What are Numerical Methods?

1) An extremely broad field -- much broader than this class...

2) Generally speaking -- analysis and application of algorithms to allow computers to solve problems in math, science and engineering.

3) Strictly speaking, numerical methods don't require computers....many predate the modern electronic computer (e.g. Newton's method ~17th century)

4) But computers make things practical...and we will consider this class an introduction to computational math...

Why Numerical Methods?

1) Some problems have no analytic solution

2) Some problems are too big to be done by hand

3) Sometimes you actually want to compute the answer (rather than show it exists or is unique).

4) Numerics complement analytic methods but doesn't replace them

5) But you need both to understand your problems
Some Examples
Example #1) The Retirement problem (future value of an annuity)

Where
\[P: \text{incremental payment} \]
\[r: \text{interest rate per payment period} \]
\[n: \text{number of payments} \]
\[A: \text{total amount after n payments} \]

Some Examples
Example #1) The Retirement problem:

The forward problem: find \(A(P,r,n) \)

The Inverse problem: find \(r(A_{target},P,n) \): this is a rootfinding problem - no closed solution

Some Examples
Example #2) The BoatRace problem: (numerical quadrature)

Given a sinusoidal river: \(f(x) = \text{A} \sin(x) \), find the total length actually rowed over the interval \(x = [0,L] \)

Some Examples
Example #2) The BoatRace problem: (numerical quadrature)

Given a sinusoidal river: \(f(x) = \text{A} \sin(x) \), find the total length actually rowed over the interval \(x = [0,L] \)
Some Examples
Example #3) A simple non-linear population growth model (Lotka-Volterra Predator-Prey model)

Question #1) Are there any steady states? \(\frac{dR}{dt} = \frac{dF}{dt} = 0 \) or

Solving: Systems of non-linear equations \(F(x) = 0 \)

Some Examples
Example #4) Interpolation/Data fitting/Numerical differentiation

Some real data somebody just sent me

\[f(z) \quad \text{and} \quad g(z) \]

Question: how to evaluate

\[E(z) = \frac{\frac{d}{dz}(f \cdot g)}{f \cdot g} \]

! Differentiation of data is a bad idea: how to fit a smooth function to the data then differentiate

The issues: Accuracy and Efficiency

Numerical methods, invariably include an enormous range of approximations, each with attendant errors.

Good numerical methods also return error estimates, and are stable in the presence of floating point error.

The detailed analysis of algorithms and their errors is formally Numerical Analysis

THIS IS NOT A CLASS IN NUMERICAL ANALYSIS

This is principally a Methods class where I will emphasize

- Standard Methods and their errors
- Give insight into how they work (and don't work)
- Give you practice implementing them to solve problems

If you want to design new algorithms... you're in the wrong class
Course Content:

Topics Covered
1) Sources of Error and Error Analysis
2) Root finding/optimization of non-linear functions of one variable, f(x)
3) Interpolation
4) Numerical Integration (Quadrature) and Differentiation
5) Solutions of ODE Initial value problems
6) Numerical Linear Algebra
7) Solving systems of non-linear Equations \(F(x) = 0 \)
8) ODE 2-point Boundary value problems (towards numerical PDE's)

Topics not-covered
1) Optimization -- linear programming, constrained optimization
2) Numerical Solution of PDE's (E4301)
3) Mathematical Modeling

Purpose of this course:
Choose and understand critical methods that prepare you for Numerical PDE's, modeling and scientific computation

Finite element calculation of viscous fluid flow around a "dolfin"
Requires:
Interpolation, numerical quadrature, numerical linear algebra,
+ PDE's, Vector Calculus, functional analysis, computational geometry, C++/Python programming

Course Logistics:

2 Lectures per week
~1 Homework per unit (60% of grade)
 All Matlab based!
1 Midterm (20%)
1 Final (20%)

Text: no required text but
 Online resources
 Library Reserves
 SmartBoard Notes from each class
 CVN videos on special request
Matlab: Will need access to matlab. Available through all engineering computers or
 Student Version through Columbia Bookstore $99.

All spelled out on web site
 www.ldeo.columbia.edu/~mspieg/e4300
 (accessible through courseworks)
Final Thoughts:

Numerical methods aren't particularly hard...however...

1) They require significant fluency in
 Calculus
 Vector Calculus
 ODE's
 Linear Algebra
 Basic programming and debugging

2) You need to be well prepared, and clear about your objectives

3) Individual pieces can seem dry or disconnected (although interesting math in their own right).

4) However, the ability to
 put them all together
 to move between continuous and discrete problems
 keep track of errors and artifacts
 stay on top of complex, multi-part problems

...is priceless