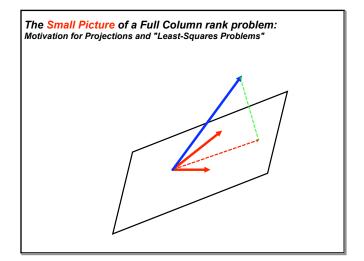
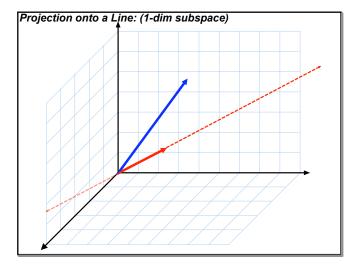
Lecture 11: Projections Outline: 1) Quick Review of the Big Picture of the 4 subspaces 2) The picture for a Full Column rank matrix 3) Motivation for Projections (The small picture) 4) Projection onto a line 5) Projection onto a subspace and the "normal equations" $A^TAx=A^Tb$

Orthogonality of the 4 subspaces: The Big (Strangian) Picture

The Big Picture of A<u>x</u>=<u>b</u> Full Column Rank:



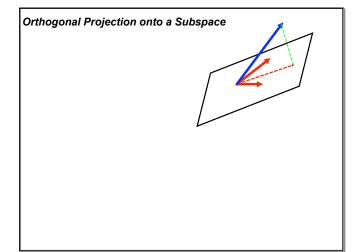


Projection onto a Line: (1-dim subspace)	
Steps:	
1) find the "least squares solution" $\hat{\mathbf{x}}$	
2) find the projection <u>p</u>	
3) find the Projection Matrix P	

Projection onto a Line: (1-dim subspace)

Example:

Project <u>b</u>=[1 1 1]' onto the line spanned by <u>a</u>=[1 2 2]'



Orthogonal Projection onto a Subspace S
Steps:
0) Form a matrix whose columns span the subspace (i.e. S=C(A))
1) find the "least squares solution" $\hat{\underline{x}}$
2) find the projection $\underline{p}=A\hat{\underline{x}}$
3) find the Projection Matrix P=A(A ^T A ⁻¹)A ^T (but don't use it really)

Projection onto a Subspace:

Example:

Project <u>b</u>=[6 0 0]' onto the space spanned by \underline{a}_1 =[1 1 1]' and \underline{a}_2 =[0 1 2]'

Projection onto a Subspace:

Theorem:

if a matrix A is full-column rank, then A^TA is invertible

Proof:

Show that N(A^TA)=N(A)
if A is full Column Rank then N(A)=N(A^TA)=_____

Comment: If A is full-column rank then the linear least-squares solution is unique.

Projection onto a Subspace:

Theorem:

Even if A is not full column rank, the normal equations always have at least one solution.

Proof:

Show that A^Tb is always in C(A^TA)