Lecture 10: The Big picture cont'd	
Outline:	
 Bases and Dimensions Subspaces of a mxn M The Column Space The Null Space The Row Space The Left Null Space Orthogonality of the 4 s The full picture of A<u>x=b</u> 	atrix A C(A) N(A) C(A ^T) N(A ^T)

Basis and Dimension of the 4 subspaces of a matrix A				
Given A in R ^{mxn} there are four fundamental subspaces associated with the matrix A				
Name	Symbol	Subspace	Dimension	
1) Column Space				
2) Null Space				
3) Row Space				
4) Left Null Space				

Basis and Dimension of the 4 subspaces of a matrix A
Example: $A = \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 1 & 3 \\ 2 & 4 & 6 & -2 & -2 \end{bmatrix} = LR = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
The Column Space C(A): Controls of solutions to Ax=b
Subspace of
Dimension:
Basis:
Comments: C(A)C(R)

Basis and Dimension of the 4 subspaces of a matrix A
Example: $A = \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 1 & 3 \\ 2 & 4 & 6 & -2 & -2 \end{bmatrix} = LR = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
The Null Space C(A): Controls of solutions to A <u>x=b</u>
Subspace of
Dimension:
Basis:
Comments: N(A)N(R)

Basis and Dimension of the 4 subspaces of a matrix A
Example: $A = \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 1 & 3 \\ 2 & 4 & 6 & 2 & -2 \end{bmatrix} = LR = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
The Row Space $C(A^T)$: Spanned by the rows of A (i.e. columns of A^T)
Subspace of
Dimension:
Basis:
Comments: $C(A^{T})$ _C(R^{T})

Basis and Dimension of the 4 subspaces of a matrix A
Example: $A = \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 1 & 3 \\ 2 & 4 & 6 & -2 & -2 \end{bmatrix} = LR = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
The Left Null Space N(A ^T): spanned by all solutions of A ^T y= <u>0</u> -or- (Combinations of of A that cancel to zero)
Subspace of
Dimension:
Basis:
Comments: N(A ^T)N(R ^T)

Basis and Dimension of the 4 subspaces of a ma	trix A
Find the dimension and a basis for each of the 4 subspaces: a recipe	
1) Reduce A to R=rref(A)	
2) Column Space: Get C(A) from R and A dim C(A) =, basis:	
3) Null Space: Get N(A) from R dim N(A) =, basis:	
4) Row Space: Get C(A ^T) from R	
dim C(A ^T) =, basis:	
5) Left Null Space: Get N(A ^T) the hard-way dim(N(A ^T))=, basis:	

Last Example: a rank-1 matrix $A = \underline{u} \underline{v}^{T} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ What is the relationship between the 4 subspaces?

Orthogonality of the 4 subspaces

Point: For every matrix A there are 4 fundamental subspaces

Two in Rⁿ:

Two in R^{m:}

Moreover: these subspaces are "orthogonal complements" such that

Orthogonal Subspaces: Orthogonal Complements
Definition:
Two subspaces ${\rm S}_1$ and ${\rm S}_2$ in $\mbox{ R}^k$ are "orthogonal complements" if
1) all vectors in ${\rm S}_1$ are orthogonal to those in ${\rm S}_2$ (i.e. the two subspaces only share the $\underline{0}$ vector)
2) dim(S1)+dim(S2) = k
Comment: any basis from $\rm S_1$ together with any basis from $\rm S_2$ form a complete basis for $\rm R^k.$ i.e. all vectors in $\rm R^k$ can be decomposed uniquely into a part in $\rm S_1$ and $\rm S_2$

Example:

 $A = \underline{u} \underline{v}^{\mathsf{T}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

Orthogonality of the 4 subspaces: The Big (Strangian) Picture The Big Picture of A<u>x</u>=<u>b</u> Full row Rank: The Big Picture of A<u>x</u>=<u>b</u> Full Column Rank:

The Big Picture of A<u>x=b</u> Full row and column Rank: Invertible Matrices