42 Chapter 2 Solving Linear Equations

2 Solve the triangular system of Problem 1 by back substitution, y before x. Verify that x times (2, 10) plus y times (3, 9) equals (1, 11). If the right side changes to (4, 44), what is the new solution?

3 What multiple of equation 1 should be subtracted from equation 2?

\[2x - 4y = 6 \]
\[-x + 5y = 0. \]

After this elimination step, solve the triangular system. If the right side changes to (−6, 0), what is the new solution?

4 What multiple \(\ell \) of equation 1 should be subtracted from equation 2?

\[ax + by = f \]
\[cx + dy = g. \]

The first pivot is \(a \) (assumed nonzero). Elimination produces what formula for the second pivot? What is \(y \)? The second pivot is missing when \(ad = bc \).

5 Choose a right side which gives no solution and another right side which gives infinitely many solutions. What are two of those solutions?

\[3x + 2y = 10 \]
\[6x + 4y = \]

6 Choose a coefficient \(b \) that makes this system singular. Then choose a right side \(g \) that makes it solvable. Find two solutions in that singular case.

\[2x + by = 16 \]
\[4x + 8y = g. \]

7 For which numbers \(a \) does elimination break down (1) permanently (2) temporarily?

\[ax + 3y = -3 \]
\[4x + 6y = 6. \]

Solve for \(x \) and \(y \) after fixing the second breakdown by a row exchange.

8 For which three numbers \(k \) does elimination break down? Which is fixed by a row exchange? In each case, is the number of solutions 0 or 1 or \(\infty \)?

\[kx + 3y = 6 \]
\[3x + ky = -6. \]
9 What test on \(b_1 \) and \(b_2 \) decides whether these two equations allow a solution? How many solutions will they have? Draw the column picture.

\[3x - 2y = b_1 \]
\[6x - 4y = b_2. \]

10 In the \(xy \) plane, draw the lines \(x + y = 5 \) and \(x + 2y = 6 \) and the equation \(y = _ _ _ \) that comes from elimination. The line \(5x - 4y = c \) will go through the solution of these equations if \(c = _ _ _ \).

Problems 11–20 study elimination on 3 by 3 systems (and possible failure).

11 Reduce this system to upper triangular form by two row operations:

\[
\begin{align*}
2x + 3y + z &= 8 \\
4x + 7y + 5z &= 20 \\
-2y + 2z &= 0.
\end{align*}
\]

Circle the pivots. Solve by back substitution for \(z, y, x \).

12 Apply elimination (circle the pivots) and back substitution to solve

\[
\begin{align*}
2x - 3y &= 3 \\
4x - 5y + z &= 7 \\
2x - y - 3z &= 5.
\end{align*}
\]

List the three row operations: Subtract \(_ _ _ \) times row \(_ _ _ \) from row \(_ _ _ \).

13 Which number \(d \) forces a row exchange, and what is the triangular system (not singular) for that \(d \)? Which \(d \) makes this system singular (no third pivot)?

\[
\begin{align*}
2x + 5y + z &= 0 \\
4x + dy + z &= 2 \\
y - z &= 3.
\end{align*}
\]

14 Which number \(b \) leads later to a row exchange? Which \(b \) leads to a missing pivot? In that singular case find a nonzero solution \(x, y, z \).

\[
\begin{align*}
x + by &= 0 \\
x - 2y - z &= 0 \\
y + z &= 0.
\end{align*}
\]

15 (a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular form and a solution.

(b) Construct a 3 by 3 system that needs a row exchange to keep going, but breaks down later.
23 If you extend Problems 21–22 following the 1, 2, 1 pattern or the −1, 2, −1 pattern, what is the fifth pivot? What is the nth pivot?

24 If elimination leads to these equations, find three possible original matrices A:

\[
\begin{align*}
 x + y + z &= 0 \\
 y + z &= 0 \\
 3z &= 0.
\end{align*}
\]

25 For which two numbers a will elimination fail on $A = \begin{bmatrix} a & 2 \\ a & a \end{bmatrix}$?

26 For which three numbers a will elimination fail to give three pivots?

\[
A = \begin{bmatrix} a & 2 & 3 \\ a & a & 4 \\ a & a & a \end{bmatrix}.
\]

27 Look for a matrix that has row sums 4 and 8, and column sums 2 and s:

Matrix $= \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

\[
\begin{align*}
 a + b &= 4 \\
 a + c &= 2 \\
 c + d &= 8 \\
 b + d &= s
\end{align*}
\]

The four equations are solvable only if $s = \ldots$. Then find two different matrices that have the correct row and column sums. Extra credit: Write down the 4 by 4 system $Ax = b$ with $x = (a, b, c, d)$ and make A triangular by elimination.

28 Elimination in the usual order gives what pivot matrix and what solution to this "lower triangular" system? We are really solving by forward substitution:

\[
\begin{align*}
 3x &= 3 \\
 6x + 2y &= 8 \\
 9x - 2y + z &= 9.
\end{align*}
\]

29 Create a MATLAB command $A(2, :) = \ldots$ for the new row 2, to subtract 3 times row 1 from the existing row 2 if the matrix A is already known.

30 Find experimentally the average first and second and third pivot sizes (use the absolute value) in MATLAB’s $A = \text{rand}(3, 3)$. The average of $\text{abs}(A(1, 1))$ should be 0.5 but I don’t know the others.
Problems 1–15 are about elimination matrices.

1. Write down the 3 by 3 matrices that produce these elimination steps:
 (a) E_{21} subtracts 5 times row 1 from row 2.
 (b) E_{32} subtracts 7 times row 2 from row 3.
 (c) P exchanges rows 1 and 2, then rows 2 and 3.

2. In Problem 1, applying E_{21} and then E_{32} to the column $b = (1, 0, 0)$ gives $E_{32}E_{21}b = \underline{\underline{\text{_____}}}$.
 Applying E_{32} before E_{21} gives $E_{21}E_{32}b = \underline{\underline{\text{_____}}}$.
 When E_{32} comes first, row \underline{\underline{_____}} feels no effect from row \underline{\underline{_____}}.

3. Which three matrices E_{21}, E_{31}, E_{32} put A into triangular form U?

 $$A = \begin{bmatrix}
 1 & 1 & 0 \\
 4 & 6 & 1 \\
 -2 & 2 & 0 \\
 \end{bmatrix}$$
 and $E_{32}E_{31}E_{21}A = U$.

 Multiply those E’s to get one matrix M that does elimination: $MA = U$.

4. Include $b = (1, 0, 0)$ as a fourth column in Problem 3 to produce $[A \ b]$. Carry out the elimination steps on this augmented matrix to solve $Ax = b$.

5. Suppose $a_{33} = 7$ and the third pivot is 5. If you change a_{33} to 11, the third pivot is \underline{\underline{_____}}. If you change a_{33} to \underline{\underline{_____}}, there is no third pivot.

6. If every column of A is a multiple of $(1, 1, 1)$, then Ax is always a multiple of $(1, 1, 1)$. Do a 3 by 3 example. How many pivots are produced by elimination?

7. Suppose E_{31} subtracts 7 times row 1 from row 3. To reverse that step you should \underline{\underline{_____}} 7 times row \underline{\underline{_____}} to row \underline{\underline{_____}}. This “inverse matrix” is $R_{31} = \underline{\underline{_____}}$.

8. Suppose E_{31} subtracts 7 times row 1 from row 3. What matrix R_{31} is changed into I? Then $E_{31}R_{31} = I$ where Problem 7 has $R_{31}E_{31} = I$. Both are true!

9. (a) E_{21} subtracts row 1 from row 2 and then P_{23} exchanges rows 2 and 3. What matrix $M = P_{23}E_{21}$ does both steps at once?
 (b) P_{23} exchanges rows 2 and 3 and then E_{31} subtracts row 1 from row 3. What matrix $M = E_{31}P_{23}$ does both steps at once? Explain why the M’s are the same but the E’s are different.

10. (a) What 3 by 3 matrix E_{13} will add row 3 to row 1?
 (b) What matrix adds row 1 to row 3 and at the same time row 3 to row 1?
 (c) What matrix adds row 1 to row 3 and then adds row 3 to row 1?
Create a matrix that has \(a_{11} = a_{22} = a_{33} = 1 \) but elimination produces two negative pivots without row exchanges. (The first pivot is 1.)

Multiply these matrices:
\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 1 \\
1 & 4 & 0
\end{bmatrix}.
\]

Explain these facts. If the third column of \(B \) is all zero, the third column of \(EB \) is all zero (for any \(E \)). If the third row of \(B \) is all zero, the third row of \(EB \) might not be zero.

This 4 by 4 matrix will need elimination matrices \(E_{21} \) and \(E_{32} \) and \(E_{43} \). What are those matrices?

\[
A =
\begin{bmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{bmatrix}
\]

Write down the 3 by 3 matrix that has \(a_{ij} = 2i - 3j \). This matrix has \(a_{32} = 0 \), but elimination still needs \(E_{32} \) to produce a zero in the 3, 2 position. Which previous step destroys the original zero and what is \(E_{32} \)?

Problems 16–23 are about creating and multiplying matrices.

Write these ancient problems in a 2 by 2 matrix form \(Ax = b \) and solve them:

(a) \(X \) is twice as old as \(Y \) and their ages add to 33.

(b) \((x, y) = (2, 5) \) and \((3, 7) \) lie on the line \(y = mx + c \). Find \(m \) and \(c \).

The parabola \(y = a + bx + cx^2 \) goes through the points \((x, y) = (1, 4) \) and \((2, 8) \) and \((3, 14) \). Find and solve a matrix equation for the unknowns \((a, b, c) \).

Multiply these matrices in the orders \(EF \) and \(FE \) and \(E^2 \):

\[
E =
\begin{bmatrix}
1 & 0 & 0 \\
a & 1 & 0 \\
b & 0 & 1
\end{bmatrix}
F =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

Also compute \(E^2 = EE \) and \(F^3 = FFF \).

Multiply these row exchange matrices in the orders \(PQ \) and \(QP \) and \(P^2 \):

\[
P =
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
Q =
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}.
\]

Find four matrices whose squares are \(M^2 = I \).
28 If \(AB = I \) and \(BC = I \) use the associative law to prove \(A = C \).

29 Choose two matrices \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) with \(\det M = ad - bc = 1 \) and with \(a, b, c, d \) positive integers. Prove that every such matrix \(M \) either has

EITHER row 1 \(\leq \) row 2 OR row 2 \(\leq \) row 1.

Subtraction makes \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} M \) or \(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} M \) nonnegative but smaller than \(M \). If you continue and reach \(I \), write your \(M \)'s as products of the inverses \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) and \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \).

30 Find the triangular matrix \(E \) that reduces "Pascal's matrix" to a smaller Pascal:

\[
E = \begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{bmatrix}.
\]

Challenge question: Which \(M \) (from several \(E \)'s) reduces Pascal all the way to \(I \)?

RULES FOR MATRIX OPERATIONS \(\mathbf{2.4} \)

I will start with basic facts. A matrix is a rectangular array of numbers or "entries." When \(A \) has \(m \) rows and \(n \) columns, it is an "\(m \) by \(n \)" matrix. Matrices can be added if their shapes are the same. They can be multiplied by any constant \(c \). Here are examples of \(A + B \) and \(2A \), for 3 by 2 matrices:

\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
0 & 0
\end{bmatrix} + \begin{bmatrix}
2 & 2 \\
4 & 4 \\
9 & 9
\end{bmatrix} = \begin{bmatrix}
3 & 4 \\
7 & 8 \\
9 & 9
\end{bmatrix} \quad \text{and} \quad 2 \begin{bmatrix}
1 & 2 \\
3 & 4 \\
0 & 0
\end{bmatrix} = \begin{bmatrix}
2 & 4 \\
6 & 8 \\
0 & 0
\end{bmatrix}.
\]

Matrices are added exactly as vectors are—one entry at a time. We could even regard a column vector as a matrix with only one column (so \(n = 1 \)). The matrix \(-A\) comes from multiplication by \(c = -1 \) (reversing all the signs). Adding \(A \) to \(-A\) leaves the zero matrix, with all entries zero.

The 3 by 2 zero matrix is different from the 2 by 3 zero matrix. Even zero has a shape (several shapes) for matrices. All this is only common sense.

The entry in row \(i \) and column \(j \) is called \(a_{ij} \) or \(A(i, j) \). The \(n \) entries along the first row are \(a_{11}, a_{12}, \ldots, a_{1n} \). The lower left entry in the matrix is \(a_{n1} \) and the lower right is \(a_{nn} \). The row number \(i \) goes from 1 to \(m \). The column number \(j \) goes from 1 to \(n \).

Matrix addition is easy. The serious question is matrix multiplication. When can we multiply \(A \) times \(B \), and what is the product \(AB \)? We cannot multiply when \(A \) and \(B \) are 3 by 2. They don't pass the following test:

To multiply \(AB \): If \(A \) has \(n \) columns, \(B \) must have \(n \) rows.

If \(A \) has two columns, \(B \) must have two rows. When \(A \) is 3 by 2, the matrix \(B \) can be 2 by 1 (a vector) or 2 by 2 (square) or 2 by 20. Every column of \(B \) is ready to be multiplied by \(A \). Then \(AB \) is 3 by 1 (a vector) or 3 by 2 or 3 by 20.
those edges \((i \text{ to } k, k \text{ to } j)\) is missing. So the sum of \(a_{ik}a_{kj}\) is the number of 2-step paths leaving \(i\) and entering \(j\). Matrix multiplication is just right for this count.

The 3-step paths are counted by \(A^3\); we look at paths to node 2:

\[
A^3 = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}
\]

counts the paths with three steps:

\[
\begin{array}{c|c|c}
\text{Path} & 1 \text{ to } 1 & 1 \text{ to } 2, 2 \text{ to } 1, 1 \text{ to } 2 \\
\hline
\text{Steps} & 1 \text{ to } 1 & 1 \text{ to } 2, 2 \text{ to } 1, 1 \text{ to } 2 \\
\end{array}
\]

These \(A^k\) contain the Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, \ldots coming in Section 6.2. Fibonacci's rule \(F_{k+2} = F_{k+1} + F_k\) (as in 13 = 8 + 5) shows up in \((A)(A^k) = A^{k+1}:

\[
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{k+1} & F_k \\ F_k & F_{k-1} \end{bmatrix} = \begin{bmatrix} F_{k+2} & F_{k+1} \\ F_{k+1} & F_k \end{bmatrix} = A^{k+1}.
\]

There are 13 six-step paths from node 1 to node 1, but I can't find them all.

\(A^k\) also counts words. A path like 1 to 1 to 2 to 1 corresponds to the number 1121 or the word \(aaba\). The number 2 (the letter \(b\)) is not allowed to repeat because the graph has no edge from node 2 to node 2. The \(i, j\) entry of \(A^k\) counts the allowed numbers (or words) of length \(k+1\) that start with the \(i\)th letter and end with the \(j\)th.

The second graph also has diameter 2; \(A^2\) has no zeros.

Problem Set 2.4

Problems 1–17 are about the laws of matrix multiplication.

1. \(A\) is 3 by 5, \(B\) is 5 by 3, \(C\) is 5 by 1, and \(D\) is 3 by 1. All entries are 1. Which of these matrix operations are allowed, and what are the results?

\[
BA \quad AB \quad ABD \quad DBA \quad A(B + C).
\]

2. What rows or columns or matrices do you multiply to find

(a) the third column of \(AB\)?

(b) the first row of \(AB\)?

(c) the entry in row 3, column 4 of \(AB\)?

(d) the entry in row 1, column 1 of \(CDE\)?

3. Add \(AB\) to \(AC\) and compare with \(A(B + C)\):

\[
A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}.
\]

4. In Problem 3, multiply \(A\) times \(BC\). Then multiply \(AB\) times \(C\).

5. Compute \(A^2\) and \(A^3\). Make a prediction for \(A^5\) and \(A^n\):

\[
A = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \quad A = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}.
\]
2.4 Rules for Matrix Operations

(c) \(BA \) has rows 1 and 3 of \(A \) reversed and row 2 unchanged.

(d) All rows of \(BA \) are the same as row 1 of \(A \).

12 Suppose \(AB = BA \) and \(AC = CA \) for these two particular matrices \(B \) and \(C \):

\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{commutes with} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.
\]

Prove that \(a = d \) and \(b = c = 0 \). Then \(A \) is a multiple of \(I \). The only matrices that commute with \(B \) and \(C \) and all other 2 by 2 matrices are \(A = \) multiple of \(I \).

13 Which of the following matrices are guaranteed to equal \((A - B)^2\): \(A^2 - B^2 \), \((B - A)^2\), \(A^2 - 2AB + B^2 \), \(A(A - B) - B(A - B) \), \(A^2 - AB - BA + B^2 \)?

14 True or false:

(a) If \(A^2 \) is defined then \(A \) is necessarily square.

(b) If \(AB \) and \(BA \) are defined then \(A \) and \(B \) are square.

(c) If \(AB \) and \(BA \) are defined then \(AB \) and \(BA \) are square.

(d) If \(AB = B \) then \(A = I \).

15 If \(A \) is \(m \) by \(n \), how many separate multiplications are involved when

(a) \(A \) multiplies a vector \(x \) with \(n \) components?

(b) \(A \) multiplies an \(n \) by \(p \) matrix \(B \)?

(c) \(A \) multiplies itself to produce \(A^2 \)? Here \(m = n \).

16 To prove that \((AB)C = A(BC)\), use the column vectors \(b_1, \ldots, b_n \) of \(B \). First suppose that \(C \) has only one column \(c \) with entries \(c_1, \ldots, c_n \):

\(AB \) has columns \(Ab_1, \ldots, Ab_n \) and \(Bc \) has one column \(c_1b_1 + \cdots + c_nb_n \).

Then \((AB)c = c_1Ab_1 + \cdots + c_nb_n\) equals \(A(c_1b_1 + \cdots + c_nb_n) = A(BC)\).

Linearity gives equality of those two sums, and \((AB)c = A(BC)\). The same is true for all other \(c \) of \(C \). Therefore \((AB)C = A(BC)\).

17 For \(A = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 6 \end{bmatrix} \), compute these answers and nothing more:

(a) column 2 of \(AB \)

(b) row 2 of \(AB \)

(c) row 2 of \(AA = A^2 \)

(d) row 2 of \(AAA = A^3 \).

Problems 18–20 use \(a_{ij} \) for the entry in row \(i \), column \(j \) of \(A \).

18 Write down the 3 by 3 matrix \(A \) whose entries are