Lecture 19:

Application of Diagonalization: Linear Dynamical systems and the dynamics of love affairs

Outline:

- Linear Dynamical systems du/dt=Au; u(0)=u₀ Definitions and Interpretation
 General Solution and the matrix exponential e^A Interpretation of General Solution as a change of Basis
- 2) Examples: The Romeo and Juliet Problems The Reactive Model The Contrarian Model
- 3) General Classification of fixed points for 2x2 systems

Linear Dynamical systems:

Definition: an autonomous, linear dynamical system can be written as

 $d\underline{u}/dt = A\underline{u} \quad \underline{u}(0) = \underline{u}_0$

where \underline{u} is a state vector, A \underline{u} is a vector that describes how \underline{u} changes with time and \underline{u}_0 is the initial state at time t=0

Physical example: $\underline{u} = [x \ y]'$ is the position of a particle $A\underline{u}$ is the velocity of the particle $\underline{u}_0 = [x \ 0 \ y \ 0]'$ is the initial position

Linear Dynamical systems:

Geometric interpretation: $\underline{u}(t)$ is a trajectory (parameterized curve) where $A\underline{u}$ is the vector tangent to the curve at any point.

Linear Dynamical systems:

General Solution: If A is diagonalizable, all autonomous linear dynamical systems have a general solution that depend only on the eigenvalues and eigenvectors of A (and the initial condition).

Derivation of general Solution:

Question: What if u is an eigenvector of A?

Linear Dynamical systems:	
The matrix Exponential: e ^A	
For Diagonal Matrices:	
General definition:	
Check for diagonalizable A	

Linear Dynamical systems:

Interpretation of General Solution as a Change of basis!

Examples: The R&J problems

-or-The Dynamics of Love affairs

Generously cribbed from Steven Strogatz: Non-linear dynamical systems and chaos

The Players: Romeo and Juliet

The Variables:

R: Romeo's love for Juliet J: Juliet's love for Romeo

The Playing Field...

