Lecture 16: Introduction to eigensystems

Outline:

- 1) Introduction: Eigenvalues, Eigenvectors: $A\underline{x} = \lambda \underline{x}$
- 2) An example
- Motivation: The applications Iterative maps and matrix powers Dynamical Systems du/dt=Au
- 4) An Algorithm for finding eigenvalues and eigenvectors
- 5) More Examples
- 6) simple checks Tr(A), |A|

Introduction to Eigen Problems

The course so far:

Part 1: Ax=b leads to PA=LU

Part 2: $A^{T}Ax = A^{T}b$ leads to A = QR

Part 3: Fundamental Equation is $A_{\underline{X}} = \lambda_{\underline{X}}$

where A is square nxn λ is an Eigenvalue and \underline{x} is an Eigenvector

special directions such that Ax behaves like scalar multiplication

(slightly misleading equation, we need to solve for both λ and $\underline{x)}$

(Factorization is $A=S \wedge S^{-1}$ or $A=Q \wedge Q^{T}$)

Eigenvalues and Eigenvectors

An Example: A=[1 2; 2 1]

Eigenvalues and Eigenvectors

Foreshadowing: an Application -- iterative maps

A large number of numerical methods can be written as an iterative method

x_{k+1}=Ax_k i.e.

Eigenvalues and Eigenvectors

An algorithm for finding Eigenvalues and Eigenvectors (of small matrices)

1) First find the eigenvalues

Eigenvalues and Eigenvectors

An algorithm for finding Eigenvalues and Eigenvectors (of small matrices)

1) First find the eigenvalues Example: A=[1 2 ; 2 1]

Eigenvalues and Eigenvectors

An algorithm for finding Eigenvalues and Eigenvectors (of small matrices)

2) Find the eigenvectors as $\underline{x}_{i} = N(A - \lambda_{i})$ Example: A=[12; 21]

Eigenvalues and Eigenvectors

An algorithm for finding Eigenvalues and Eigenvectors (of small matrices)

Some important Checks:

Example: A=[1 2 ; 2 1]

Eigenvalues and Eigenvectors

An algorithm for finding Eigenvalues and Eigenvectors (of small matrices)

Example 2: Eigenvalues and Eigenvectors of a general 2x2 matrix

Eigenvalues and Eigenvectors

An algorithm for finding Eigenvalues and Eigenvectors (of small matrices)

Example #3: 3x3 problem A = [1 1 1 ; 0 2 1; 0 0 3]

Eigenvalues and Eigenvectors

An algorithm for finding Eigenvalues and Eigenvectors (of small matrices)

Some Cautions:

1) Elimination changes eigenvalues!

2) Eigenvalues can be complex!

Eigenvalues and Eigenvectors

An algorithm for finding Eigenvalues and Eigenvectors (of small matrices)

Some Cautions: 3) Repeated Eigenvalues can lead to repeated eigenvectors (not linearly independent)...(but not always)

Example: A=[2 1 ; 0 2]

Eigenvalues and Eigenvectors

Next step: Diagonalization and factorization A=SAS⁻¹