Lecture 24: The End... Outline: 1) Course Review: putting it all together 2) The Future: two great directions A) Linear PDE's: from the discrete to the continuous (finite dimensional to infinite dimensional vector spaces) B) Scientific Computation & Numerical methods: from the continuous to the discrete

Course Overview: the big picture: short form				
subject:	Linear Systems	Least Squares	Eigen Problems	
Equations:	A <u>x</u> = <u>b</u>	A ^T A <u>x</u> =A ^T b	Αχ=λχ	
Algorithms:	Elimination (Gauss,GJordan)	Gram-Schmidt	factor Ρ(λ)= Α-λΙ Find N(Α-λ _ϳ Ι)	
Factorizations	S: PA=LU PA=LDL ^T	A = QR	$AS = S\Lambda$ $A = S\Lambda S^{-1}$ $A = Q\Lambda Q^{T}$	
Theory:	Invertibility and A^{-1} Vector Spaces/Subspace 4 Subspaces of A General solutions to Ax=b	Orthogonality S Projections Projection Matrices Q Matrices	$A = U\Sigma V^{I}$ Eigenvalues/Eigenveo The Determinant Diagonalization Symmetric Matrices The SVD	
Applications:	Solving Linear systems e.g. Spring Block	Least Squares fitting of functions Finding Projections	Matrix Powers A ⁿ Iterative Maps: e.g. Fibonacci Dynamical Systems e.g. R&J Total Least Squares EOF Analysis	

Lecture24

Course Overview: the big picture: short form		
subject:	Linear Systems	
Equations:	A <u>x=b</u>	
Algorithms:	Elimination (Gauss,GJordan)	
Factorization	S: $PA=LU$ $PA=LDL^{T}$ $A=CC^{T}$ Invertibility and A^{-1} Vector Spaces/Subspaces 4 Subspaces of A General solutions to Ax=b	
Applications:	Solving Linear systems e.g. Spring Block	

Course Overview: the big picture: short form		
subject:	Least Squares	
Equations:	$A^{T}A\underline{x}=A^{T}\underline{b}$	
Algorithms:	Gram-Schmidt	
Factorizations: A = QR		
Theory:	Orthogonality Projections Projection Matrices Q Matrices	
Applications:	Least Squares fitting of functions Finding Projections	

Lecture24

Г

Course Overview: the big picture: short form		
subject:	Eigen Problems	
Equations:	Α <u>x</u> =λ <u>x</u>	
Algorithms:	factor Ρ(λ)= Α-λΙ Find N(Α-λ _i I)	
Factorization	AS = SA $A = SAS^{-1}$ $A = QAQ^{T}$	
Theory:	$A = U\Sigma V^{T}$ Eigenvalues/Eigenvectors The Determinant Diagonalization Symmetric Matrices The SVD	
Applications:	Matrix Powers A ⁿ Iterative Maps: e.g. Fibonacci Dynamical Systems e.g. R&J Total Least Squares EOF Analysis	

