Lecture 13: **Orthonormal Bases and Q matrices** (towards the QR Factorization)

Outline:

- 1) Motivation: A^TA<u>x</u>=A^T<u>b</u> as a projection problem using columns of A as a basis for C(A)
- 2) But some bases are better than others: Orthonormal Bases
 - A) Definition and Q matrices (Q^TQ=I)
 - B) Q matrices and Least-Squares problems B) Examples of Q matrices

 - C) General Properties of Q Matrices
 - D) Proof by basketball redux
- 3) Turning A to Q: Gram-Schmidt Othogonalization

Orthonormal bases

Definition: a set of vectors $\underline{q}_{1}, \underline{q}_{2}, ..., \underline{q}_{n}$ in \mathbb{R}^{m} (m>=n) are said to be orthonormal if

1) they are all unit vectors ||q_j||=1

2) they are all mutually orthogonal: $\underline{q}_{i}^{T} \underline{q}_{j} = 0$ if $i \neq j$

ultra compact definition $\underline{q}_{i}^{T}\underline{q}_{j} = \delta_{ij} =$

Orthonormal bases

- Theorem: any set of orthogonal vectors is linearly independent (and therefore form a basis for span(q;))
- Proof: just use the fundamental definition of linear independence. the qi are linearly independent if

 $c_{1} \frac{q}{1} + c_{2} \frac{q}{2} + \dots + c_{n} \frac{q}{n} = 0$ iff all $c_{i} = 0$

Q Matrices (Orthogonal Matrices)

Definition: a matrix whose columns consist of orthonormal vectors we'll called a Q matrix (Orthogonal/Unitary matrix if Q is square)

Comments:

1) the columns of Q form an orthonormal basis for C(Q)

2) the fundamental property of Q matrices is Q^TQ=_____

3) If Q is square Q^{T} = _____ (only true if square)

4) In general QQ^T is a projection matrix onto C(Q)

Q Matrices: Immediate practicality

Consider the overdetermined Least-Squares problem Ax=b if A=Q.

Point: in general $A \neq Q$, however A can be transformed to Q via a new algorithm, which leads to a new Factorization A=QR...this is where we are going.

Q Matrices: Examples

Example #1: Permutation Matrices

Q Matrices: Examples

Example #2: Rotation Matrices

Q Matrices: Examples

Example #3: Householder reflection matrices H=I-2<u>uu</u>^T (||<u>u</u>||=1)

Q Matrices: Fundamental Properties

Property 1: Q matrices do not change the length of Vectors

Property 2: Q matrices preserve dot products

Comment: these properties make Q matrices very useful for numerical linear algebra

Q Matrices: Utility #2: Proof by basketball redux

Theorem: the dot product of any two unit vectors in \mathbb{R}^{n} is $\underline{u}_{1}^{T}\underline{u}_{2}=\cos(\theta)$

Proof: Part 1--dot product of simple vectors in $R^2 = \cos(\theta)$

Part 2: The dot product is invariant to rotations

Q Matrices: Utility #2: Proof by basketball redux

Theorem: the dot product of any two unit vectors in \mathbb{R}^{n} is $\underline{u}_{1}^{T} \underline{u}_{2} = \cos(\theta)$

Proof: Part 3--Basketball time: The dot product of 2 unit vectors in \mathbb{R}^{n} is equal to the dot product of 2 unit vectors in $\mathbb{R}^{2} = \cos\theta$

Comment: Idea of Change of basis is very powerful

Lecture13

Gram-Schmidt Orthogonalization: A new algorithm for transforming an arbitrary basis into an orthonormal basis (or transforming A to Q)

Problem: given a set of vectors,

 $\underline{a}_1, \underline{a}_2, ..., \underline{a}_n$ that form a basis for some subspace S, fine an orthonormal basis

q₁, q₂, ..., q_n

for the same space.

Comments:

1) if \underline{a}_i form the columns of a matrix A and span C(A), find an orthogonal matrix Q such that C(Q)=C(A)

- 2) An algorithm to do this (Gram-Schmidt Orthogonalization) is just another application of projections.
- 3) GS...is just a fancy name for "straightening out a bunch of vectors"

Gram-Schmidt Orthogonalization: Example in \mathbb{R}^3 : find an orthonormal basis for the C(A) where A = [1 1 1; 1 1 0; 1 0 0];

2) Specific example

Gram-Schmidt Orthogonalization: Example in \mathbb{R}^3 : find an orthonormal basis for the C(A) where A = [1 1 1; 1 1 0; 1 0 0];

3) Comment Q not unique: suppose A=[1 1 1; 0 1 1; 0 0 1]