Lecture 14:

Gram-Schmidt Orthogonalization and the QR factorization

Outline:

- 1) Review GS for taking A to Q
- Examples galore 2) Gram-Schmidt orthogonalization leads to a new factorization A=QR
- 3) Using the QR to solve Linear Least-squares problems
- 4) Matlab
- 5) Computational issues, algorithms (modified Gram-Schmidt), computational costs...
- 6) Quick review of course so far (end of the middle)

Gram-Schmidt Orthogonalization:
Example in R ³ : find an orthonormal basis for the C(A) where A = [1 1 1 ; 1 1 0; 1 0 0];
1) Extension of general algorithm to n vectors

Example in R³: find an orthonormal basis for the C(A) where A = [111;110;100];

Gram-Schmidt Orthogonalization:

2) Specific example

Gram-Schmidt Orthogonalization: Example in \mathbb{R}^3 : find an orthonormal basis for the C(A) where A = [1 1 1; 1 1 0; 1 0 0];

3) Comment Q not unique: suppose A=[1 1 1; 0 1 1; 0 0 1]

Gram-Schmidt Orthogonalization:
Analogy with Gaussian Elimination and PA=LU
1) Gaussian Elimination
A) transforms A to U such that A=LU
B) you get L for free
C) Use the LU to solve square systems by solving L <u>c=b</u> , U <u>x=c</u> .
D) Matlab implimentation is just x=A\b
2) Gram-Schmidt Orthogonalization
A) transforms A to Q such that A=QR
B) and you get R for free (but I need to explain R)
C) Use the QR to solve linear least squares problems using $R_{\underline{X}}^{\underline{x}}=Q^{T}\underline{b}$ D) Matlab implementation is just x=A\b

Gram-Schmidt Orthogonalization: Leads to a new Factorization A=QR

What is the R in A=QR?

1) Generally: R=_____

2) R describes how the columns of A can be written (uniquely) in terms of the columns of Q.

Gram-Schmidt Orthogonalization:	
Leads to a new Factorization A=QR	

What is the R in A=QR?

3) Because of GS algorithm R is Upper Triangular! (Nice!)

Gram-Schmidt Orthogonalization: Leads to a new Factorization A=QR

What is the R in A=QR?

4) Upper Triangular R, makes over-determined least-squares problem A<u>x=b</u>, reduce to the Triangular problem R_x²=Q^Tb. This can be solved quickly by back substitution.

Gram-Schmidt Orthogonalization: Leads to a new Factorization A=QR
What is the R in A=QR?
5) Comment: only least squares solution $\frac{\lambda}{x}$, needs R
Projection <u>p</u> =
Projection Matrix P= (error e=)
Alternative proof: let $P=A(A^TA)^{-1}A^T$ and $A=QR$

QR Factorization and Applications

Example: Find best fit straight line through (0,0), (1,2),(2,1) by using the Normal Equations and QR...

QR Factorization: Computational issues Computing the QR: a simple algorithm Modified Gram-Schmidt Computational Costs: Normal Equations vs QR

QR Factorization: Computational issues

Computing the QR: Other Algorithms: A to R by Householder Reflections

Where We area min	-course review
Part I) A) Principal Equation:	
B) Algorithm:	
C) Factorization:	
D) Applications:	
E) Theory:	
Part II) A) Principal Equation:	
B) Algorithm:	
C) Factorization:	
D) Applications:	
E) Theory:	