The LU decomposition in action: The "Fish Farm" problem

Marc Spiegelman (APAM/DEES)

Where

- ullet h_i is the height of water in tank i
- ullet F_i is the flux of water *added* to tank i
- ullet and $f_{i+1/2}=-k(h_{i+1}-h_i)$ is the flux of water *between* tank i and i+1 (note: the flux is a signed quantity)

Point: Each tank is coupled to its two nearest neighbours... This is a very general problem that governs 1-D heat flow, Electric Potential, groundwater flow etc. ($-\frac{d}{dx}k\frac{dh}{dx}=F$)

Nearest neighbour coupling leads to a "Tridiagonal System" $A\mathbf{h}=\mathbf{r}$

Conservation of flux for tank i is

$$f_{i+1/2} - f_{i-1/2} = F_i$$

or

$$-k(h_{i+1} - h_i) + k(h_i - h_{i-1}) = F_i$$

or

$$-h_{i-1} + 2h_i - h_{i+1} = F_i/k = r_i$$

if k is constant

or as a system of equations (with h_1 , h_n held fixed)

$$h_1 = c_1$$

$$-h_1 + 2h_2 - h_3 = r_2$$

$$-h_2 + 2h_3 - h_4 = r_3$$

$$\vdots$$

$$-h_{i-1} + 2h_i - h_{i+1} = r_i$$

$$\vdots$$

$$h_n = c_n$$

or in matrix form as $A\mathbf{h} = \mathbf{r}$ where A is "Tridiagonal"

Note: (this is actually a discrete form of the ODE $-\frac{d^2h}{dx^2}=r$)

11 tanks yield an 11×11 sparse Matrix A

LU decomposition of A

Matlab: [L,U]=lu(A)

Note: The LU decomposition remains sparse for this matrix...why?

Comparison of A to A^{-1}

Matlab: spy(A) vs. spy(inv(A))

Matlab: $h=U\setminus(L\setminus r)$

Solution h and right-hand side r

Solution of LUh = r (random r)

51 tanks: yield a 51×51 sparse Matrix A

Comparison of ${\cal L} U$ to ${\cal A}^{-1}$

Note: LU decomposition takes order N steps to solve $A{\bf h}={\bf r}$ whereas ${\bf h}=A^{-1}{\bf r}$ takes order N^3 to just find A^{-1} and N^2 to multiply $A^{-1}{\bf r}$

Solution of $LU\mathbf{h}=\mathbf{r}$ for N=51

