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Here is a list of subjects thatI think we’ve covered in class (your mileage may vary). If
you understand and can do the basic problems in this guide youshould be in very good shape.
This guide is probably over-thorough. The test itself will have about 6-7 questions covering the
whole course but emphasizing the material after the midterm(which implicitly includes all of the
previous material). I’ll try to avoid anythingoverly tricky. This initial version may have some
mistakes. . . Keep an eye on the version number.

1 Chapter 2: Solution ofAx = b for square A

Elimination and the LU decomposition For any square matrixA know how to factorA into
PA = LU whereP is a permutation matrix,L is a lower triangular matrix of multipli-
ers lij with 1’s on the diagonal andU is a an upper triangular matrix with Pivots on the
diagonal.

An example of a matrix that needs a row exchange is




1 2 3
2 4 3
1 0 0



 (1)

as the second row will definitely cause a zero in the 2,2 position after elimination. There
is no uniquepermutation required, however and you can always get creative as long as it
works (i.e. doesn’t generate another zero in a pivot position). For example one possible
permutation is to move row 3 to row 1, row 1 to row 2 and row 2 to row 3 i.e.

PA =





0 0 1
1 0 0
0 1 0



A =





1 0 0
1 2 3
2 4 3



 (2)

1
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which is now readily factored to

PA = LU =





1 0 0
1 1 0
2 2 1









1 0 0
0 2 3
0 0 −3



 (3)

Solution of SquareAx = b Also be able to solve the basic square problemAx = b by elimi-
nation by forming the augmented matrix[A b], eliminating to[U c] then solving by back-
substitution.

Find A−1 by Gauss Jordan Elimination You may need this to do eigenvalue problems. First
form the augmented matrix[A I] whereI is the identity matrix, then proceed to eliminate
the entire matrix downwards, then upwards, then divide by the pivots to end up with[I A−1].

A−1 for a 2 by 2 matrix The formula for the inverse of a general2×2 matrix is useful to remem-
ber, particularly for eigenproblems.

A =

[

a b
c d

]

A−1 =
1

ad − bc

[

d −b
−c a

]

(4)

Product rules for inverse (and transpose)If matricesA andB arebothinvertible, then(AB)−1 =
B−1A−1 (A andB must both be square to be invertible). Product rule for transpose looks
the same althoughA andB do not have to be square or invertible, i.e(AB)T = BT AT .

2 Chapter 3: Solutions of generalm × n Ax = b and the four
subspaces

General solution ofAx = b For a generalm × n matrix, know how to find all solutions of the
linear systemAx = b. The general solution is to form the augmented matrix[A b] and use
Gauss-Jordan elimination to reduce it toRow Reduced Echelon Form[R d]. Then

1. Identify the pivot columns and the free columns

2. Determine the rank of the matrixr (number of pivot columns)

3. if r < n (there are free columns), find the null spaceN(A) by finding the combination
of pivot columns that cancel each free column.

4. Find a particular solutionxp as the combination of pivot columns ofR that combine to
form the right hand sided. (Note: the particular solutionxp is not necessarily entirely
in the Row space ofA (i.e. see SVD).

5. If d is not in the column space ofR. The problem hasNO solution.
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6. If A has a non-zero null space then there are aninfinite number of solutionsx = xp+xN

wherexN = Nc is in the Null space spanned by the columns of the matrixN .

an Example: if the row reduced echelon form ofA is

R =





1 −3 0 2
0 0 1 −1
0 0 0 0



 with d =





2
−3

a



 (5)

Then the matrix hasrank r = 2. Columns 1 and 3 are pivot columns, 2 and 4 are free
columns. The dimension of the null space isn − 4 = 2 with a basis forming the columns of

N =









3 −2
1 0
0 1
0 1









(6)

if a 6= 0 this problem hasno solution. Ifa = 0 then it has the general solution

x =









2
0

−3
0









+ Nc (7)

wherec = (c1, c2) is any real vector inR2.

Independence, Basis and dimensionUnderstand how to determine if a set of vectors arelinearly
independent(i.e. if the vectors form columns of a matrixA, then they are linearly inde-
pendent if the only solution toAx = 0 is x = 0). A Basisfor a vector space is alinearly
independentset of vectors thatspanthe space (i.e. any linear combination of the basis vec-
tors fill the entire space). Thedimensionof a subspace is the number of basis vectors required
to describe it.

• Any space can have an infinite number of bases (but they all have the same dimension)

• Given a vector space of dimensionn with a particular basisv1, v2, . . . , vn, however,
any vectorx in the space can beuniquelydecomposed into a linear combination of the
basis vectors.

The 4 fundamental subspaces ofA Everym×n matrixA has associated with it four fundamen-
tal subspaces

1. The Column SpaceC(A) which is the linear combination of the columns ofA.
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2. The Row SpaceC(AT ) which is the linear combination of rows ofA (i.e. columns of
AT .)

3. The Null SpaceN(A). The vector space of solutionsx to Ax = 0

4. The Left Null SpaceN(AT ). The vector space of solutionsx to AT x = 0

Some important factoids about the 4 subspaces

• The row space and thenull space are orthogonal to each other and together form a
basis forRn

• The column space and theleft null space are orthogonal to each other and together
form a basis forRm

• The Column space and the row space both have dimensionr (wherer is the rank ofA).
dim(N(A)) = n − r, dim(N(AT )) = m − r.

• Ax takes vectors in the row space and maps them to the column space and takes vector
in the Null space and maps them to0.

• Only for invertible matrices doesA−1b map the column space back to the row space
(But see the SVD).

Important Know how to find the dimensions and bases of the 4 subspaces from any matrixA and
its row reduced echelon formR (for the left null space, the easiest way to find it is to find
the null space ofAT ). Also know how to find orthogonal bases for the 4 subspaces from the
SVD.
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3 Chapter 4: Projections, Least Squares Problems, Gram-Schmidt
Orthogonalization and theQR decomposition

You should know how to do the following things. . .

Projection onto a line If a vectora forms the basis for a line (ca), then the projection of another
vectorb onto that line is given by

p = ax̂ (8)

where

x̂ =
aT b
aT a

(9)

We can also write the projection as

p =

(

aaT

aT a

)

b = Pb (10)

whereP is the projection matrix that only depends ona. Note the projection matrix is
singular and just picks out the component ofb that is parallel toa. P project the part ofb
that is perpendicular toa to zero (i.e. that part is in the Null space ofP )

Projection onto a subspaceA line is just a 1-D subspace spanned by a single vector. We can
extend the idea of projection onto an dimensional subspace described by a larger number
of basis vectorsa1, a2, . . . , an. If we form a matrixA whose columns are the basis vectors,
then the projection of a vectorb onto the column space ofA is the point inA that is closest
to b (i.e. minimizes the length of the error vectore = b − p). The projection is

p = Ax̂ (11)

wherex̂ is the solution of
AT Ax̂ = AT b (12)

This has auniquesolution if A is full column rank (i.e.AT A is invertible). IfA has a null-
space it is not unique but there is always a shortest solutiongiven by the pseudo-inverse (see
the last section). Equations (11)–(12) can also be written in terms of a projection matrix

p = Pb = [A(AT A)−1AT ]b (13)

(if A is full column rank, i.e.AT A is invertible. IfA is not full column rankP = AA+ where
A+ is the pseudo-inverse). Note:Most projection matrices are singular! i.e. they will have
a null spacePx = 0 wheneverx is orthogonal to the column space ofA (or whenever there
is a left null spaceAT = 0.) However, ifA is square and invertible thenP = I.
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Application of projections #1: Least Squares solutionsWe can use the idea of projections to
solveleast squares problemswhereAx = b doesn’t have a solution becauseb does not lie
in the column space ofA. The best solution̂x, which minimizes the errore = Ax̂ − b is just
the solution of

AT Ax̂ = AT b (14)

Example. . . fitting of a straight line to data Suppose you wanted to fit a straight line

y = c1 + c2x (15)

through a set of 4(x, y) points(−3, 1), (−1, 1), (0, 0), and(2, 4). Each pointi is trying to
satisfy an equationyi = c1 + c2xi or all 4 points form the system of equations









y1

y2

y3

y4









=









1 x1

1 x2

1 x3

1 x4









[

c1

c2

]

(16)

or
y = Ac (17)

For the specific points herey = (1, 1, 0, 4) and

A =









1 −3
1 −1
1 0
1 2









(18)

To solve for the best fitting parametersc1, c2. Just solve the least squares problemAT Ac =
AT y or

[

4 −2
−2 14

][

c1

c2

]

=

[

6
4

]

(19)

by elimination (and then show that the error is in the left null space ofA). Also know how
to solve in general for best fit quadratic (or general polynomials) of form

y = c1 + c2x + c3x
2 (20)

Most generally, if you want to find the least-squares fit of function as a linear combination
of more general functions (e.g.sin andcos) such as

y = c1f1(x) + c2f2(x) + c3f3(x) (21)



E3101: Study Guide 2004 7

through points(x1, y1), (x2, y2),. . . ,(xn, yn) you need to find the least-squares solution of
Ac = y that looks like











f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)

...
...

...
f1(xn) f2(xn) f3(xn)















c1

c2

c3



 =











y1

y2

...
yn











(22)

Application of Projections #2: Gram-Schmidt orthogonalization Also know how to take an ar-
bitrary basis for a vector space and find an orthonormal basisfor it using Gram-Schmidt
orthogonalization. I.e. given a set of basis vectorsa1, a2, . . . , an find an orthonormal set of
vectorsq1, q2, . . . , qn that span the same space and have the property that

qT
i qj =

{

1 i = j
0 i 6= j

(23)

i.e. if thea’s form the column space of a matrixA, find a matrixQ whose columns are the
q’s and is orthonormal such thatQT Q = I.

The basic algorithm isGram-Schmidt Orthogonalization, which is a process of sequential
projections that effectively straighten out the vectors one-by-one. In short form, the first 3
steps are

q1 =
a1

||a1||
(24)

b2 = a2 − (qT
1 a2)q1 q2 =

b2

||b2||
(25)

b3 = a3 − (qT
1 a3)q1 − (qT

2 a3)q2 q3 =
b3

||b3||
(26)

Application #3: the QR decomposition and least squares solutionsGiven Gram-Schmidt to cal-
culateQ from A you can find theQR factorizationA = QR simply by calculating the
upper triangular matrixR = QT A (becauseQT Q = I). Then, the least squares problem
AT Ax̂ = AT b becomesRx̂ = QT b which can be solved quickly for̂x by back substitution.

Some AdditionalQ matrix Properties

• QT Q = I for all m × n Q matrices

• For square matrices onlyQT = Q−1 and thereforeQQT = I

• For non-square matrices,P = QQT is the projection matrix onto the column space of
Q.
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• If A = QR thenQQT is also the projection matrix onto the columns space ofA.

• Multiplication byQ matrices doesn’t change the length of vectors, i.e.||Qx|| = ||x||.
• Transformations byQ matrices preserve dot products. i.e. ifx′ = Qx andy′ = Qy then

(x′)T y′ = xT QT Qy = xT y

• Rotation, reflection and permutation matrices are all examples ofQ matrices.

4 Chapter 5: Determinants

The determinant of aSquarematrixA (writtendet(A) or |A|) is a single number formed by combi-
nations of all the elements ofA. The determinant has the following useful formulas and properties

• the determinant of a2 × 2 matrix

A =

[

a b
c d

]

(27)

is |A| = ad − bc

• The determinant of ann × n matrix can be determined by theCofactor formulaalong any
row or column (see Strang 222–224).

• The determinant of ann × n matrix can also be found by first eliminatingA to its upper
triangular formU , the taking theproduct of the pivots. This is probably the fastest way for
larger matrices.

• Important! the determinant of a singular matrix is 0. (i.e. ifAx = 0 for somex 6= 0 then
det(A) = 0

• the determinant of the identity matrix is 1 (det(I) = 1)

• the determinant changes sign with a single row (or column) exchange

• the determinant is a linear function of each row separately (see Strang 209)

• If 2 rows (or columns) of a matrixA are the same,det(A) = 0

• Elimination (without row exchanges) does not change the determinant

• Product Rule (very important ) det(AB) = det(A) det(B)

• if PA = LU thendet(A) = det(P ) det(U) wheredet(P ) = ±1 depending on whether the
permutation matrix has an even or odd number of row exchangesanddet(U) is the product
of the pivots!
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• det A−1 = 1/ det(A)

• det AT = det A

• det (cA) = cn det A

• det A = the product of the pivots (= the product of the eigenvalues ofA).

• Useful! The determinant of a triangular matrix is just the product ofthe diagonal terms.

• The main application of the determinant is finding Eigenvalues by solvingdet(A− λI) = 0
for n eigenvaluesλ.

5 Chapter 6: Eigenproblems and applications

Eigenvalue, Eigenvector problems are solutions of the equations

Ax = λx (28)

whereA is asquaren × n matrix. Equation (28) is slightly deceptive as it is actually an equation
for n eigenvalues and eigenvectors.

Basic recipe for finding eigenvalues and eigenvectors

1. Find all eigenvaluesby finding then roots of the characteristic equation given by
det(A − λI) = 0 (i.e. find then λ’s that makeA − λI singular.)

2. Find eacheigenvector. For each eigenvalueλi find the special solutions (i.e. Null
space) of the matrixA − λiI

An example: find the eigenvalues and eigenvectors of the2 × 2 singular matrix

A =

[

1 2
3 6

]

(29)

1. det(A − λI) = 0 implies that(1 − λ)(6 − λ) − 6 = λ2 − 7λ + (6 − 6) = 0 or λ1 = 0
andλ2 = 7 (the order of the eigenvalues is arbitrary). ClearlyA is a singular matrix.

2. The first eigenvector is the special solution of the null space ofA − 0I (i.e. find the
Null space ofA), Either by inspection or by reducing to row reduced echelonform, we
find x1 = (−2, 1).
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3. The second eigenvector is in the null space of

A − 7I =

[

−6 2
3 −1

]

(30)

which is (hopefully clearly)x2 = (1, 3) (i.e. the first column plus three times the second
column ofA − 7I is (0,0).

Useful checks for eigenvalues

1. thesum of the eigenvalues is equal to thetrace of A (the sum of the diagonal terms of
A). (i.e. Tr(A) =

∑n

i=1
λi)

2. Theproduct of the eigenvalues is equal to thedeterminant of A (i.e. det(A) = Πn
i=1λi

Eigenvectors and Eigenvalues of a general2 × 2 matrix This shows up enough time to be worth
remembering now and again (but always know how to derive it).

GivenA =

[

a b
c d

]

, the eigenvalues are given by

λ =
Tr(A) ±

√

Tr(A)2 − 4 det(A)

2

which are just the roots of
λ2 − Tr(A)λ + det(A) = 0

Givenλ1 andλ2, the two eigenvectors can be found with either

x1 =

[

b
λ1 − a

]

x2 =

[

b
λ2 − a

]

or

x1 =

[

λ1 − d
c

]

x2 =

[

λ2 − d
c

]

(if you do a row swap on(A − λI) before elimination).

Diagonalizing a matrix Once we have alln eigenvectors and eigenvalues ofA we can put them
into two matricesS andΛ, whereS is theeigenvectormatrix whose columns arex1, x2, . . . , xn

andΛ is a diagonalEigenvaluematrix whose diagonal entries are the corresponding eigen-
valuesλ1, λ2, . . . , λn. With these definitions we can always write

AS = SΛ (31)
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If S−1 exists, we can diagonalizeA by

Λ = S−1AS (32)

or factorA into
A = SΛS−1 (33)

Rules for diagonalization

• A matrix can only be diagonalized if there aren independent eigenvectors (i.e.S is not
singular)

• If all the eigenvalues aredifferent then the eigenvectors are independent andA can be
diagonalized.

• Repeated eigenvaluesmightprevent diagonalization (but not always)

• Repeated eigenvectors alwaysprevent diagonalization

Symmetric Matrices A = AT In the special case thatA is symmetric (A = AT ) then the follow-
ing is always true

• All the eigenvalues ofA are real.

• All the eigenvectors orA are orthogonal (and can be chosen orthonormal)

• All symmetric matrices can be diagonalized/factored as

A = QΛQT (34)

whereQ is the eigenvector matrix (now chosen to be orthonormal).

Positive Definite Matrices For the special case of square symmetric matrices the special case
where all theλ’s are positive is calledpositive definite. If λ >= 0, the matrix is said to be
semi-definite. A matrix will be positive definite if

1. All the pivots are positive

2. The numberxT Ax > 0 for all vectorsx 6= 0

The two symmetric matricesAT A andAAT are always at least semi-definite.

Applications of Diagonalization #1: Powers of matrices andIterative maps Using the diago-
nalization theorem it is easy to show that thenth power of a diagonalizable matrixA is
just

An = SΛnS−1 (35)
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this is useful for problems with iterative maps (e.g. the Fibonacci numbers) where a sequence
of vectors is produced recursively by

xn = Axn−1 (36)

which can be unrolled to show that

xn = Anx0 = SΛnS−1x0 (37)

Application #2: dynamical systemsEigenvectors and Eigenvalues are also very useful for solv-
ing dynamical systems such as

du
dt

= Au (38)

Again, by decomposingu into its components in each direction of the eigenvectors (i.e.

u = Sy (39)

or y = S−1u, we can transform Eq. (38) into

dy
dt

= Λy (40)

which has the simple answer
y(t) = eΛty0 (41)

where

eΛt =







eλ1t

. . .
eλnt






(42)

is a diagonal matrix, the matrix exponential ofΛ. Transforming back into the standard basis
using Eq. (39) gives

u(t) = SeΛtS−1u0 = eAtu0 (43)

where

eAt = SeΛtS−1 = I + At +
1

2!
(At)2 +

1

3!
(At)3 . . . (44)

is the matrix exponential. An equivalent, but perhaps better way to write the solution (Eq.
43) is as

u(t) = c1e
λ1tx1 + c2e

λ2tx2 + . . . + cneλntxn (45)

where theλi andxi are each eigenvalue/eigenvector pair andci are the components ofc =
S−1u0 which is just the decomposition of the initial condition into the basis described by the
eigenvectors.
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Finally! the SVD The singular value decomposition (SVD) is another factorization of any general
m× n matrixA into twoorthogonal matrices and a diagonal matrix ofsingularvalues. The
SVD of A is written

A = UΣV T (46)

whereU is orthogonalm × m (UT U = I) andV is orthogonaln × n (V T V = I) and

Σ =







σ1

. . .
σn






(47)

is a diagonal matrix1 of singular valuesσ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

Some important properties of the SVD

• The columns ofV are the eigenvectors ofAT A with eigenvaluesσ2
i . i.e. (for squareA)

AT A = V Σ2V T (48)

or AT Avi = σ2
i vi

• The columns ofU are the eigenvectors ofAAT also with eigenvaluesσ2
i

• If matrix A has rankr. The firstr columns ofV form an orthogonal basis for theRow
Spaceof A, C(AT ).

• the lastn − r columns form a basis for theNull Spaceof A, N(A) (and the lastn − r
σi’s will be zero.)

• The firstr columns ofU are a basis for theColumn Space, C(A)

• The lastm − r columns ofU are a basis for theLeft Null SpaceN(AT ).

A recipe for finding the SVD

1. Form the symmetric matrixAT A and find its eigenvaluesλi.

2. Sort the eigenvalues from largest to smallest such thatλ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 and
with this ordering factorAT A into AT A = QΛQT whereΛ is a diagonal matrix of
sortedeigenvalues andQ is a square orthogonal matrix of the corresponding eigenvec-
tors.

3. ThenV = Q andΣ =
√

Λ (i.e. σi =
√

λi)

1Well close enough. IfA is square,Σ is diagonal, otherwise it’s as diagonal as anm × n matrix can get.
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4. For allσi > 0 (i.e. i = 1 to r) find

ui =
Avi

σi

(which should automatically be unit vectors)

5. If A has a left null space, there will be an additionalm− r vectorsui for i = r + 1, m.
For these just find an orthonormal basis for the left null space of A (i.e. findN(AT )
then use Gram-Schmidt to orthogonalize).

Application of the SVD: Least squares and the pseudo inverseGiven a singular value decom-
position for an invertible matrix

A = UΣV T (49)

the inverse ofA is easily found to be

A−1 = V Σ−1UT (50)

where

Σ−1 =







1/σ1

. . .
1/σn






(51)

However, ifA is singular thenA−1 doesn’t exist (because ifA is singular, at least one of the
σi = 0 and1/σi → ∞. However it is easy to create thePseudo-inverse

A+ = V Σ+UT (52)

where

Σ+ =



















1/σ1

. . .
1/σr

0
. . .

0



















(53)

i.e. the diagonal is simply1/σi wherever that is defined and zero wherever it isn’t. The best
least squares solution for any problemAx = b is then

x+ = A+b (54)

In terms of the 4 subspaces,AA+b is the projection ofb onto the column space andA+Ax
is the projection ofx onto the row space.
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6 Summary

Okay, here is a quick list of things to know

• Elimination,LU decomposition in all it’s forms and solving squareAx = b for squareA

• SolvingAx = b for generalm × n A. (row reduced echelon form)

• Diagnosing the rank ofA and the dimensions and bases for the four subspaces

• Projections onto lines and subspaces

• How to solve Least Squares Problems

• How to find orthogonal bases by Gram-Schmidt and factorizingA = QR

• Properties ofQ matrices (and other special matrices such as elimination matrices, permuta-
tion, rotation, projection etc.)

• How to find the determinant of a matrix (and the properties of the determinant)

• How to find eigenvalues and eigenvectors of a matrix (and use tricks like the trace and deter-
minant to check things)

• How to diagonalize a matrix and know when it’s not possible

• Recognize the special properties of symmetric matrices

• Take powers of matrix and use the diagonalization theorem tosolve dynamical systems.

• Find the SVD of a general matrix and use it to find the pseudo-inverse for singular least-
squares problems

• Know various intriguing bits of Linear algebra trivia that help you do things faster.

7 P.S.

That’s it for now...watch this space for anything new and/orcorrections. if you have any questions
come and see me in office hours or send me e-mail at mspieg@ldeo.columbia.edu to set up an
appointment. Good luck and relax.


