf [ ~b + A & " ( 1 -  ¢ ) 2 ] p  = FmaxZd (7) 

where 

1 ] 
A = ~b~a~l( 1 - 4 m a x ) 2  [Pf~max 1 (8) 

and ~ m a x  is the maximum porosity at the top of 
the column. By combining Darcy's law with gen- 
eral mass conservation, we need only choose &max 
and Frnax to determine the porosity and melt and 
solid velocities throughout the column. [see also 
18,21] 

Equation (1) can now be rewritten in a more 
tractable form using eqs. (2), (3) and (7). For 
simplicity we use constant bulk partition coeffi- 
cients and assume that the solid is initially in 
secular equilibrium before melting begins. This 
initial condition is 

AiCfioDi 
= 1 (9) 

~ti- lC[i-1)oOi-1 

We scale the concentrations of each element in 
the melt to the initial melt concentrations (i.e., 
c" = cf/cfo), and scale the distance to the depth 
of the melting column. With these considerations, 
eq. (1) becomes: 

dc; ( D , -  1)Fma x 

d---~ = c" Di + (1 - Di)Fmax¢ 

[ c, l ,-1 ci (10) 
+ Aid B ( ( )  i-1 i 

Weft Weft 

where 

Di[Di_ 1 + (1 -Di_l)Fmax~ ] 
B ( ~ ) =  Di_,[Di+(l_Di)Fmax~] (11) 

and ~" = z / d  is the fractional height in the col- 
umn (i.e., ~" = 0 at the base of the column and 

= 1 at the top). Equation (10) forms a system of 
ordinary differential equations that can be solved 
for the concentrations of each element in the 
decay series using standard numerical techniques 
[22]. The first term on the right hand side is the 
change in concentration due to melting. The sec- 
ond term is the change in concentration due to 
the difference between production and decay of 
the daughter element. The radiogenic production 
term depends primarily on the "effective velocity" 
of each element i [e.g., 10,11] 

pfqbw +ps(1 - qb ) OiW 
wiff ~- 

Pf& + P s ( l  - cb)D i 

Di+ (1 - Di)Fmax~" 

W° Di + (Pf/Ps - Di)qb 

1 
= w +  ( w -  w )  (12) 

1 + Di/~b 

which is a weighted combination of the melt and 
solid velocities. Elements with partition coeffi- 
cients greater than the porosity (D i >> &) travel 
near the solid velocity. Very incompatible ele- 
ments (D i << ¢)  travel near the melt velocity. 
Thus, as long as melt separates from the solid, 
elements with different solid/liquid partitioning 
will travel at different velocities. While eq. (10) 
appears somewhat complicated, this calculation 
has fewer free parameters than previous models 
because it provides the important coupling be- 
tween melting, porosity, and the velocity of each 
element. 

3. Behaviour of  the system 

This section describes the behaviour of eq. (10) 
to illustrate the consequences of melt transport in 
the simplest system. Figure 3 shows one solution 
of these equations for a set of parameters that 
can produce 23°Th and 226Ra excesses compara- 
ble to the reference values in Fig. 1. This figure 
(and Fig. 5), however, should not be taken as a 
model for MORB. In particular, a number of 
partitioning experiments suggest that the assump- 
tion of a single set of constant bulk partition 
coefficients inherent in eq. (10) is inadequate to 
describe MORB genesis [23-28]. Nevertheless, 
all of  the important effects of melt transport are 
contained in the simplest calculation and more 
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realistic sets of parameters can be added without 
changing the basic nature of the solution (see 
Discussion and Appendix). Furthermore,  previ- 
ous calculations have also assumed single stage 
melting and the results of all of the models can 
be readily compared for the same parameters. 
After we discuss the range of processes that can 
affect U-series disequilibrium we will consider 
additional models that are more relevant for 
MORB genesis. 

Figure 3a shows the porosity as a function of 
height in a melting column of depth d = 50 km 
where the mantle upwells at W 0 ---5 cm yr-1. In 

this calculation, the solid undergoes 25% melting 
by the time it reaches the top of the column. The 
maximum porosity, however, is only 0.5% and 
thus the melt moves approximately 50 times faster 
than the solid (eq. 5) and takes ~ 20,000 yrs to 
traverse the melting column. Figure 3b shows the 
natural log of the concentration normalized to 
the concentration of the initial liquid (U/= 
ln[c~/C~o]) for 238U, 23°Th, and 226Ra. For com- 
parison, the dashed lines show the concentrations 
expected if the elements were non-radiogenic (i.e., 
if A i = 0 for all elements). Inspection of eq. (10) 
shows that if changes in concentration are due 
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Fig. 3. Solutions for porosity, concentrations of 2 3 S u ,  23°Th, 226Ra and activity ratios (23°Th/Z38U), (226Ra/23°Th) as a function of 
height in the melting column (d = 50 kin). In this particular solution, the maximum porosity is t~max = 0 .005 ,  the upwelling velocity 
is W o = 0.05 m y r -  1 and the maximum degree of melting at z = d is Fma x = 0.25. The effective bulk partition coefficients used are 
D U = 0.0086, DTh = 0.0065 and DR, = 0.0005. (a) Profile of  porosity with depth. (b) Concentrat ions of 23Su, 23°Th and 226Ra with 
depth. The solid lines show the natural  log of the melt concentration normalized to the initial melt concentration c~/D. The 
dashed lines show the concentrations expected if there was no radioactive decay (which is the same as expected with batch melting). 
(c) The excess concentration of each element  with respect to batch melting, ol i (see eq. 14). Each curve shows the ratio of the 
element concentration to the concentration of a stable element  with the same partition coefficient (e.g., the curve marked Th is the 
23°Th/232Th ratio normalized to its source ratio). The enrichments in both 23°Th and 226Ra arise from the decay of the parent  
element that is preferentially retained in the column. (d) Activity ratios as a function of depth. In this instance, (23°Th/Z38U) = 1.13 

a n d  (226Ra/23°Th)= 2.3 at the surface. 
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only to melting, then the concentration of each 
element in the melt would be: 

Di 
c; = (13) 

o i  + (1 - Di)Fmax¢ 

which is identical to the concentrations expected 
in batch melting even though the porosity is small 
and the melt moves relative to the solid. This 
result has been noted before [e.g., 15] and arises 
directly from the assumption of continuous re- 
equilibration of solid and liquid. Fractional melts 
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Fig. 4. Activities of a3su and a3°Th in both the solid and the 
melt from Fig. 3b plotted on a conventional equiline diagram. 
The trajectories show the changes in activity as a function of 
height in the column. F =  0 is the bot tom of the column, 
F = 0.25 is the top. The activity ratio in the initial solid lies on 
the equiline while (23°Th/23Su) in the first liquid is the ratio 
of  parent  to daughter  bulk partition coefficients (here 
Du/Dxh = 1.33). As the degree of melting increases up the 
column, elemental  fractionation of U and Th becomes in- 
significant and so the (a38U/232Th) ratio of  the melt rapidly 
approaches that of  the initial solid (grey square). The  (a3°Th/  
232Th) ratio, however, increases in both melt and solid as 
238U decays to produce a3°Th. This " ingrowth" of a3°Th is 
evident in the equiline diagram. The  corresponding decay of 
is not apparent  only because atomic concentrat ions of a38U 
are always over 4 orders of  magni tude  greater  than those of 
23°Th (e.g., in secular equilibrium [238U/23°Th] = ATh/A u = 
5.9 X 104). Thus  the number  of decays of 238U over melting 
time scales has negligible effects on uranium concentrat ions 
but large effects on 23°Th abundances.  The process of  in- 
growth of aa°Th is the same as that demonst ra ted  in [7,8] but  
here is controlled by transport  processes rather  than melting 

processes (see Section 4). 

are produced only if the solid does not re-equi- 
librate with the melt that passes through it (see 
Appendix A). 

Short-lived radioactive nuclides, however, do 
not behave like stable elements, and the concen- 
trations of 23°Th and 226Ra in the melt can be 
greater than the concentration of a stable ele- 
ment with the same bulk partition coefficient 
(i.e., eq. 13). For the example shown in Fig. 3b,c 
the amount of 23°Th in the melt at the top of the 
column is ~ 13% greater than if it were a stable 
element. Figure 4 shows the evolution of 23°Th 
(and 232Th) in both solid and liquid plotted on a 
standard equiline diagram [29]. shows an increase 
of ~ 250%, even though the melt takes over ten 
half-lives of to cross the column. These results 
show that more daughter material is actually be- 
ing produced in the column than was brought in 
at the bottom. It is this new ingrown material that 
accounts for the excess activity ratios calculated 
at the surface (Fig. 3d). 

This effect can be explained simply in terms of 
the relative residence times of each of the ele- 
ments as was illustrated schematically in Fig. 2. 
Because individual elements have different trans- 
port velocities, they spend different amounts of 
time in the melting column. Here, 238U travels 
more slowly than 23°Th which is slower than 
226Ra and the additional residence times lead to 
excesses of daughter nuclides. The effects of 
transport can be separated from those of melting 
if we rewrite the melt concentrations as: 

' ' (14) C i ~ OliCBi 

where c'Bi is the batch melt concentration ex- 
pected for a stable element (eq. 13), and a i is the 
enrichment factor due to radioactive decay. Sub- 
stituting eq. (14) into eq. (10) yields the simpler 
equation: 

[°1.1 d°ti =Aid i--1 7 
dg" Wef t Wef  t 

which shows that the enrichment due to decay 
depends only on the relative velocities of the 
parent and daughter nuclides. Equation (15) can 
be solved for o¢ i directly, however, it is numeri- 
cally more stable to solve eq. (10). 

For a given degree of melting, the relative 
velocity of each element depends on the porosity, 
the upwelling rate of the solid and the relative 



8 M .  S P 1 E G E L M A N  A N D  T ,  E L L I O ' I q "  

affini ty of  each  e l emen t  for the  solid phase ,  which 
in the  s imples t  case  is given by the  pa r t i t ion  
coefficients .  F igu re  5 shows how changing  the  two 
pr inc ipa l  physical  pa r ame te r s ,  t~max and  W0, af- 
fects the  activity ra t ios  (23°Th/Z38u) and  (226Ra/  

23°Th) in the  mel t  at the  top  of  the  column.  F o r  a 
fixed set of  pa r t i t ion  coeff icients ,  the  contours  of  
the  activity ra t ios  have two d i f fe ren t  behaviours .  
In  some regions  of  p a r a m e t e r  space  the  activit ies 
d e p e n d  p r imar i ly  on the poros i ty  while  in o thers  
they  d e p e n d  pr imar i ly  on the  upwel l ing  rate .  
These  two d i f ferent  behav iours  a re  con t ro l l ed  by 
whe t he r  the  to ta l  ex t rac t ion  t ime of  the  d a u g h t e r  
nucl ide  is long or  shor t  c o m p a r e d  to its half-life.  
The  ext rac t ion  t ime for  any e l e m e n t  is the  t ime it 
takes  the  e l emen t  to  t raverse  the  mel t ing  region.  
The  curves l abe led  t c in Fig. 5a,b show an extrac-  
t ion t ime equal  to approx ima te ly  six half-l ives of  
the  daugh te r  nucl ide.  A f t e r  ~ 6 half-lives, 99% 

of  a given nuc l ide  has  decayed .  Thus  t c corre-  
sponds  to the  longes t  t ime for which d a u g h t e r  
nucl ides  p re sen t  at  the  b o t t o m  of  the  co lumn will 
still be  p r e se n t  at  the  top. A n y  solut ion with 
combined  W 0 and (hr~ax tha t  plots  above the  curve 
tc, has  a shor te r  ex t rac t ion  t ime and  nucl ides  can 
be s a mp le d  f rom the  en t i re  column.  In this 
reg ime,  activity ra t ios  a re  sensi t ive to the  up-  
wel l ing velocity. Points  tha t  p lo t  be low the  curve 
(e.g., s lower  upwel l ing  rates) ,  have ex t rac t ion  
t imes  longer  than  t c and  only nucl ides  fo rmed  in 
the  u p p e r  pa r t  of  the  co lumn are  s ampled  at  the  
surface.  F o r  these  solut ions,  the  activity ra t ios  
d e p e n d  pr imar i ly  on the  porosi ty.  F u r t h e r  analy-  
sis of  eq. (15) shows this resul t  is the  expec ted  
behav iour  of  the  governing  equa t ions  ( A p p e n d i x  
A). 

The  behav iour  of  226Ra is qual i ta t ively  the  
same as tha t  for 23°Th, bu t  because  these  nu- 
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Fig. 5. Effect of upwelling rate W 0 and maximum porosity qSma x on activity ratios calculated for melt at the top of the upwelling 
column (contours). The maximum degree of melting for all calculations is F = 0.25, d = 50 km, and the partition coefficients are 
D U = 0.0086, DTh = 0.0065 and Dna = 0.0005. (a) Contours of activity ratios for (23°Th/238U). (b) Contours of (226Ra/23°Th). The 
thick shaded contours mark the reference activity ratios (23°Th/23Su)= 1.1 and (226Ra/23°Th)= 2.25 shown in Fig. 1. Note that 
for both 23°Th and 226Ra there are two different regimes, one where the activity ratio is sensitive to upwelling velocity, the other is 
where the activity is only sensitive to the porosity. The location of the two regimes is controlled by the half-life of each daughter 
nuclide and the ratio of their partition coefficients to the porosity. In each plot, the vertical line marks the solutions where the 
maximum porosity is equal to the partition coefficient. The bold curved line marks the extraction time t c = 6.64. The grey boxes 
mark values of W 0 appropriate for moderate to fast spreading ridges and a range of plausible porosities. In this region, the thorium 
and radium contours are roughly orthogonal. Thus a small change in porosity can cause large changes in (226Ra/23°Th) with 

negligible changes in (23°Th/23Su) which is consistent with observations (Fig. 1). 
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clides have very different half-lives and partition 
coefficients, they behave differently for the same 
values of ~bm~ , and W 0. The rectangular boxes in 
Fig. 5 show a range of porosities and upwelling 
velocities that are reasonable for moderate to fast 
spreading ridges. In this regime, 23°Th excesses 
record ingrowth throughout the column while 
226Ra excess are sensitive only to processes near 
the surface. Thus small variations in porosity can 
cause large changes in radium activity with negli- 
gible effects on the thorium excesses of the 
erupted melt. 

Examination of Fig. 5 also shows how changing 
the values of the partition coefficients affects the 
activity ratios. Each plot has a maximum activity 
ratio that occurs for slow upwelling and small 
porosities. This maximum is the ratio of the par- 
ent and daughter partition coefficients. The posi- 
tions of the contours in Fig. 5, however, are 
controlled by the ratio of the daughter partition 
coefficient to the porosity (Odaught//~max). If the 
ratios of the partition coefficients remain the 
same but all the elements are more incompatible, 
then a smaller porosity is required to produce the 
same activity ratio. 

Because 23°Th is both a daughter and parent 
nuclide in the decay chain, combined measure- 
ments of (23°Th/238U) and (226Ra/23°Th) place 

stronger constraints on the model parameters 
than either measurement separately. However, 
because the 23°Th and 226Ra excesses are pro- 
duced in different regions of the melt column, 
this calculation shows that it is possible to pro- 
duce large 226Ra excesses without requiring melt 
extraction times that are short compared to the 
half-life of 226Ra. While the actual values of the 
activity ratios are sensitive to the chosen parame- 
ters, the important conclusion of this calculation 
is that melt transport with melt-solid interaction 
can cause significant excesses of short lived iso- 
topes. 

4. Comparison to previous models 

The behaviour of the simplest transport model 
is readily understood in terms of the relative 
residence times of parent and daughter elements 
in the melting system. Previous melting models 
can also be explained within the framework of 
residence times, and nearly all the differences in 

behaviour and implications of the models can be 
traced to differences in the processes that govern 
the residence times of each element. This section 
highlights the subtle differences between all of 
the models and suggests that all else being equal, 
the calculations that include melt transport with 
melt-solid interaction produce the largest tho- 
rium and radium excesses in a physically reason- 
able system. 

The earliest models [e.g., 30] that attempt to 
account for 23°Th excesses actually have no dif- 
ference in residence times between uranium and 
thorium, and simply explain the different activity 
ratios by instantaneous chemical fractionation of 
parent from daughter. Chemical fractionation, 
however, only works when the degree of melting 
F is comparable to the bulk partition coefficients 
D. This mechanism is clearly not viable at ridges 
where the average degree of melting is at least an 
order of magnitude greater than all of the parti- 
tion coefficients of the 238U series nuclides. 

More sophisticated "dynamic melting" models 
[7,8] consider one-dimensional, steady-state melt- 
ing columns with a constant melting rate and a 
single set of partition coefficients. In these re- 
spects, such models are similar to ours. However, 
the dynamic models do not include melt migra- 
tion and, furthermore, are effectively fractional 
melting calculations. Figure 6 illustrates the be- 
haviour of the dynamic melting models. These 
calculations assume that the entire column has a 
constant porosity of melt that is in chemical equi- 
librium with the solid. Any melt that is produced 
in excess of this constant porosity is 'extracted' 
into a second chemically isolated reservoir where 
it is assumed to be instantaneously mixed and 
erupted. 

In these calculations, excess daughter is also 
produced by decay of the parent, however, the 
relative residence times are controlled by the 
melting rate and not by the transport time. If the 
parent is more compatible than the daughter, it 
will spend a longer time in the solid before it is 
"pushed" into the liquid by melting. If the melt- 
ing rate is sufficiently slow to allow the parent to 
decay, the longer residence time in the solid will 
produce excesses in the same manner as in our 
calculation. Once the extracted melt enters the 
chemically isolated reservoir, however, all ele- 
ments travel at the melt velocity and thus have 
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Fig. 6. A cartoon illustrating the behaviour of "dynamic 
melting" models. These models propose two reservoirs. The 
first is the melting region where the solid maintains chemical 
equilibrium with a small constant porosity 4~eq- Any melt that 
is produced in excess of this equilibration porosity is "ex- 
tracted" into the second reservoir which is chemically isolated 
from the solid. Physically, this second reservoir could be a a 
network of veins or dikes in which the melt does not re-equi- 
librate with the solid [e.g., 19]. In this second reservoir, any 
excess produced by slow melting can only decay towards 
secular equilibrium. The simplest dynamic melting models 
[7,8] do not include melt extraction and simply mix the con- 
tents of the second reservoir from all heights in the column 
and assume instantaneous eruption at the surface. For small 
&eq (i.e. 4~q << F) these calculations are essentially fractional 
melting calculations and incompatible elements are stripped 
from the melting region during the first F ~ D i degree of 
melting. Thus nearly all of the ingrowth of daughter nuclides 
occurs at the bottom of the column and requires rapid extrac- 

tion to be preserved to the surface. 

the same residence time. Any excess in the sec- 
ond reservoir that is produced by slow melting 
can only decay back to secular equilibrium. Be- 
cause these dynamic melting models are effec- 
tively fractional melting calculations, the incom- 
patible elements are efficiently stripped from the 
solid within the first few percent of melting. Thus 
nearly all of the enrichment in both thorium and 
radium occurs at the bottom of the column. 

While the differences between our calculation 
and the dynamic melting models may not appear 
to be great, these models actually lead to very 
different interpretations of the data. Our calcula- 
tion produces excesses at all levels in the column, 
with thorium preserving excesses produced at the 
bottom of the melting region and radium record- 

ing shallow level interaction and transport. Be- 
cause the radium excesses are produced near the 
surface, our model actually places no constraints 
on the minimum extraction time of melt. The 
dynamic melting models, however, require rapid 
extraction because nearly all of the significant 
excesses are produced at the bottom of the col- 
umn, and after fractionation are chemically iso- 
lated from their source and can only decay during 
transport. 

It should be reiterated that the dynamic melt- 
ing calculations assume instantaneous transport 
and mixing of melts from all depths. With these 
somewhat arbitrary assumptions, the dynamic 
melting calculations can produce average ex- 
cesses that are comparable to those produced in 
our model. Figure 7a,b shows the activity ratios of 
the mixed melts using the same partition coeffi- 
cients, melting depth and overall degree of melt- 
ing as Fig. 5. Qualitatively, the solutions are 
similar, but for a given upwelling rate (melting 
rate) the dynamic melting calculation gives lower 
excesses. Even these slightly smaller excesses are 
maxima, however, since this solution assumes in- 
stantaneous extraction. 

Using the fluid dynamic framework developed 
in section 2, we can add the effects of melt 
transport to the dynamic melting calculations (see 
Appendix for details). Specifically, Fig. 7c,d shows 
the activities of melts erupted at the top of a 
column where the solid has undergone pure frac- 
tional melting and the melt that is produced 
segregates into a series of veins that do not 
interact with the solid through which they pass. 
The transport in these veins can still be described 
by Darcy's law [see 19] and so the melt transport 
times in Figs. 5 and 7c,d are identical for a given 
porosity and upwelling rate. As is clear from Fig. 
7c,d, once transport times are calculated for frac- 
tional (or near fractional) melting models, only 
small 23°Th and 226Ra negligible excesses can be 
preserved in melts at the top of the column [see 
also 31]. Similar problems were noted for the 
"accumulated continuous melting" model of 
Williams and Gill [8]. 

Figures 5 and 7c,d represent the end-member 
solutions for one-dimensional melting columns 
with transport and "equilibrium melting". By 
equilibrium melting, we mean that there is full 
volume chemical equilibrium between the melting 
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Fig. 7. (a,b) Contours of activity ratios for models that assume instantaneous melt transport [7,8]. This figure shows the solution of 
the "dynamic melting calculation" given in [8] for the same partition coefficients as used in Fig. 5. In this calculation the 
"equilibration porosity" ~beq is the small volume of liquid that remains in chemical equilibrium with the solid. ~beq is not directly 
comparable to the porosity in the transport calculations but has similar effects for radioactive disequilibrium when melt transport is 
instantaneous. (c,d) The effects of adding melt transport to dynamic melting models. This calculation uses the same fluid dynamics 
as Fig. 5 but assumes that the solid melts fractionally and does not interact with the melt that passes through it (see Appendix A). 
Pure fractional melting corresponds to ~eq = 0 in Fig. (7a,b) and produces maximum radioactive disequilibria in dynamic melting 
models. Once transport is included, however, any excesses that are produced by melting at the bottom of the column decay during 
transit to the surface. Hence (7c,d) shows smaller 23°Th and negligible 226Ra excesses for the same parameters as Fig. 5. The 

shaded grey contours are for the reference values, (23°Th/238U) = 1.1, (226Ra//23°Th) = 2.25 shown in Fig. 1. 
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minerals and the instantaneous melts that are 
produced. Both "batch" and "fractional" melting 
models are examples of equilibrium melting, the 
only difference between them is the volume of 
melt that re-equilibrates with the solid. Similarly, 
the only difference between Figs. 5 and 7c,d is 
whether the melt and solid remain in chemical 
equilibrium during transport. Figure 5 assumes 
that the solid and liquid re-equilibrate through- 
out the column, while Fig. 7c,d assumes there is 
no chemical interaction during transport. 

The basic requirements for maintaining chemi- 
cal equilibrium during magma migration are dis- 
cussed by Spiegelman and Kenyon [19] who sug- 
gest that the ability to maintain chemical equilib- 
rium is very sensitive to the microscopic distribu- 
tion of melt and solid. It should be noted, how- 
ever, that the scaling argument presented by 
Spiegelman and Kenyon represents a worst case 
scenario which assumes that the melt is dis- 
tributed in veins or channels separated by regions 
of pure solid. Given the low values of measured 
diffusivities in mantle minerals (e.g., D S~ 10 -16 

m 2 s -1 at 1240°C for U in cpx [32]), it does not 
require a very large vein spacing before the inte- 
rior of the solid regions cannot communicate with 
the melt in the channels. However, because the 
diffusivity of trace elements in the melt is orders 
of magnitude larger than that in the solid (D t~  
10-1°-10 -11 m 2 s -1 [33]) even a very small vol- 
ume of interconnected melt along the grain edges 
can significantly enhance the effective diffusivity 
of the inter-channel regions. Recent experiments 
on two-phase aggregates [34,35] suggest that sur- 
face energy effects will maintain such a network 
because nature abhors a dry grain edge. Spiegel- 
man and Kenyon did not account for such a melt 
network in their calculations. Furthermore, the 
effects of deformation in a partially molten upper 
mantle could possibly increase the effective solid 
diffusivities over those measured in a static crys- 
tal. Thus a better understanding of the micro- 
scopic properties of melt-solid aggregates is re- 
quired before we can determine where the transi- 
tion from equilibrium to disequilibrium transport 
O c c u r s .  

Grain scale processes also control the "dis- 
equilibrium melting" models that have been re- 
cently presented [9,36]. While only Qin [9] has 
explicitly calculated the behaviour of U-series 

nuclides, both models make identical assumptions 
about the microscopic mechanics of melting. 
These two models assume that the solid is com- 
posed of spherical grains where the surface of 
each grain is in chemical equilibrium with the 
melt phase but the interior can only equilibrate 
with the melt by solid diffusion. Most impor- 
tantly, these models assume that the individual 
crystals melt much like peeling layers off an onion. 
Such "onion skin" melting leads to disequilibrium 
melting when the crystal surface retreats faster 
than an element can diffuse into the grain inte- 
rior. All of the effects of these models rest on this 
assumption of how individual grains melt, which 
again is unclear in an actively deforming mantle. 
Nevertheless, disequilibrium melting models pro- 
vide a useful description of an end-member pro- 
cess. 

The principal consequence of these disequilib- 
rium melting models is that the effective partition 
coefficients of all elements tend to unity because 
the melt that is produced has nearly the same 
composition as the crystal. Thus while the effec- 
tive partition coefficient of incompatible elements 
is much larger than in equilibrium, the amount of 
fractionation between elements diminishes unless 
they have significantly different diffusivities. Even 
so, the scaling parameters in [9,36] suggest that to 
produce significant disequilibrium during melting 
requires that melting rates be ~ 2 orders of mag- 
nitude larger than those estimated by eq. (4). At 
these fast melting rates there is little time for 
additional ingrowth of daughter nuclides and this 
calculation is therefore analogous to the earliest 
models [e.g., 30] where fractionation is purely 
chemical. Thus the principal effect of disequilib- 
rium melting controlled by solid state diffusion is 
simply to raise the effective partition coefficients. 

5. Discussion 

By comparing the quantitative results of the 
available models, the previous sections show that 
melt transport with interaction between melt and 
solid throughout the melting region produces the 
largest radiogenic excesses for the same physical 
parameters. However, it is important to address 
how well our calculation can explain the observed 
excesses in mid-ocean ridge basalts. 
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The principal simplification in all of the mod- 
els discussed so far is that the bulk partition 
coefficients are constant throughout the melting 
column. In order to generate the radiogenic ex- 
cesses observed in MORB, the equilibrium melt- 
ing models require that uranium is more compati- 

ble than thorium, which is more compatible than 
radium. Recent experiments show that, of the 
major mantle minerals, only garnet can produce 
significant 23°Th excesses by equilibrium parti- 
tioning ( D ~  a r ' ~  i n  r'jgar l~,,_-Th [37,38]). Olivine and opx 
have insignificant partition coefficients for U and 
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Fig. 8. A comparison of two end-member calculations for a two-stage melting column with equilibrium bulk partition coefficients 
consistent with recent  partitioning experiments.  In both calculations the melting column is 80 km deep. Partition coefficients for 
the lower 20 km are D U=0.00162,  DTh=0 .00074  ( ~  10% garnet  plus 10% cpx). The upper  60 km has D U =0.0006, 
DTh = 0.000975 (15% cpx). DRa is still unconstrained and is chosen to be 10 -5  for the entire column. Shaded contours show the 
reference values (23°Th/23Su) = 1.1, (za6Ra//Z3°Th) = 2.25. (a) "Equi l ibr ium" transport calculation with melt and solid interaction 
throughout  the column. Because 23°Th can remember  interaction with garnet, 23°Th excesses can still be produced if the extraction 
time is less than t c. Only slower extraction will produce (23°Th/238U) < 1. Radium behaves exactly as in the single-stage calculation 
and only records the ratio of residence times near  the top of the column. (b) Fractional melting and disequilibrium transport  

produce smaller 23°Th and negligible 226Ra excesses for the same parameters.  
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Th [26] while uranium is actually less compatible 
than thorium in cpx [23-28]. Modeling of L u / H f  
systematics also suggests that some melting oc- 
curs in the presence of garnet [39] during MORB 
genesis. Garnet,  however, is only stable at depths 
greater than ~ 60 km [40-42] while the majority 
of MORB melting is thought to occur at shal- 
lower depths. Thus at least two sets of bulk 
partition coefficients are needed to adequately 
represent the markedly different behaviour of U 
and Th during MORB melting. 

This additional complexity can be quantified 
by simply extending the single stage melting cal- 
culations to a two-stage model where the melting 
column now has two sets of partition coefficients 
that are consistent with the new experimental 
data. Hence, the bottom portion of the column is 
given bulk partition coefficients appropriate for 
melting in the garnet stability field, while the 
upper portion is given bulk partition coefficients 
suitable for melting in the spinel stability field. 
The partitioning behaviour of radium is still 
poorly constrained and will be assumed to be 
constant with height. However, as long as DRa 
~ < 0.1 DTh then its actual value makes little 
difference to the radium activity ratios as these 
are controlled principally by the partitioning of 
thorium. Experiments on Ba, used as an analogue 
for Ra, show that D B a / D T h  ~ 0.1 [26,28]. 

Figure 8 shows two end-member solutions for 
such a two layer column where melting begins at 
80 km and the garnet-spinel transition occurs 
~ 60 km [40]. For simplicity the melting rate is 
assumed to be constant throughout the column. 
Figure 6a shows the solution where the melt 
re-equilibrates with the solid throughout the col- 
umn. While this solution is somewhat more com- 
plicated than the one-stage model, the essential 
behaviour is the same. Even though melt-solid 
interaction in the upper layer will tend to drive 
(23°Th/Z38u) activity ratios to values < 1, be- 
cause of the relatively long half-life of 23°Th, any 
excesses produced in the lower layer can be pre- 
served to the surface as long as the total extrac- 
tion time is less than t c. Only the very slowest 
extraction times will produce activity ratios less 
than one. Radium, however, is still assumed to be 
more incompatible than thorium throughout the 
column and records the relative residence times 
of 23°Th and 226Ra near the surface. In contrast, 

Fig. 8b shows the solution for fractional melting 
and "disequilibrium transport". Again (23°Th/ 
238U) activities greater than one are produced 
because nearly all of the 238U series elements are 
fractionated within the first ~ 1% of melting 
(approximately the lowest 2-3  km in the column) 
and therefore are only affected by garnet parti- 
tioning. The radium excesses, however, are also 
produced at the bottom of the column and will 
decay before they can be erupted unless the melt 
moves sufficiently fast for the radium to traverse 
80 km within its half-life (see below). 

Between these two solutions lie a large num- 
ber of related models. In addition to varying the 
partition coefficients or the depth to the garnet-  
spinel transition, we could also vary the melting 
rate within the column, change the degree of 
re-equilibration of melt and solid as a function of 
height or even extend the calculation to two-di- 
mensional flow models. Appendix A shows how 
to quantify these effects, but because of the large 
number of adjustable parameters and scenarios, 
we have not explored these more complicated 
models in any detail. The important point to 
stress is that it is only differences in the total 
residence time of each element that controls the 
amount of secular disequilibrium. Thus it is not 
particularly difficult to produce 23°Th excesses if 
some melting occurs in the presence of garnet as 
the half-life of 23°Th is sufficiently long to "re-  
member" the garnet field. The principal con- 
straint on all of these models is to produce both 
23°Th and 226Ra excesses for the same physical 
regime. 

The primary difficulty with the new partition- 
ing data is the very small values of the partition 
coefficients. With values as small as those sug- 
gested, it is difficult for any of the models to 
produce large 226Ra excesses using "reasonable" 
melting rates and porosities. Dynamic melting 
models require slower melting rates to offset the 
efficient stripping of elements due to fractional 
melting. These models, however also require very 
fast extraction rates to preserve 226Ra excesses to 
the surface. The combination of slow melt pro- 
duction rates and fast extraction rates imply that 
there can only be a very small residual porosity in 
steady-state. Examination of Fig. 8b or eq. (5) 
shows that conservation of mass requires residual 
porosities 4~ ~ < 10 -4 throughout most of the 
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melting column if the extraction time is required 
to be one half-life of 226Ra. Melt transport with 
melt-solid interaction, however also needs small 
porosities comparable to the partition coefficient 
of thorium if the different effective velocities are 
controlled solely by equilibrium bulk partitioning. 
At the small porosities required to generate large 
226Ra excesses, the melt velocity is sufficiently 
high that full volume chemical equilibration may 
not be maintained if the effective diffusivity of 
the solid is small. These difficulties lead us to 
several alternative suggestions to account for the 
observed 238U-series excesses in Fig. 1. 

Perhaps the simplest explanation for the large 
226Ra excesses in MORB is that they are not 
primary magmatic features and it has yet to be 
shown conclusively that the 226Ra excesses are 
not the result of near surface contamination. 
Nevertheless, all of the analyses shown in Fig. 1 
were made on carefully picked and processed, 
fresh MORB glasses. Furthermore,  off axial 
glasses show (226Ra/23°Th) equilibrium that is 
consistent with ages inferred from paleomagneti- 
cally determined spreading rates [6]. Thus any 
contamination would need to occur prior to 
quenching. Assimilation of barite, which is pre- 
cipitated from hydrothermal systems at ridge axes 
with extreme (226Ra/23°Th) ratios [e.g., 43], could 
account for the large 226Ra excesses shown in Fig. 
1. However, there are further chemical signatures 
associated with barite assimilation and a detailed 
study is needed to evaluate if such parameters 
correlate with 226Ra excesses. Since it is the com- 
bined thorium and radium data that places the 
strongest constraints on the rates of mantle pro- 
cesses, if the radium is not coupled to the tho- 
rium, then much of the fun in this system is lost. 

If the 226Ra activities are primary, however, we 
still need a mechanism that can produce large 
226Ra excesses and still be consistent with the 
new partitioning data. It is important to stress 
that though we have used bulk partition coeffi- 
cients to control the effective velocities of ele- 
ments in these simplest models, the only really 
important requirement for radioactive disequilib- 
rium is that parent and daughter nuclides travel 
at different speeds. We suggest that other pro- 
cesses may also produce differential transport 
velocities that can lead to secular disequilibrium. 
For example, one possibility is that different de- 

grees of surface adsorption or interaction with 
crystal grain boundaries could also cause variable 
transport velocities. While this suggestion is ad- 
mittedly speculative, it does have several intrigu- 
ing features that we feel merit some further dis- 
cussion. First, unlike volume partitioning, surface 
or grain boundary effects need not be isolated to 
a few specific mineral phases but could occur on 
all melt-solid interfaces. Thus even if the princi- 
pal phase controlling bulk partitioning is ex- 
hausted by melting, surface effects could still 
operate. The quantitative results of section 3 
show that large radiogenic excesses do not re- 
quire large amounts of melt-solid interaction (i.e., 
effective partition coefficients do not need to 
exceed ~ 0.01). Second, if the residence time of 
elements is controlled by surface processes, then 
these effects would only be noticeable in the 
ratios of short-lived radiogenic nuclides which are 
sensitive to transport times. Relatively small 
amounts of surface interaction could have a sig- 
nificant effect on radioactive disequilibrium yet 
have a negligible effect on the ratios of stable 
incompatible elements. Thus it may be possible to 
produce secular disequilibrium in MORB even if 
the mantle undergoes fractional melting as is 
suggested by modeling of other geochemical sys- 
tems [44-46]. 

Another  possibility for enhancing differential 
residence times is, if in addition to veins or chan- 
nels, the melt exists as a connected grain bound- 
ary phase as was discussed in the previous sec- 
tion. In the simplest calculations, it is assumed 
that all melt traveled at velocity w and all the 
solid traveled at velocity W. However, if there are 
actually two porosities, one governing the volume 
of melt in the channels and one governing the 
interstitial melt phase that travels near the solid 
velocity, then it is possible for elements to travel 
at different velocities if there is some interaction 
between the veins and the interstitial melt. 

TheSe suggestions clearly need to be addressed 
quantitatively. However, as long as the different 
elements have different residence times, excesses 
will result. At this point we acknowledge that the 
magnitude of these processes are unconstrained, 
largely because of our lack of information about 
the surface and transport properties of aggre- 
gates of mantle minerals, and of the microscopic 
physics of melting in a deforming upper mantle. 
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Further experimental evidence is required to 
evaluate these suggestions. 

6. Conclusions 

We have shown that melt transport with inter- 
action between the solid and liquid can have 
large effects on the abundances of short-lived 
radionuclides by changing the residence times of 
parent and daughter elements. As long as the 
parent spends more time in the melting system 
than the daughter, excess daughter will be pro- 
duced. For the same parameters, the transport 
calculations with solid-liquid interaction produce 
larger excesses than dynamic melting or disequi- 
librium transport models and do not require rapid 
melt extraction. For (favourable) conditions, our 
calculations can produce both 23°Th and 226Ra 
excesses that are comparable to those observed at 
moderate to fast spreading ridges using physically 
reasonable transport velocities. The melt trans- 
port models can be extended to include the re- 
suits of recent partitioning experiments, but re- 
suits suggest that additional processes may still be 
required to fully explain the observations. 
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A. Appendix. Additional analysis 

Section 2 presented the specific equations for 
a one-dimensional steady-state upwelling column 
with constant melting rate, equilibrium melting 
and transport with a single set of constant parti- 
tion coefficients. This appendix shows how to 
generalize this model to allow for variable melt- 
ing rates, non-constant partition coefficients and 
disequilibrium melt transport. It also presents a 
simple approximate solution to eq. (15) to 
demonstrate that the numerical results are cor- 
rect. 

A.1 General equations for one-dimensional, 
steady-state columns 

Conservation of mass for a two-phase system 
of melt and solid is: 

o(p 4,) 
- -  + v .  ( p , 4 , v )  = r ( 1 6 )  

at 

0[Ps(1 -(~)] 
+ V "  [ps(1 - ~ ) V ]  = - r  (17) 

0t 

where F is the melting rate which can be a 
function of height and time (see Table 1 for 
notation; see [12] for the derivation of conserva- 
tion equations). In one-dimensional steady-state 
melting columns, eqs. (16) and (17) can be inte- 
grated directly using the boundary conditions at 
the base of the column (z = 0) that the porosity 
~b = 0, and the solid upwelling velocity is W 0 to 
give: 

pfc~W = fordz (18) 

z 

ps(1 - 4,)W= &Wo - fo Fdz (19) 

where in steady-state F = F(z),  i.e., the melting 
rate is only a function of height. Equation (18) 
states that in steady-state, the melt flux, pfc~w at 
any height in the column simply balances the 
total melt production up to that height. Now, by 
definition, the degree of melting that the solid 
experiences in steady-state is: 

fo ZF dz 

F ( z )  = - -  (20) 
psWo 

which is the ratio of the total melt production 
flux to the flux of solid that enters the base of the 
column. Therefore,  if F is assumed to be con- 
stant throughout the melting region and the max- 
imum degree of melting at height d is Fma ~ then 
eq. (20) shows that the melting rate must be 
r = psWoFmax/d which is identical to eq. (4). If 
the melting rate is variable with height, then eq. 
(20) can still be used to derive the degree of 
melting and eqs. (18) and (19) become: 

pfcbw = p~WoF (21) 

p~(1 - ~b)W = &W0(1 - F )  (22) 
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and F = F(z) [see also 15]. Given any functional 
relationship between porosity and melt and solid 
velocities, eqs. (21) and (22) can be solved to give 
the porosity as a function of height. In the sim- 
plest model problem, we have used Darcy's law 
driven solely by the density difference between 
melt and solid with a power law relationship 
between porosity and permeability. For a more 
general set of equations governing the separation 
of melt from solid in multi-dimensions see [12- 
14,16,17]. 

A.2 Equilibrium chemical transport with non-con- 
stant bulk distribution coefficients 

Using eqs. (21) and (22) with eq. (1) and 
rewriting eq. (20) as F =p~WodF/dz, then the 
general equation for the evolution of radiogenic 
elements in a one-dimensional, steady-state col- 
umn where the element maintain chemical equi- 
librium at all times is: 

- c ~  d 
dcfi = D i + (1 - Di)F -~z [ Di + (1 - Di)F ] 

+{[Ai-I[Pf+ +Ps(1 -~l~)Di_l]Cf_l 

--*i[ Pf(~ -}- Ps( 1 - ~b)Di]cf]} 

/{psWo[ Oi + (1 - Di)F]} (23) 

where F, D i, are now functions of position z. 
The set of equations in eq. (23) can be solved for 
c f by the same numerical schemes used for con- 
stant melting rate and partition coefficients (al- 
though in general it is usually numerically more 
stable to solve for U~ = ln(cfi/cf o) than to solve for 
the cf's directly). Note also that if the elements 
are stable (X = 0 for all i), then eq. (23) can be 
solved analytically to produce the equation for 
batch melting (eq. 13) independent  of porosity or 
melt separation. 

A.3 Disequilibrium chemical transport with non- 
constant bulk distribution coefficients 

Equation (1) presumes that the melt and the 
solid matrix re-equilibrate instantly throughout 
the melting column, i.e., the solid interacts with 
all the melt that passes through it. This feature 
results in melt compositions that are equivalent 

to batch melts for stable elements. At the oppo- 
site extreme it is straightforward to derive equa- 
tions for a system where the solid melts to pro- 
duce a melt that is locally in equilibrium with the 
solid; however, the solid does not interact chemi- 
cally with melts that are produced lower in the 
column. Physically this corresponds to melt that 
can segregate into chemically isolated channels or 
veins [see 19]. In this case conservation of mass 
for trace element i must be calculated in both the 
solid and the liquid and the generalization of eq. 
(1) is: 

a 
-~Ps(1 - $)c~ + V "Ps(1 - qb)Vc~ 

r c  s 
- - -  + p s ( 1 -  ~)[/~i_lCS_I--~i cs] (24) 

Di 
0 

 p,4 c'i + v . p,6vc i 

r c  s 

-- Oi + pf~)[t~i_lCf_l- ~ti cf] (25) 

The first term on the right hand side of eqs. (24) 
and (25) is the change in concentration in the 
solid and melt due to the production of a melt in 
local chemical equilibrium with the solid (i.e., an 
instantaneous fractional melt). The second term 
is the balance of radioactive production and de- 
cay in the solid and liquid, respectively. Again, 
for one-dimensional steady-state melting columns, 
eqs. (24) and (25) can be rewritten using eqs. 
(20)-(22) to give: 

dc~ c~(1 - 1/Di) dF 

dz 1 -  F dz 

(1 - 6 )  
"l- [*i_ lcS_I -- Aic~] (26) 

Wo(1 - F )  

de[ ( c S / D , - c  f) dF 

dz F dz 

pf4~ 
+ psWoF [ A i_ lCfi_l - -  Ai cf ] (27) 

Comparing the last term in each of these equa- 
tions to the equations for w and W (eqs. 21 and 
22) shows that elements travel either at the solid 
velocity or at the melt velocity but that in either 
reservoir, the system will tend towards secular 
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equilibrium if unsupported by melting. If F(z) ,  
Di(z) and &(z) are known functions of height, 
eqs. (26) and (27) can be solved numerically for 
the concentration of all elements in the solid and 
liquid as a function of height in the column. Note 
again that for a stable trace element (Ai = "~i 1. 
= 0) with constant bulk partition coefficient Di, 
these equations can be solved analytically to show 
that: 

- (1 - F )  (l/Di-l) (28) 

cfioc~i -F1Jo'FcidF = -ff-Di [ 1 - ( l - F )  |/Di ] (29) 

which are precisely the equations for a fraction- 
ally melted solid and an aggregated fractional 
melt. 

Equations 13 and 28/29 show that, for stable 
elements, there is a one-to-one correspondence 
between the classic equations of batch and frac- 
tional melting and the one-dimensional equilib- 
rium melting columns with melt transport. It 
should be stressed that in either of these calcula- 
tions, a small porosity or the separation of melts 
from solid does not a priori imply that melting is 
fractional. The important parameter  is not the 
physical melt fraction, &, but the volume of melt 
that can equilibrate with the solid (in the dynamic 
melting models, this volume is controlled by &eq)- 
If the solid re-equilibrates with all of the melt 
that passes through it, one-dimensional columns 
will produce small porosity melts with the con- 
centration of a batch melt with degree of melting 
Fma x. If the melt and solid have no interaction 
during transport, the column produces integrated 
fractional melts. This result is a rather deep con- 
sequence of the strict conservation of mass con- 
straints imposed by the restrictions of one dimen- 
sionality and steady-state. In two and three di- 
mensions, additional effects can occur [47,48]. 

A. 4 Approximate solution for the enrichment 
factor Ol i 

One of the principal properties of the equilib- 
rium transport solution is that it shows two differ- 
ent behaviours depending on whether the extrac- 
tion time of the daughter element is slow or fast 

compared to its half-life. To demonstrate that 
this is the expected behaviour of the governing 
equations, it is useful to consider an approximate 
solution to eq. (15) for the enrichment factor for 
23°Th. In the full solution (Figs. 3-5), the effec- 
tive velocities are a function of height in the 
column; however, much of the behaviour of the 
solution can be recovered if we assume that these 
velocities are approximately constant (but not 
equal). If we also note that there is little total 
decay of 23SU during transport then we can set 
a v ~ 1 (Fig. 3c). In this case, eq. (15) can be 
solved analytically to show that at the top of the 
column, the enrichment in thorium over batch 
melting is: 

aTh~  1 - - - -  exp[--AThtTh ] + -  (30) 
tTh tTh  

where t u = d/~eUff and tvh = d/tvh = d / ~  h are 
the average extraction times for uranium and 
thorium, respectively, and d is the depth of the 
melting column 

Therefore,  for extraction times that are long 
compared to the half-life of thorium (Aa-hta- h >> 1), 
the enrichment goes to the ratio of the extraction 
times, tu/tvh = ~e~fh/~f. Examination of eq. (13) 
shows that this ratio is independent of the up- 
welling rate W 0. For long extraction times, it is 
only the top of the column that controls what can 
be measured at the surface. Equation (13) shows 
that, near the top of the column, the ratio of the 
velocities depends only on porosity and ranges 
from 1, when there is no melt separation, to a 
maximum that is the approximately the ratio of 
the partition coefficients Du/DTh. These maxi- 
mum enrichments occur for large degrees of 
melting and porosities much smaller than the 
partition coefficients. This behaviour can be seen 
in Fig. 5. For short extraction times, eq. (30) 
becomes 

aTh ~ 1 +ATh[t U -  tTh ] (31) 

and depends on the difference in extraction time 
between parent and daughter. The difference in 
times depends on the upwelling velocity but is 
independent of q~max for porosities much smaller 
than the partition coefficients. For ~rnax > DTh, 
the difference in extraction times also depends on 
porosity and decreases rapidly as the melt separa- 
tion becomes less significant. Again, this is the 
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behaviour shown in Fig. 5a. The behaviour of 
226Ra is similar to that of 23°Th but the positions 
of the two behavioural regimes are different be- 
cause of the differences in half-life and compati- 
bility. 
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