E3101: A study guide and review, Version 1.5

Marc Spiegelman

December 7, 2004

Here is a list of subjects thdtthink we've covered in class (your mileage may vary). If
you understand and can do the basic problems in this guideslyould be in very good shape.
This guide is probably over-thorough. The test itself wdlvike about 6-7 questions covering the
whole course but emphasizing the material after the mid{arich implicitly includes all of the
previous material). I'll try to avoid anythingverly tricky. This initial version may have some
mistakes. .. Keep an eye on the version number.

1 Chapter 2: Solution of Ax = b for square A

Elimination and the LU decomposition For any square matrixl know how to factorA into
PA = LU where P is a permutation matrix[ is a lower triangular matrix of multipli-
ersl;; with 1's on the diagonal an@ is a an upper triangular matrix with Pivots on the
diagonal.

An example of a matrix that needs a row exchange is

1
2 (1)
1

as the second row will definitely cause a zero in the 2,2 mséifter elimination. There

iS no uniquepermutation required, however and you can always get geeas long as it

works (i.e. doesn’t generate another zero in a pivot poyitid-or example one possible
permutation is to move row 3 to row 1, row 1 to row 2 and row 2 to Bi.e.

0 1 1
PA= 00|A=]1 )
10 2

O =N
S W W

S = O
= N O
w w o
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0 1
0 0
1 0

Solution of Square Ax = b Also be able to solve the basic square probldm = b by elimi-
nation by forming the augmented matfizx b], eliminating to[U c| then solving by back-
substitution.

which is now readily factored to

O —
)
oo

0
3 3)

PA=LU =
-3

Find A~! by Gauss Jordan Elimination You may need this to do eigenvalue problems. First
form the augmented matri¥l /| where! is the identity matrix, then proceed to eliminate
the entire matrix downwards, then upwards, then divide bypitiots to end up witfy' A~1].

A~'for a2 by 2 matrix The formula for the inverse of a genepak 2 matrix is useful to remem-
ber, particularly for eigenproblems.

D R L) I

c d Tad—bc| —c a

Product rules for inverse (and transpose)If matricesA andB arebothinvertible, then AB) ! =
B~1A~! (A and B must both be square to be invertible). Product rule for sass looks
the same althougH and B do not have to be square or invertible, (4B)" = BT AT.

2 Chapter 3: Solutions of generaln x n Ax = b and the four
subspaces

General solution of Ax = b For a generaln x n matrix, know how to find all solutions of the
linear systemdx = b. The general solution is to form the augmented matdixb] and use
Gauss-Jordan elimination to reduce iRow Reduced Echelon ForfiR d]. Then

1. Identify the pivot columns and the free columns

2. Determine the rank of the matrix(number of pivot columns)

3. if r < n (there are free columns), find the null spd¢éA) by finding the combination
of pivot columns that cancel each free column.

4. Find a particular solutior, as the combination of pivot columns &fthat combine to
form the right hand sid€. (Note: the particular solutior, is not necessarily entirely
in the Row space ofl (i.e. see SVD).

5. If dis not in the column space @t. The problem haBlO solution.
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6. If Ahasanon-zero null space then there armfainite number of solutiong = Xx,+Xy
wherexy = Ncis in the Null space spanned by the columns of the maltrix

an Example: if the row reduced echelon formbfis

1 =30 2 2
R=l0 01 -1 with d=| -3 (5)
0 00 0 a

Then the matrix hasank » = 2. Columns 1 and 3 are pivot columns, 2 and 4 are free
columns. The dimension of the null spaceiis- 4 = 2 with a basis forming the columns of

3 -2
1 0

N = 01 (6)
0 1

if a # 0 this problem haso solution. Ifa = 0 then it has the general solution

2
0

X=1 _4 + Nc (7
0

wherec = (cy, ;) is any real vector iR,

Independence, Basis and dimensiotunderstand how to determine if a set of vectorsliswearly
independen(i.e. if the vectors form columns of a matri%, then they are linearly inde-
pendent if the only solution talx = 0is x = 0). A Basisfor a vector space is nearly
independenset of vectors thaspanthe space (i.e. any linear combination of the basis vec-
tors fill the entire space). Thidmensiorof a subspace is the number of basis vectors required
to describe it.

e Any space can have an infinite number of bases (but they ad tievsame dimension)

e Given a vector space of dimensianwith a particular basisy, v», .. .,Vv,, however,
any vectorx in the space can haniquelydecomposed into a linear combination of the
basis vectors.

The 4 fundamental subspaces ofi Everym x n matrix A has associated with it four fundamen-
tal subspaces

1. The Column Spac€'(A) which is the linear combination of the columns.of
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2.

3.
4.

The Row Spacé€’(A”) which is the linear combination of rows ¢f (i.e. columns of
AT)

The Null SpaceV(A). The vector space of solutiongo Ax =0
The Left Null SpaceV(AT). The vector space of solutiorgo A7x = 0

Some important factoids about the 4 subspaces

Therow space and thaull space are orthogonal to each other and together form a
basis forR"

The column space and thé&eft null space are orthogonal to each other and together
form a basis foR™

The Column space and the row space both have dimengigherer is the rank ofA).
dim(N(A)) =n —r,dim(N(AT)) =m —r.

Ax takes vectors in the row space and maps them to the columa apddakes vector
in the Null space and maps them@o

Only for invertible matrices doed b map the column space back to the row space
(But see the SVD).

Important Know how to find the dimensions and bases of the 4 subspacesaing matrixA and
its row reduced echelon form (for the left null space, the easiest way to find it is to find
the null space ofi”). Also know how to find orthogonal bases for the 4 subspaces the
SVD.
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3 Chapter 4: Projections, Least Squares Problems, Gram-Schidt
Orthogonalization and the () R decomposition
You should know how to do the following things. ..

Projection onto a line If a vectora forms the basis for a line-4), then the projection of another
vectorb onto that line is given by

p=ar (8)
where Y
. a
= ¥ ®)
We can also write the projection as
aa’
P (55,) 0= 1D (10)

where P is the projection matrix that only depends an Note the projection matrix is
singular and just picks out the componentathat is parallel taa. P project the part ob
that is perpendicular tato zero (i.e. that part is in the Null space Bj

Projection onto a subspaceA line is just a 1-D subspace spanned by a single vector. We can
extend the idea of projection ontoradimensional subspace described by a larger number
of basis vectors,, a,, . . ., a,. If we form a matrixA whose columns are the basis vectors,
then the projection of a vectdronto the column space of is the point inA that is closest
to b (i.e. minimizes the length of the error vect b — p). The projection is

p = AX (11)

wherex is the solution of
AT Ax = ATb (12)

This has auniquesolution if A is full column rank (i.e.A” A is invertible). If A has a null-
space it is not unique but there is always a shortest solgtiean by the pseudo-inverse (see
the last section). Equations (11)—(12) can also be writiganms of a projection matrix

p=Pb=[A(ATA)'A"]b (13)

(if Aisfull columnrank,i.e AT Aisinvertible. If A is not full column rankP = AA* where
AT is the pseudo-inverse). Notitost projection matrices are singular! i.e. they will have
a null spacePx = 0 wheneveix is orthogonal to the column space 4f(or whenever there
is a left null spaced” = 0.) However, ifA is square and invertible theh = 1.
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Application of projections #1: Least Squares solutionsWe can use the idea of projections to
solveleast squares problemghere Ax = b doesn’t have a solution becauseloes not lie
in the column space @&&. The best solutios, which minimizes the errog = AX — b is just
the solution of

ATAx = ATh (14)

Example...fitting of a straight line to data Suppose you wanted to fit a straight line

Y =1+ Cox (15)

through a set of 4z, y) points(—3,1), (—=1,1), (0,0), and(2, 4). Each point is trying to
satisfy an equation; = ¢; + cox; or all 4 points form the system of equations

(1 I
Y2 I 1
= 16
Y3 L a3 [ C2 } (16)
Ya I xy
or
y = Ac a7
For the specific points hege= (1, 1,0,4) and
1 -3
1 -1
A= 1 0 (18)
1 2

To solve for the best fitting parameters c,. Just solve the least squares problémAc =

ATy or
4 —2 C1 L 6
EiEN @
by elimination (and then show that the error is in the lef sphce ofA4). Also know how
to solve in general for best fit quadratic (or general polyrads) of form

y = c1 + cow + c37° (20)

Most generally, if you want to find the least-squares fit ofction as a linear combination
of more general functions (e.gin andcos) such as

y = c1fi(z) + cafo(x) + cafs() (21)
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through points(xy, y1), (z2,y2),. .. (zn, y») YOu need to find the least-squares solution of
Ac =y that looks like

fl('rl) f2($1) f3(x1) o Y1
hlea) fie) i) 02} | o2
fien) falm) fo(@) | -7 Un

Application of Projections #2: Gram-Schmidt orthogonalization Also know how to take an ar-
bitrary basis for a vector space and find an orthonormal basig using Gram-Schmidt
orthogonalization. l.e. given a set of basis vectrs, . . ., a, find an orthonormal set of
vectorsq,, q,, - . ., d,, that span the same space and have the property that

0 i#y
i.e. if thea’s form the column space of a matrik find a matrixQ) whose columns are the
g's and is orthonormal such th&’Q = 1.

The basic algorithm i§sram-Schmidt Orthogonalizatiprvhich is a process of sequential
projections that effectively straighten out the vectors-biy-one. In short form, the first 3

L
q?qu{ v (23)

Steps are a

1
_ 24
Y= Tl @)

b
by=a — (qfa)d, O, = @ (25)
b

b3 =a3 — (q{a?))ql - (qga3)q2 q3 = ||bz|| (26)

Application #3: the ) R decomposition and least squares solution&iven Gram-Schmidt to cal-
culate@ from A you can find the) R factorizationA = QR simply by calculating the
upper triangular matrix = Q7 A (because)”Q = I). Then, the least squares problem
AT Ax = ATb becomesix = Q7'b which can be solved quickly for by back substitution.

Some Additional Q matrix Properties

o QTQ = I forall m x n Q matrices
e For square matrices onlyQ” = Q~! and therefor&)Q? = I
e For non-square matrice®, = QQ? is the projection matrix onto the column space of

0.
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o If A= QRthenQQT is also the projection matrix onto the columns spacd of
e Multiplication by Q matrices doesn’t change the length of vectors,|j@x|| = ||X||.

e Transformations by) matrices preserve dot products. i.exi= Qx andy’ = Qy then
(X)Ty =x"QTQy =x"y
¢ Rotation, reflection and permutation matrices are all exaspf ) matrices.

4 Chapter 5: Determinants

The determinant of 8quarematrix A (writtendet(A) or | A|) is a single number formed by combi-
nations of all the elements of. The determinant has the following useful formulas and prtgs

e the determinant of & x 2 matrix
a b
A [ o ] (27)
is|A| = ad — bc

e The determinant of an x n matrix can be determined by tl@ofactor formulaalong any
row or column (see Strang 222—-224).

e The determinant of an x n matrix can also be found by first eliminating to its upper
triangular formU, the taking theroduct of the pivots. This is probably the fastest way for
larger matrices.

e Important! the determinant of a singular matrix is 0. (i.e.Ak = 0 for somex # 0 then
det(A) =0

e the determinant of the identity matrix is def(/) = 1)

¢ the determinant changes sign with a single row (or columoharge

e the determinant is a linear function of each row separatag Strang 209)
e If 2 rows (or columns) of a matrix are the samejet(A) = 0

¢ Elimination (without row exchanges) does not change therdehant

e Product Rule (veryimportant) det(AB) = det(A) det(B)

o if PA = LU thendet(A) = det(P) det(U) wheredet(P) = +1 depending on whether the
permutation matrix has an even or odd number of row exchazgedet(U) is the product
of the pivots!
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o det A71 = 1/det(A)
o det AT =det A
o det (cA) =c"det A

e det A = the product of the pivots< the product of the eigenvalues 4).

Useful! The determinant of a triangular matrix is just the produdhefdiagonal terms.

The main application of the determinant is finding Eigenealby solvinglet(A — AI) = 0
for n eigenvalues.

5 Chapter 6: Eigenproblems and applications
Eigenvalue, Eigenvector problems are solutions of the taoua
AX = AX (28)

whereA is asquaren x n matrix. Equation (28) is slightly deceptive as it is actyalh equation
for n eigenvalues and eigenvectors.

Basic recipe for finding eigenvalues and eigenvectors

1. Find all eigenvaluesby finding then roots of the characteristic equation given by
det(A — AI) = 0 (i.e. find then \'s that makeA — AT singular.)

2. Find eacheigenvector For each eigenvalug; find the special solutions (i.e. Null
space) of the matrid — \;/

An example: find the eigenvalues and eigenvectors of tke singular matrix
1 2
i (42 @)

1. det(A — AI) = 0 implies that(1 — A\)(6 —\) =6 =X 2 —TA+ (6 —6) =00r\; =0
and)\, = 7 (the order of the eigenvalues is arbitrary). Cleatlys a singular matrix.

2. The first eigenvector is the special solution of the nuflcgpofA — 07 (i.e. find the
Null space ofA), Either by inspection or by reducing to row reduced ech&om, we
findx; = (-2,1).
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3. The second eigenvector is in the null space of

6 2
A—7I:[ ; _1} (30)

which is (hopefully clearlyx, = (1, 3) (i.e. the first column plus three times the second
column ofA — 71 is (0,0).

Useful checks for eigenvalues

1. thesum of the eigenvalues is equal to ttrace of A (the sum of the diagonal terms of
A). (l.e. Tr(A) =310 )

2. Theproduct of the eigenvalues is equal to teterminant of A (i.e. det(A) = T \;

Eigenvectors and Eigenvalues of a general x 2 matrix This shows up enough time to be worth
remembering now and again (but always know how to derive it).

GivenA = [ CCL Z } , the eigenvalues are given by

Tr(A) £ /Tr(A)2 — 4 det(A)
2

A\ =

which are just the roots of
A — Tr(A)X + det(A) =0

Given\; and),, the two eigenvectors can be found with either

X1 = b - X_- b _
1__)\1—61,_ 2__)\2—a_

or ~ _ ~ _
[ a—d [ he—d
X1 = c Xo = c

(if you do a row swap ofiA — A1) before elimination).

Diagonalizing a matrix Once we have alh eigenvectors and eigenvalues4fwve can put them

into two matricesS andA, whereS is theeigenvectormatrix whose columns arg, Xs, . . ., X,
andA is a diagonaEigenvaluematrix whose diagonal entries are the corresponding eigen-
values)i, g, . .., \,. With these definitions we can always write

AS = SA (31)
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If S—! exists, we can diagonalizé by

A=S"1TAS (32)
or factor A into
A= SAS! (33)

Rules for diagonalization

e A matrix can only be diagonalized if there arendependent eigenvectors (i.&is not
singular)

e If all the eigenvalues ardifferent then the eigenvectors are independent drain be
diagonalized.

e Repeated eigenvaluemightprevent diagonalization (but not always)
e Repeated eigenvectors alwaygrevent diagonalization

Symmetric Matrices A = AT In the special case that is symmetric @ = AT) then the follow-
ing is always true

¢ All the eigenvalues ofd are real.

¢ All the eigenvectors oA are orthogonal (and can be chosen orthonormal)
e All symmetric matrices can be diagonalized/factored as

A=QAQT (34)
where() is the eigenvector matrix (now chosen to be orthonormal).

Positive Definite Matrices For the special case of square symmetric matrices the $pEEa
where all the)'s are positive is calleghositive definite If A >= 0, the matrix is said to be
semi-definite A matrix will be positive definite if

1. All the pivots are positive
2. The numbek” Ax > 0 for all vectorsx # 0

The two symmetric matriced” A and AA” are always at least semi-definite.

Applications of Diagonalization #1: Powers of matrices andterative maps Using the diago-
nalization theorem it is easy to show that thin power of a diagonalizable matri® is
just

A" = SA"SE (35)
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this is useful for problems with iterative maps (e.g. thedRidcci numbers) where a sequence
of vectors is produced recursively by

Xp = Axn—l (36)
which can be unrolled to show that

X, = A"Xg = SA"S X, (37)

Application #2: dynamical systemsEigenvectors and Eigenvalues are also very useful for solv-

ing dynamical systems such as

du
—=A
o u (38)

Again, by decomposing into its components in each direction of the eigenvectoes (i

u=.9y (39)

ory = S~!u, we can transform Eq. (38) into

% = Ay (40)
which has the simple answer
y(t) = My, (41)
where
eAlt
eM = (42)

is a diagonal matrix, the matrix exponential/of Transforming back into the standard basis
using Eq. (39) gives

u(t) = SeMS—'u, = eug (43)
where | |
eM = SeMS =T 4 At + Q(At)2 + g(At)?’ e (44)
is the matrix exponential. An equivalent, but perhaps bettey to write the solution (Eq.
43)is as
U(t) = 616>\1txl + 026A2tX2 + ...+ Cn6)\"txn (45)

where the\; andx; are each eigenvalue/eigenvector pair andre the components of=
S~1u, which is just the decomposition of the initial conditiondrthe basis described by the
eigenvectors.
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Finally! the SVD The singular value decomposition (SVD) is another factdian of any general
m X n matrix A into two orthogonal matrices and a diagonal matribsofgularvalues. The
SVD of A is written
A=UxvT (46)

whereU is orthogonain x m (UTU = I) andV is orthogonah x n (VV = I) and

01
Y= 47

On

is a diagonal matrixof singular values, > o, > ... > 0, > 0.

Some important properties of the SVD

e The columns of/ are the eigenvectors ef’ A with eigenvalues?. i.e. (for squared)
ATA=v¥2vT (48)

or AT Avi = o?v;
e The columns of/ are the eigenvectors ofA” also with eigenvalues?

e If matrix A has rank-. The firstr columns ofl” form an orthogonal basis for tHeow
Spaceof 4, C(AT).

e the lastn — r columns form a basis for tHeull Spaceof A, N(A) (and the last — r
o;’s will be zero.)

e The firstr columns ofU are a basis for th€olumn Space C(A)
e The lastm — r columns ofU are a basis for theeft Null Space N (A”).

A recipe for finding the SVD

1. Form the symmetric matrix” A and find its eigenvalues,.

2. Sort the eigenvalues from largest to smallest suchthat A\ > ... > )\, > 0 and
with this ordering factorA” A into ATA = QAQT whereA is a diagonal matrix of
sortedeigenvalues an@ is a square orthogonal matrix of the corresponding eigenvec
tors.

3. ThenV = Q andX = VA (i.e. o; = V' \,)

Well close enough. If is squarey. is diagonal, otherwise it's as diagonal asran< n matrix can get.




E3101: Study Guide 2004 14

4. Forallo; > 0 (i.e.i =1tor)find

(which should automatically be unit vectors)

5. If A has a left null space, there will be an additional- r vectorsu, fori = r 4+ 1, m.
For these just find an orthonormal basis for the left null spafcA (i.e. find N(AT)
then use Gram-Schmidt to orthogonalize).

Application of the SVD: Least squares and the pseudo inversé&iven a singular value decom-
position for an invertible matrix

A=UxvT (49)
the inverse of4 is easily found to be
ATt =vyTlu” (50)
where
1/0'1
Yl= (51)
1/oy,

However, if A is singular themd—! doesn't exist (because if is singular, at least one of the
o; = 0andl/o; — oo. However it is easy to create tfseudo-inverse

AT =vutu? (52)
where
[ 1/0’1 T

Nt = Hor (53)

0

i.e. the diagonal is simply/o; wherever that is defined and zero wherever it isn't. The best
least squares solution for any probleir = b is then

x* = A*b (54)

In terms of the 4 subspace4A*b is the projection ob onto the column space ant™ Ax
is the projection ok onto the row space.
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6 Summary

Okay, here is a quick list of things to know
e Elimination, LU decomposition in all it's forms and solving squadg = b for squareAd
e Solving Ax = b for generalm x n A. (row reduced echelon form)
e Diagnosing the rank ofi and the dimensions and bases for the four subspaces
e Projections onto lines and subspaces
e How to solve Least Squares Problems
e How to find orthogonal bases by Gram-Schmidt and factorizing Q R

e Properties of) matrices (and other special matrices such as eliminatidrices, permuta-
tion, rotation, projection etc.)

e How to find the determinant of a matrix (and the propertiehefdeterminant)

e How to find eigenvalues and eigenvectors of a matrix (andnidestlike the trace and deter-
minant to check things)

e How to diagonalize a matrix and know when it’'s not possible
e Recognize the special properties of symmetric matrices
e Take powers of matrix and use the diagonalization theoresoliee dynamical systems.

e Find the SVD of a general matrix and use it to find the pseuderse for singular least-
squares problems

e Know various intriguing bits of Linear algebra trivia thatlp you do things faster.

/7 P.S.

That'’s it for now...watch this space for anything new andrections. if you have any questions
come and see me in office hours or send me e-mail at mspieg@ddi@mbia.edu to set up an
appointment. Good luck and relax.



