Lecture 07: Vector Spaces and Subspaces #1	Linear Vector Spaces: an abstract definition
Outline:	and scalar multiplication that satisfy the following axioms
 Intro: toward a deeper understanding of A<u>x</u>=<u>b</u> Vector Spaces Definition and Rules Real Vector Spaces Rⁿ 	1) $\underline{x} + \underline{y} = \underline{y} + \underline{x}$ 2) $\underline{x} + (\underline{y} + \underline{z}) = (\underline{x} + \underline{y}) + \underline{z}$ 3) There exists a unique zero vector such that $\underline{x} + \underline{0} = \underline{x}$ 4) For every vector \underline{x} there is a unique vector $-\underline{x}$ s.t. $\underline{x} + (-\underline{x}) = \underline{0}$ 5) 1 times \underline{x} equals \underline{x} 6) $(c_1c_2)\underline{x} = c_1(c_2 \underline{x})$ 7) $c(\underline{x} + \underline{y}) = c\underline{x} + c\underline{y}$ 8) $(c_1 - c_2)\underline{x} = c_1 + c\underline{y}$
Other Vector Spaces (C ¹¹ , R ¹¹ X ¹¹ , Z, F) 3) Vector Subspaces Definition Lots of Examples 4) Fundamental Subspaces associated with a matrix A The Column Space C(A) The Null Space N(A)	o) $(t_1 + t_2)x - t_1 x + t_2 x$ The important consequence of these axioms is that the set is closed under vector addition and scalar multiplication (i.e. any linear combination of vectors chosen from the space remains a member of the space)

Linear Vector Spaces: a concrete example the set of real vectors Rⁿ

Definition:

The space R^n is the set of all column vectors \underline{v} with n real components (together with the standard rules of vector addition and scalar multiplication)

Examples:

Point: Vector spaces are really "spaces" (geometric objects)

Linear Vector Spaces: Other Examples

Complex vectors:

mxn real matrices:

The Zero Vector Space:

Linear Vector Spaces: Other Examples (not just vectors!)

Real Functions f(x):

The space of Piecewise Linear Functions (connect the dots...):

Vector Subspaces: Examples Galore!	
Example 2): The set of all vectors in R ² whose components sum to 0	

Vector Subspaces: Examples Galore! (am I a subspace or not): Example 3): The set of all vectors in R² whose components sum to 1

September 25, 2007

Vector <mark>Subspaces</mark> : Subspace or not Some basic rules for testing subspaces	
1) To prove a set of vectors is a subspace you must show it is closed for all vectors in the set.	
counter example.	
3) All vector spaces and sub-spaces must include the zero vector! so check for this first.	
A Few last examples: Subspace or not?	
A) the set of all vectors in \mathbb{R}^2 with components ≥ 0	
B) the set of all symmetric 2x2 matrices	
C) the set of all invertible 2x2 matrices	

All permissible subspaces in R ³	
1) Linear combinations of 1 vector Geometry?	
2) Linear combinations of 2 vectors Geometry?	
3)?	
4)?	

The 4 Fundamental Subspaces of a matrix A Control the existence and uniqueness of solutions to Ax=b

The Column Space:

The Null Space:

The Row Space:

The Left Null Space:

The Column Space:

Definition:

The Column Space of a Matrix A is the vector subspace formed by all linear combinations of the columns of A.

Examples:

The Column Space: Properties: for $A \in \mathbb{R}^{m_x n}$ $C(A) \subset \mathbb{R}^?$ $C(A) \equiv A_x \forall x \in \mathbb{R}^?$ C(A) controls the ______ of solutions to $A_x=b$ i.e. $A_x=b$ has a solution iff ______

The Null Space: N(A)

Definition:

The Null Space of a Matrix A is the vector subspace formed by all solutions \underline{x} to $A\underline{x}=\underline{0}$ (i.e. is all linear combination of columns of A that cancel to zero)

Proof that N(A) is a subspace:

 The Null Space: N(A)

 Simple Examples:

 The importance of the Null Space: uniqueness of solutions to Ax=b

The Null Space:	
Properties: for $A \in \mathbb{R}^{m_x n}$ N(A) $\subset \mathbb{R}^?$	
$N(A) \equiv Z$ if A is	_
if N(A) \neq Z then Ax=b has	_solutions
i.e. N(A) controls the	_ of solutions to A <u>x=b</u>

The Null Space: Algorithms for finding N(A)

1) Gaussian Elimination on mxn matrices

The Null Space: Algorithms for finding N(A)

1) Gaussian-Jordan Elimination to reduced row Echelon Form (rref(A))

