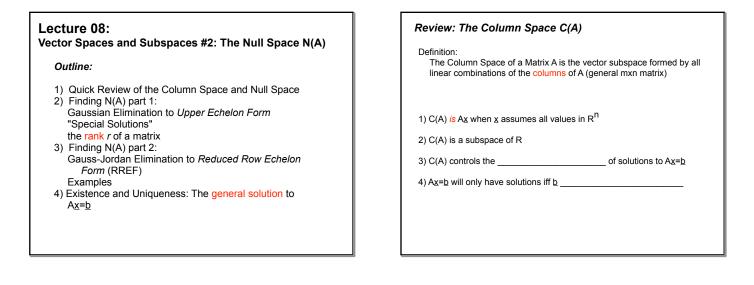
Lecture08

September 27, 2007



Review: The Null Space N(A)

Definition:

The Null Space of a Matrix A is the vector subspace formed by all solutions \underline{x} to $A\underline{x}=\underline{0}$ (i.e. is all linear combination of columns of A that cancel to zero)

1) N(A) is a subspace of R

2) N(A) controls the ______ of solutions to Ax=b

If A is invertible, then N(A)=_____

The Null Space: Algorithms for finding N(A)

1) Inspired Guessing A = [1 2; 3 6]

2) Gaussian Elimination to solve Ax=0

(Only small issue is that U is no longer upper triangular)

The Null Space:

Algorithms for finding N(A): Gaussian Elimination to Upper Echelon Form

A bigger example A = [1 1 2 1 ; 1 2 1 1]

Solve Ax=0 using Gaussian Elimination

Finding N(A): A closer look

Gaussian Elimination (including row exchanges) transforms a general mxn matrix A to U which is now "upper echelon form"

1) Identify "Pivot" columns and "Free columns" (and associated Pivot variables and free variables)

2) Identify the *rank* of the matrix r = number of Pivot Columns

3) Identify the number of special solutions = number of free columns =

4) Find the Special Solutions: the linear combinations of Pivot Columns required to annihilate a single free column.

5) The Null Space is formed by *all linear combinations* of the special solutions

Lecture08

September 27, 2007

example A = [1 1 2 1 ; 1 2 1 1] again

The Null Space: A better way Gauss-Jordan Elimination to Reduced Row Echelon Form R=rref(A)
Again A = [1 1 2 1 ; 1 2 1 1]
1) take A to U By Gaussian Elimination
2) Continue by GJ Elimination (eliminate up then divide by the pivots) to R $\!\!\!\!\!\!$
3) when done: The pivot columns will be columns of the Identity Matrix Can read the Special Solutions right out of R

The Null Space: A better way

Gauss-Jordan Elimination to Reduced Row Echelon Form R=rref(A)

Example A = [1 1 2 1 ; 1 2 1 1] goes to R = [1 0 3 1 ; 0 1 -1 0]

Point: N(R)=N()

But Rx=0 is much easier to see

!! The Special solutions are the linear combinations of the pivot columns that annihilate each free column.

The Null Space: A better way

Gauss-Jordan Elimination to Reduced Row Echelon Form R=rref(A)

Last Example: A = [1 2 2 5 ; 2 4 8 18 ; 3 6 10 23]

The Null Space: A Trick

Gauss-Jordan Elimination to Reduced Row Echelon Form R=rref(A)

Last Example: A = [1 2 2 5 ; 2 4 8 18 ; 3 6 10 23] R = [1 2 0 1 ; 0 0 1 2 ; 0 0 0 0]

Do it yourself Null Space:

Last-Last one (Easy)

Last Example: A = [1 2 ; 3 4]

R =

N(A)=

Point: All Invertible Matrices R=I, N(A)=Z

Lecture08

September 27, 2007

Putting it all together: The General Solution to $A\underline{x}=\underline{b}$

Basic Approach:

1) use Gauss-Jordan Elimination to take [Ab] to [Rd]

2) Find a Particular solution to $Rx_p = d$ (combination of pivot columns and no free columns that add up to <u>d</u>)

3) Find the special solutions to $R\underline{x}_N = \underline{0}$

4) The General solution: is $\underline{x} = \underline{x}_p + \underline{x}_N$

Putting it all together: The General Solution to Ax=b

Example: A = [1 2 1 0 1; 2 4 1 0 0 ; 1 2 0 1 -4] b = [1 1 1]

