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Abstract

Radioactive disequilibrium of 238U nuclides is com-
monly observed in young lavas and has often been
used to infer the rates of melting and melt migra-
tion. However, previous calculations do not actu-
ally include melt transport. Here we explore the be-
haviour of short-lived radionuclides in a new calcu-
lation that includes the fluid dynamics of melt seg-
regation. We emphasize that 238U series disequilib-
rium results from the differences in residence time of
parent and daughter nuclides. Unlike previous mod-
els, contrasts in residence times are controlled by dif-
ferences in transport velocities caused by melt sepa-
ration and continued melt-solid interaction through-
out the melting column. This “chromatographic” ef-
fect can produce larger excesses of both 230Th and
226Ra within the same physical regime compared to
previous calculations which do not include melt trans-
port. Using this effect to account for U-series ex-
cesses leads to radically different inferences about the
rates of melt migration. Where previous models re-
quire rapid melt extraction, our calculation can pro-
duce larger excesses with slow melt extraction. Nev-
ertheless, reproducing the large (226Ra/230Th) activ-
ity ratios observed in fresh mid-ocean ridge glasses is
still problematic if the residence times are controlled
solely by bulk equilibrium partitioning. While it still
remains to be shown conclusively that the large 226Ra
excesses are produced during melting, our calculation
only requires differences in transport velocities to pro-
duce secular disequilibrium. Thus we speculate that
other processes, such as crystal surface interaction,
may also contribute to the production of the observed
excesses.
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Figure 1: Activity ratios of (230Th/238U) and
(226Ra/230Th) for axial mid-ocean ridge basalts from the
East Pacific Rise (squares), Juan de Fuca Ridge (triangles)
and Gorda Ridge (circles). Measurements are made using
alpha counting [3-5] (solid symbols) and mass spectrometry
[6] (open symbols) and are shown with 2σ error bars. The
activity ratio of any two elements is the ratio of their decay
rates e.g. (230Th/238U) = λTh[230Th]/λU [238U] where
square brackets denote atomic concentrations and λ is the
decay constant. In general, young mid-ocean ridge basalts
show excesses of both 230Th and 226Ra with little apparent
correlation between the two activity ratios. The grey circle
marks the reference activity ratios of (230Th/238U)= 1.1
and (226Ra/230Th)= 2.25 that appear in subsequent contour
plots.

1 Introduction
238U decays to stable 206Pb via a chain of short-
lived intermediate nuclides which includes 230Th and
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226Ra. In a closed system, such a decay series evolves
to a state of secular equilibrium where the decay rate
(activity) of each intermediate nuclide equals its pro-
duction rate due to the decay of its respective parent
element. Therefore, in secular equilibrium the ratio of
activities of any two nuclides in the chain are unity.
If such a system is disturbed, excesses (activity ratios
> 1) will relax towards unity on a time scale that is of
the order of the half-life of the daughter nuclide. The
half-lives of 230Th and 226Ra are 75,380 yr and 1600
yr respectively, which makes them particularly use-
ful for investigating melting and melt migration pro-
cesses. Moreover, these nuclides are short-lived rela-
tive to time-scales of mantle evolution so that a man-
tle source is very likely to be in secular equilibrium
before melting commences. Thus, unlike most geo-
chemical systems, the 238U series nuclides have a well
constrained source composition and provide informa-
tion about the rates of geophysical processes.

Secular disequilibrium is commonly observed in
fresh lavas from mid-ocean ridges, arcs and ocean-
islands (see [1, 2] for reviews). Here we discuss a
range of processes that can occur in all magmatic set-
tings; however, we will focus principally on 238U
series data from mid-ocean ridge basalts because
the physical parameters controlling melting beneath
ridges are best constrained. Figure 1 shows the avail-
able data for samples of axial ridge basalts where full
U-Th-Ra isotope systematics have been measured by
either alpha counting [3-5] or by mass spectrometry
[6]. While the data show considerable scatter, all
points show both 230Th and 226Ra excesses (within er-
ror). The principal problems posed by these observa-
tions is how to explain the apparent fractionations of
very incompatible elements in large degree melts and
how to preserve large 226Ra excesses given its short
half-life of 1600 years.

This paper explores a range of processes that can
cause secular disequilibrium in young lavas. Previous
calculations have suggested that 230Th excesses can
be produced by slow equilibrium melting and instan-
taneous melt extraction [7, 8]. Other models have in-
voked rapid disequilibrium melting [9]. While these
previous calculations have been used to infer the rates
of melting and melt extraction, it is important to note
that none of these models actually include the fluid dy-
namics of melting and transport. The principal pur-
pose of this paper is to illustrate how melt transport af-
fects the behaviour of radiogenic nuclides and can lead
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Figure 2: A schematic diagram to illustrate the effect of
melt transport with continuous melt-solid interaction on par-
ent and daughter activities, (cp) and (cd), in a steady-state,
one-dimensional melting column. The important prop-
erty of this calculation is that different elements can travel
at different velocities due to the “chromatographic effect”
(e.g. [10, 11]) and therefore have different residence times
in the column. The vertical arrows show the distance each
element travels before a fixed percentage decays. The short
curved arrows denote this decay. In the unmelted region be-
low the solidus, both parent and daughter travel at the same
velocity and can maintain secular equilibrium by decaying
at the same rate. In the melting column, however, the daugh-
ter is less compatible and travels faster than the parent. In
this case, the original daughter nuclides that enter the bot-
tom can be extracted before they decay. This initial daugh-
ter, however, will be augmented by the decay of its parent,
which spends more time in the column. This process is in-
dicated by the increasing width of the daughter arrow. Thus
the total concentration of the daughter at the surface will be
enriched relative to the concentration at the base (here by a
factor of ∼ 3).

to significantly different interpretations of the data.

2 Description of the model

The specific model we consider, calculates the melt-
ing, transport and decay of a series of elements

(238U
2α+2β−→ 230Th

α→ 226Ra) in a one-dimensional,
steady-state upwelling column where we explicitly
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calculate the flow of melt and solid. The model and its
behaviour are shown schematically in Fig. 2. The ele-
ments are assumed to be in secular equilibrium when
they begin melting. If all the elements continued to
travel together as a closed system, they would decay
at the same rate and remain in secular equilibrium.
However, once the nuclides enter the partially molten
region, they travel at different velocities due to the
“chromatographic effect” described by many authors
(e.g. [10, 11]). Because of their different transport ve-
locities, each element has a different residence time in
the melting column. If the parent spends more time in
the column than the daughter, it will have more time
to decay and thus will produce an excess of daughter
nuclide. Here we develop the simplest quantitative de-
scription of this conceptual model to illustrate the fun-
damental effects of transport.

We begin with the general equation governing con-
servation of mass for each parent-daughter pair in a
decay series of radioactive elements

∂

∂t
[ρfφ+ ρs(1− φ)Di] c

f
i +∇· [ρfφv + ρs(1− φ)DiV] cfi =

λi−1 [ρfφ+ ρs(1− φ)Di−1] cfi−1 − λi [ρfφ+ ρs(1− φ)Di] c
f
i(1)

Here ρf , ρs are the densities of the melt and solid re-
spectively, φ is the volume fraction of melt (porosity),
v is the melt velocity and V is the solid velocity. For
each element i = 1, 2, 3 . . . in the decay series, Di is
its bulk partition coefficient, cfi is its concentration in
the melt and λi is its decay constant. Additional pa-
rameters and notation are given in Table 1. The first
nuclide in the decay chain, 238U, has no parent and
therefore λ0 = 0. For simplicity, Eq. (1) neglects dif-
fusion, and assumes that the concentration of element
i in the melt and in the solid can always be related by a
bulk partition coefficient Di. Equation (1) states that
changes in the total mass of element i depend on varia-
tions in the fluxes of melt and solid and on the balance
of production by its parent (element i−1) and its own
decay.

Of the principal unknowns in Eq. (1), the poros-
ity and the melt and solid velocities are readily cal-
culated given a mass-conservative theory of magma
migration [12-17]. Appendix A shows that for a one-
dimensional, steady-state melting column, the flux of
melt and solid as a function of height, z, in the column
can be written

ρfφw = Γ0z (2)

ρs(1− φ)W = ρsW0 − Γ0z (3)

where w is the one-dimensional melt velocity and W
is the solid velocity (see also [18]). The term

Γ0 =
ρsW0Fmax

d
(4)

is the constant melting rate in the column. Equation
(4) approximates melting by adiabatic decompression
by setting the melting rate proportional to the mantle
upwelling rate, W0. Fmax is the maximum degree of
melting attained at the top of the column (i.e. at height
z = d). Here the melting rate is constant, but these
equations can be readily extended to include variable
melting rates (see Appendix A).

Equations (2) and (3) show that the melt and solid
fluxes simply balance melt production and vary lin-
early with height in the column. In particular, Eq. (2)
shows that the melt flux increases with z but at any
height, the product of porosity and melt velocity is
fixed. If we note that F = Fmaxz/d is the degree of
melting at height z, then Eqs. (2) and (4) can be com-
bined to show that the relationship between melt ve-
locity and porosity in steady state is

w = W0
ρsF

ρfφ
(5)

If the melt does not separate from the solid (w →W0)
then the porosity will be comparable to the degree of
melting (φ ∼ F ). Very efficient melt extraction (w �
W0) implies that the residual porosity must be very
small and φ � F . Once F (z)/φ(z) is known at any
height, the melt velocity is determined.

To determine φ(z) requires an additional functional
relationship between porosity and melt and solid ve-
locities. Here we use a simplified form of Darcy’s law

φ(w −W ) =
k0

µ
φn(1− φ)∆ρg (6)

to govern the separation of melt from solid. k0 con-
trols the permeability and depends upon the spacing of
melt channels [19], µ is the melt viscosity and n is the
power law exponent in the permeability that reflects
the microscopic geometry of the melt distribution. If
the melt is distributed in tubes n ∼ 2. If it is in veins
or sheets n ∼ 3 (e.g. [20]). Throughout this paper we
use n = 2, although calculations using n = 3 produce
nearly identical results. Given Eqs. (2),(3) and (6) the
porosity as a function of height is given implicitly by

ρf
ρ̄

[
φ+Aφn(1− φ)2

]
=
Fmaxz

d
(7)
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Table 1: Notation

Variable Meaning Values used Dimension

cfi concentration of component i in melt mol kg−1

cfi0 initial concentration of component i in melt (= csi0/Di) mol kg−1

c′i = cfi /c
f
i0 dimensionless melt concentration none

c′Bi dimensionless melt concentration for a stable element none
csi concentration of component i in solid mol kg−1

d depth to the solidus m
Di bulk partition coefficient of element i none
Dsi diffusivity of element i in solid (10−14–10−18) m2 s−1

Dfi diffusivity of element i in melt (10−10–10−11) m2 s−1

F = F (z) = Fmaxζ, degree of melting at height z 0–0.25 none
Fmax maximum degree of melting at top of column 0.25 none
g acceleration due to gravity 9.81 m s−2

kφ permeability = k0φn m2

k0 permeability constant m2

n exponent in permeability 2 none
t time s
t1/2 half-life s
tc critical extraction time = 6.64t1/2 s
Ui = ln c′i none
V matrix velocity m s−1

v melt velocity m s−1

W one-dimensional matrix velocity m s−1

w one-dimensional melt velocity m s−1

W0 initial solid upwelling rate 10−3–1 m yr−1

wieff effective velocity of component i m s−1

z vertical cartesian coordinate (height) m

αi = cfi /c
f
Bi enrichment factor over batch melting none

Γ melting rate kg m−3 s−1

Γ0 constant melting rate kg m−3 s−1

ζ = z/d dimensionless height in the column none
λi decay constant of element i s−1

µ melt shear viscosity (1–10) Pa s
ρf density of melt 2800 kg m−3

ρs density of matrix 3300 kg m−3

∆ρ = ρs − ρf 500 kg m−3

ρ̄ = ρfφ+ ρs(1− φ) mean density kg m−3

ρ̄0 mean density at porosity φmax kg m−3

φ porosity none
φmax maximum porosity in column 0.001–0.25 none
φeq equilibration volume (porosity) for dynamic melting 0–0.25 none
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where

A =
1

φn−1
max(1− φmax)2

[
ρ̄0Fmax
ρfφmax

− 1
]

(8)

and φmax is the maximum porosity at the top of the
column. By combining Darcy’s law with general mass
conservation, we need only choose φmax and Fmax
to determine the porosity and melt and solid velocities
throughout the column. (see also [18, 21])

Equation (1) can now be rewritten in a more
tractable form using Eqs. (2), (3) and (7). For simplic-
ity we use constant bulk partition coefficients and as-
sume that the solid is initially in secular equilibrium
before melting begins. This initial condition is

λic
f
i0Di

λi−1c
f
(i−1)0Di−1

= 1 (9)

We scale the concentrations of each element in the
melt to the initial melt concentrations (i.e. c′i =
cfi /c

f
i0), and scale the distance to the depth of the melt-

ing column. With these considerations Eq. (1) be-
comes

dc′i
dζ

= c′i
(Di − 1)Fmax

Di + (1−Di)Fmaxζ
+λid

[
B(ζ)

c′i−1

wi−1
eff

− c′i
wieff

]
(10)

where

B(ζ) =
Di [Di−1 + (1−Di−1)Fmaxζ]
Di−1 [Di + (1−Di)Fmaxζ]

(11)

and ζ = z/d is the fractional height in the column
(i.e. ζ = 0 at the base of the column and ζ = 1 at the
top). Equation (10) forms a system of ordinary differ-
ential equations that can be solved for the concentra-
tions of each element in the decay series using stan-
dard numerical techniques [22]. The first term on the
right hand side is the change in concentration due to
melting. The second term is the change in concentra-
tion due to the difference between production and de-
cay of the daughter element. The radiogenic produc-
tion term depends primarily on the “effective veloc-
ity” of each element i (e.g. [10, 11])

wieff =
ρfφw + ρs(1− φ)DiW

ρfφ+ ρs(1− φ)Di
= W0

Di + (1−Di)Fmaxζ
Di + (ρf/ρs −Di)φ

(12)

≈ W +
1

1 +Di/φ
(w −W )

which is a weighted combination of the melt and solid
velocities. Elements with partition coefficients greater
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Figure 4: Activities of 238U and 230Th in both the solid
and the melt from Fig. 3b plotted on a conventional equi-
line diagram. The trajectories show the changes in activity
as a function of height in the column. F = 0 is the bot-
tom of the column, F = 0.25 is the top. The activity ratio
in the initial solid lies on the equiline while (230Th/238U) in
the first liquid is the ratio of parent to daughter bulk parti-
tion coefficients (here DU/DTh = 1.33). As the degree
of melting increases up the column, elemental fractionation
of U and Th becomes insignificant and so the (238U/232Th)
ratio of the melt rapidly approaches that of the initial solid
(grey square). The (230Th/232Th) ratio, however, increases
in both melt and solid as 238U decays to produce 230Th. This
“ingrowth” of 230Th is evident in the equiline diagram. The
corresponding decay of 238U is not apparent only because
atomic concentrations of 238U are always over 4 orders of
magnitude greater than those of 230Th (e.g. in secular equi-
librium [238U/230Th] = λTh/λU = 5.9 × 104). Thus the
number of decays of 238U over melting time scales has neg-
ligible effects on uranium concentrations but large effects on
230Th abundances. The process of ingrowth of 230Th is the
same as that demonstrated in [7, 8] but here is controlled by
transport processes rather than melting processes (see Sec-
tion 4).

than the porosity (Di � φ) travel near the solid ve-
locity. Very incompatible elements (Di � φ) travel
near the melt velocity. Thus, as long as melt separates
from the solid, elements with different solid/liquid
partitioning will travel at different velocities. While
Eq. (10) appears somewhat complicated, this calcula-
tion has fewer free parameters than previous models
because it provides the important coupling between
melting, porosity, and the velocity of each element.
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Figure 3: Solutions for porosity, concentrations of 238U, 230Th, 226Ra and activity ratios (230Th/238U), (226Ra/230Th) as a
function of height in the melting column (d = 50km). In this particular solution, the maximum porosity is φmax = 0.005,
the upwelling velocity is W0 = 0.05 m yr−1 and the maximum degree of melting at z = d is Fmax = 0.25. The effective
bulk partition coefficients used are DU = 0.0086, DTh = 0.0065 and DRa = 0.0005. (a) Profile of porosity with depth. (b)
Concentrations of 238U, 230Th and 226Ra with depth. The solid lines show the natural log of the melt concentration normalized
to the initial melt concentration cs0/D. The dashed lines show the concentrations expected if there was no radioactive decay
(which is the same as expected with batch melting). (c) The excess concentration of each element with respect to batch melting,
αi (see Eq. 14). Each curve shows the ratio of the element concentration to the concentration of a stable element with the same
partition coefficient (e.g. the curve marked Th is the 230Th/232Th ratio normalized to its source ratio). The enrichments in both
230Th and 226Ra arise from the decay of the parent element that is preferentially retained in the column. (d) Activity ratios as
a function of depth. In this instance, (230Th/238U) = 1.13 and (226Ra/230Th) = 2.3 at the surface.

3 Behaviour of the system

This section describes the behaviour of Eq. (10) to il-
lustrate the consequences of melt transport in the sim-
plest system. Figure 3 shows one solution of these
equations for a set of parameters that can produce
230Th and 226Ra excesses comparable to the reference
values in Fig. 1. This figure (and Fig. 5), however,
should not be taken as a model for MORB. In particu-
lar, a number of partitioning experiments suggest that
the assumption of a single set of constant bulk parti-
tion coefficients inherent in Eq. (10) is inadequate to
describe MORB genesis [23-28]. Nevertheless, all of
the important effects of melt transport are contained
in the simplest calculation and more realistic sets of
parameters can be added without changing the basic
nature of the solution (see Discussion and Appendix).

Furthermore, previous calculations have also assumed
single stage melting and the results of all of the models
can be readily compared for the same parameters. Af-
ter we discuss the range of processes that can affect U-
series disequilibrium we will consider additional mod-
els that are more relevant for MORB genesis.

Figure 3a shows the porosity as a function of height
in a melting column of depth d = 50km where the
mantle upwells at W0 = 5 cm yr−1. In this calcula-
tion, the solid undergoes 25% melting by the time it
reaches the top of the column. The maximum poros-
ity, however, is only 0.5% and thus the melt moves
approximately 50 times faster than the solid (Eq. 5)
and takes ∼ 20, 000 yrs to traverse the melting col-
umn. Figure 3b shows the natural log of the concentra-
tion normalized to the concentration of the initial liq-
uid (Ui = ln[cfi /c

f
i0]) for 238U, 230Th, and 226Ra. For
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comparison, the dashed lines show the concentrations
expected if the elements were non-radiogenic (i.e. if
λi = 0 for all elements). Inspection of Eq. (10) shows
that if changes in concentration are due only to melt-
ing, then the concentration of each element in the melt
would be

c′i =
Di

Di + (1−Di)Fmaxζ
(13)

which is identical to the concentrations expected in
batch melting even though the porosity is small and
the melt moves relative to the solid. This result has
been noted before (e.g. [15]) and arises directly from
the assumption of continuous re-equilibration of solid
and liquid. Fractional melts are produced only if the
solid does not re-equilibrate with the melt that passes
through it (see Appendix A).

Short-lived radioactive nuclides, however, do not
behave like stable elements, and the concentrations
of 230Th and 226Ra in the melt can be greater than
the concentration of a stable element with the same
bulk partition coefficient (i.e. Eq. 13). For the exam-
ple shown in Fig. 3b,c the amount of 230Th in the melt
at the top of the column is ∼ 13% greater than if it
were a stable element. Figure 4 shows the evolution
of 230Th (and 232Th) in both solid and liquid plotted
on a standard equiline diagram [29]. 226Ra shows an
increase of ∼ 250%, even though the melt takes over
ten half-lives of 226Ra to cross the column. These re-
sults show that more daughter material is actually be-
ing produced in the column than was brought in at the
bottom. It is this new ingrown material that accounts
for the excess activity ratios calculated at the surface
(Fig. 3d).

This effect can be explained simply in terms of the
relative residence times of each of the elements as
was illustrated schematically in Fig. 2. Because in-
dividual elements have different transport velocities,
they spend different amounts of time in the melting
column. Here, 238U travels more slowly than 230Th
which is slower than 226Ra and the additional resi-
dence times lead to excesses of daughter nuclides. The
effects of transport can be separated from those of
melting if we rewrite the melt concentrations as

c′i = αic
′
Bi (14)

where c′Bi is the batch melt concentration expected for
a stable element (Eq. 13), andαi is the enrichment fac-
tor due to radioactive decay. Substituting Eq. (14) into

Eq. (10) yields the simpler equation

dαi
dζ

= λid

[
αi−1

wi−1
eff

− αi
wieff

]
(15)

which shows that the enrichment due to decay depends
only on the relative velocities of the parent and daugh-
ter nuclides. Equation (15) can be solved for αi di-
rectly, however, it is numerically more stable to solve
Eq. (10).

For a given degree of melting, the relative veloc-
ity of each element depends on the porosity, the up-
welling rate of the solid and the relative affinity of
each element for the solid phase, which in the sim-
plest case is given by the partition coefficients. Fig-
ure 5 shows how changing the two principal physi-
cal parameters, φmax and W0, affects the activity ra-
tios (230Th/238U) and (226Ra/230Th) in the melt at the
top of the column. For a fixed set of partition coef-
ficients, the contours of the activity ratios have two
different behaviours. In some regions of parameter
space the activities depend primarily on the porosity
while in others they depend primarily on the upwelling
rate. These two different behaviours are controlled by
whether the total extraction time of the daughter nu-
clide is long or short compared to its half-life. The ex-
traction time for any element is the time it takes the
element to traverse the melting region. The curves la-
beled tc in Figs. 5a and 5b show an extraction time
equal to approximately six half-lives of the daughter
nuclide. After ∼ 6 half-lives, 99% of a given nuclide
has decayed. Thus tc corresponds to the longest time
for which daughter nuclides present at the bottom of
the column will still be present at the top. Any solu-
tion with combinedW0 and φmax that plots above the
curve tc, has a shorter extraction time and nuclides can
be sampled from the entire column. In this regime,
activity ratios are sensitive to the upwelling velocity.
Points that plot below the curve (e.g. slower upwelling
rates), have extraction times longer than tc and only
nuclides formed in the upper part of the column are
sampled at the surface. For these solutions, the ac-
tivity ratios depend primarily on the porosity. Further
analysis of Eq. (15) shows this result is the expected
behaviour of the governing equations (Appendix A).

The behaviour of 226Ra is qualitatively the same as
that for 230Th, but because these nuclides have very
different half-lives and partition coefficients, they be-
have differently for the same values of φmax and
W0. The rectangular boxes in Fig. 5 show a range
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Figure 5: Effect of upwelling rate W0 and maximum porosity φmax on activity ratios calculated for melt at the top of the
upwelling column (contours). The maximum degree of melting for all calculations isFmax = 0.25, d = 50km, and the partition
coefficients areDU = 0.0086,DTh = 0.0065 andDRa = 0.0005 (a) contours of activity ratios for (230Th/238U) (b) contours
of (226Ra/230Th). The thick shaded contours mark the reference activity ratios (230Th/238U)= 1.1 and (226Ra/230Th)= 2.25
shown in Fig. 1. Note that for both 230Th and 226Ra there are two different regimes, one where the activity ratio is sensitive to
upwelling velocity, the other is where the activity is only sensitive to the porosity. The location of the two regimes is controlled
by the half-life of each daughter nuclide and the ratio of their partition coefficients to the porosity. In each plot, the vertical line
marks the solutions where the maximum porosity is equal to the partition coefficient. The bold curved line marks the extraction
time tc = 6.64t1/2 (see text). The grey boxes mark values of W0 appropriate for moderate to fast spreading ridges and a range
of plausible porosities. In this region, the thorium and radium contours are roughly orthogonal. Thus a small change in porosity
can cause large changes in (226Ra/230Th) with negligible changes in (230Th/238U) which is consistent with observations (Fig. 1).

of porosities and upwelling velocities that are reason-
able for moderate to fast spreading ridges. In this
regime, 230Th excesses record ingrowth throughout
the column while 226Ra excess are sensitive only to
processes near the surface. Thus small variations in
porosity can cause large changes in radium activity
with negligible effects on the thorium excesses of the
erupted melt.

Examination of Fig. 5 also shows how changing
the values of the partition coefficients affects the ac-
tivity ratios. Each plot has a maximum activity ra-
tio that occurs for slow upwelling and small porosi-
ties. This maximum is the ratio of the parent and
daughter partition coefficients. The positions of the
contours in Fig. 5, however, are controlled by the ra-
tio of the daughter partition coefficient to the porosity
(Ddaught/φmax). If the ratios of the partition coeffi-
cients remain the same but all the elements are more
incompatible, then a smaller porosity is required to
produce the same activity ratio.

Because 230Th is both a daughter and parent nu-
clide in the decay chain, combined measurements of
(230Th/238U) and (226Ra/230Th) place stronger con-
straints on the model parameters than either measure-
ment separately. However, because the 230Th and
226Ra excesses are produced in different regions of the
melt column, this calculation shows that it is possi-
ble to produce large 226Ra excesses without requiring
melt extraction times that are short compared to the
half-life of 226Ra. While the actual values of the ac-
tivity ratios are sensitive to the chosen parameters, the
important conclusion of this calculation is that melt
transport with melt-solid interaction can cause signif-
icant excesses of short lived isotopes.

4 Comparison to previous models

The behaviour of the simplest transport model is read-
ily understood in terms of the relative residence times
of parent and daughter elements in the melting system.
Previous melting models can also be explained within
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the framework of residence times, and nearly all the
differences in behaviour and implications of the mod-
els can be traced to differences in the processes that
govern the residence times of each element. This sec-
tion highlights the subtle differences between all of the
models and suggests that all else being equal, the cal-
culations that include melt transport with melt-solid
interaction produce the largest thorium and radium ex-
cesses in a physically reasonable system.

The earliest models (e.g. [30]) that attempt to ac-
count for 230Th excesses actually have no difference
in residence times between uranium and thorium, and
simply explain the different activity ratios by instanta-
neous chemical fractionation of parent from daughter.
Chemical fractionation, however, only works when
the degree of melting F is comparable to the bulk par-
tition coefficients D. This mechanism is clearly not
viable at ridges where the average degree of melting
is at least an order of magnitude greater than all of the
partition coefficients of the 238U series nuclides.

More sophisticated “dynamic melting” models [7,
8] consider one-dimensional, steady-state melting
columns with a constant melting rate and a single set
of partition coefficients. In these respects, such mod-
els are similar to ours. However, the dynamic models
do not include melt migration and, furthermore, are ef-
fectively fractional melting calculations. Figure 6 il-
lustrates the behaviour of the dynamic melting mod-
els. These calculations assume that the entire column
has a constant porosity of melt that is in chemical equi-
librium with the solid. Any melt that is produced in
excess of this constant porosity is ‘extracted’ into a
second chemically isolated reservoir where it is as-
sumed to be instantaneously mixed and erupted.

In these calculations, excess daughter is also pro-
duced by decay of the parent, however, the relative
residence times are controlled by the melting rate and
not by the transport time. If the parent is more compat-
ible than the daughter, it will spend a longer time in the
solid before it is “pushed” into the liquid by melting.
If the melting rate is sufficiently slow to allow the par-
ent to decay, the longer residence time in the solid will
produce excesses in the same manner as in our calcu-
lation. Once the extracted melt enters the chemically
isolated reservoir, however, all elements travel at the
melt velocity and thus have the same residence time.
Any excess in the second reservoir that is produced
by slow melting can only decay back to secular equi-
librium. Because these dynamic melting models are

solidus

partially 
molten
region

subsolidus 
mantle

surface

instantaneous
mixing and
extraction

parent
daughter

'dynamic 
melting' region

(constant φ, chemical 
equilibrium)

chemically 
isolated 
reservoir

maximum 
enrichment

negligible 
enrichment

Figure 6: A cartoon illustrating the behaviour of “dynamic
melting” models. These models propose two reservoirs.
The first is the melting region where the solid maintains
chemical equilibrium with a small constant porosity φeq.
Any melt that is produced in excess of this equilibration
porosity is ‘extracted’ into the second reservoir which is
chemically isolated from the solid. Physically, this second
reservoir could be a a network of veins or dikes in which the
melt does not re-equilibrate with the solid (e.g. [19]). In this
second reservoir, any excess produced by slow melting can
only decay towards secular equilibrium. The simplest dy-
namic melting models [7, 8] do not include melt extraction
and simply mix the contents of the second reservoir from all
heights in the column and assume instantaneous eruption at
the surface. For smallφeq (i.e. φeq � F ) these calculations
are essentially fractional melting calculations and incompat-
ible elements are stripped from the melting region during the
first F ∼ Di degree of melting. Thus nearly all of the in-
growth of daughter nuclides occurs at the bottom of the col-
umn and requires rapid extraction to be preserved to the sur-
face.

effectively fractional melting calculations, the incom-
patible elements are efficiently stripped from the solid
within the first few percent of melting. Thus nearly all
of the enrichment in both thorium and radium occurs
at the bottom of the column.

While the differences between our calculation and
the dynamic melting models may not appear to be
great, these models actually lead to very different in-
terpretations of the data. Our calculation produces ex-
cesses at all levels in the column, with thorium pre-
serving excesses produced at the bottom of the melting
region and radium recording shallow level interaction
and transport. Because the radium excesses are pro-
duced near the surface, our model actually places no
constraints on the minimum extraction time of melt.
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Figure 7: (a, b) Contours of activity ratios for models that assume instantaneous melt transport [7, 8]. This figure shows the
solution of the “dynamic melting calculation” given in [8] for the same partition coefficients as used in Fig. 5. In this calculation
the “equilibration porosity” φeq is the small volume of liquid that remains in chemical equilibrium with the solid. φeq is not
directly comparable to the porosity in the transport calculations but has similar effects for radioactive disequilibrium when melt
transport is instantaneous. (c, d) The effects of adding melt transport to dynamic melting models. This calculation uses the same
fluid dynamics as Fig. 5 but assumes that the solid melts fractionally and does not interact with the melt that passes through it
(see Appendix A). Pure fractional melting corresponds to φeq = 0 in Fig. 7a,b and produces maximum radioactive disequilibria
in dynamic melting models. Once transport is included, however, any excesses that are produced by melting at the bottom of
the column decay during transit to the surface. Hence 7c,d shows smaller 230Th and negligible 226Ra excesses for the same
parameters as Fig. 5. The shaded grey contours are for the reference values, (230Th/238U)= 1.1, (226Ra/230Th)=2.25 shown in
Fig. 1.
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The dynamic melting models, however, require rapid
extraction because nearly all of the significant ex-
cesses are produced at the bottom of the column, and
after fractionation are chemically isolated from their
source and can only decay during transport.

It should be reiterated that the dynamic melting cal-
culations assume instantaneous transport and mixing
of melts from all depths. With these somewhat arbi-
trary assumptions, the dynamic melting calculations
can produce average excesses that are comparable to
those produced in our model. Figure 7a,b shows the
activity ratios of the mixed melts using the same par-
tition coefficients, melting depth and overall degree of
melting as Fig. 5. Qualitatively, the solutions are simi-
lar, but for a given upwelling rate (melting rate) the dy-
namic melting calculation gives lower excesses. Even
these slightly smaller excesses are maxima, however,
since this solution assumes instantaneous extraction.

Using the fluid dynamic framework developed in
section 2, we can add the effects of melt transport to
the dynamic melting calculations (see Appendix for
details). Specifically, Fig. 7c,d shows the activities of
melts erupted at the top of a column where the solid
has undergone pure fractional melting and the melt
that is produced segregates into a series of veins that
do not interact with the solid through which they pass.
The transport in these veins can still be described by
Darcy’s law (see [19]) and so the melt transport times
in Figs. 5 and 7c,d are identical for a given porosity
and upwelling rate. As is clear from Fig. 7c,d, once
transport times are calculated for fractional (or near
fractional) melting models, only small 230Th and neg-
ligible 226Ra excesses can be preserved in melts at the
top of the column (see also [31]). Similar problems
were noted for the “accumulated continuous melting”
model of Williams and Gill [8].

Figures 5 and 7c,d represent the end-member solu-
tions for one-dimensional melting columns with trans-
port and “equilibrium melting.” By equilibrium melt-
ing, we mean that there is full volume chemical equi-
librium between the melting minerals and the instan-
taneous melts that are produced. Both “batch” and
“fractional” melting models are examples of equilib-
rium melting, the only difference between them is
the volume of melt that re-equilibrates with the solid.
Similarly, the only difference between Figs. 5 and 7c,d
is whether the melt and solid remain in chemical equi-
librium during transport. Figure 5 assumes that the
solid and liquid re-equilibrate throughout the column,

while Figure 7c,d assumes there is no chemical inter-
action during transport.

The basic requirements for maintaining chemical
equilibrium during magma migration are discussed by
Spiegelman and Kenyon [19] who suggest that the
ability to maintain chemical equilibrium is very sensi-
tive to the microscopic distribution of melt and solid.
It should be noted, however, that the scaling argu-
ment presented by Spiegelman and Kenyon represents
a worst case scenario which assumes that the melt is
distributed in veins or channels separated by regions
of pure solid. Given the low values of measured dif-
fusivities in mantle minerals (e.g.Ds ∼ 10−16 m2 s−1

at 1240◦C for U in cpx [32]), it does not require a very
large vein spacing before the interior of the solid re-
gions cannot communicate with the melt in the chan-
nels. However, because the diffusivity of trace ele-
ments in the melt is orders of magnitude larger than
that in the solid (Df ∼ 10−10–10−11 m2 s−1 [33])
even a very small volume of interconnected melt along
the grain edges can significantly enhance the effective
diffusivity of the inter-channel regions. Recent exper-
iments on two-phase aggregates [34, 35] suggest that
surface energy effects will maintain such a network
because nature abhors a dry grain edge. Spiegelman
and Kenyon did not account for such a melt network
in their calculations. Furthermore, the effects of defor-
mation in a partially molten upper mantle could possi-
bly increase the effective solid diffusivities over those
measured in a static crystal. Thus a better understand-
ing of the microscopic properties of melt-solid aggre-
gates is required before we can determine where the
transition from equilibrium to disequilibrium trans-
port occurs.

Grain scale processes also control the “disequilib-
rium melting” models that have been recently pre-
sented [9, 36]. While only Qin [9] has explicitly cal-
culated the behaviour of U-series nuclides, both mod-
els make identical assumptions about the microscopic
mechanics of melting. These two models assume that
the solid is composed of spherical grains where the
surface of each grain is in chemical equilibrium with
the melt phase but the interior can only equilibrate
with the melt by solid diffusion. Most importantly,
these models assume that the individual crystals melt
much like peeling layers off an onion. Such “onion
skin” melting leads to disequilibrium melting when
the crystal surface retreats faster than an element can
diffuse into the grain interior. All of the effects of
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these models rest on this assumption of how individual
grains melt, which again is unclear in an actively de-
forming mantle. Nevertheless, disequilibrium melting
models provide a useful description of an end-member
process.

The principal consequence of these disequilibrium
melting models is that the effective partition coeffi-
cients of all elements tend to unity because the melt
that is produced has nearly the same composition as
the crystal. Thus while the effective partition coeffi-
cient of incompatible elements is much larger than in
equilibrium, the amount of fractionation between el-
ements diminishes unless they have significantly dif-
ferent diffusivities. Even so, the scaling parameters
in [9, 36] suggest that to produce significant disequi-
librium during melting requires that melting rates be
∼ 2 orders of magnitude larger than those estimated
by Eq. (4). At these fast melting rates there is little
time for additional ingrowth of daughter nuclides and
this calculation is therefore analogous to the earliest
models (e.g. [30]) where fractionation is purely chem-
ical. Thus the principal effect of disequilibrium melt-
ing controlled by solid state diffusion is simply to raise
the effective partition coefficients.

5 Discussion

By comparing the quantitative results of the available
models, the previous sections show that melt trans-
port with interaction between melt and solid through-
out the melting region produces the largest radiogenic
excesses for the same physical parameters. However,
it is important to address how well our calculation
can explain the observed excesses in mid-ocean ridge
basalts.

The principal simplification in all of the models dis-
cussed so far is that the bulk partition coefficients are
constant throughout the melting column. In order to
generate the radiogenic excesses observed in MORB,
the equilibrium melting models require that uranium
is more compatible than thorium, which is more com-
patible than radium. Recent experiments show that,
of the major mantle minerals, only garnet can produce
significant 230Th excesses by equilibrium partitioning
(Dgar

U ∼ 10Dgar
Th [37, 38]). Olivine and opx have

insignificant partition coefficients for U and Th [26]
while uranium is actually less compatible than tho-
rium in cpx [23-28]. Modeling of Lu/Hf systematics
also suggests that some melting occurs in the presence
of garnet [39] during MORB genesis. Garnet, how-

ever, is only stable at depths greater than∼ 60km [40-
42] while the majority of MORB melting is thought
to occur at shallower depths. Thus at least two sets
of bulk partition coefficients are needed to adequately
represent the markedly different behaviour of U and
Th during MORB melting.

This additional complexity can be quantified by
simply extending the single stage melting calculations
to a two-stage model where the melting column now
has two sets of partition coefficients that are consis-
tent with the new experimental data. Hence, the bot-
tom portion of the column is given bulk partition coef-
ficients appropriate for melting in the garnet stability
field, while the upper portion is given bulk partition
coefficients suitable for melting in the spinel stabil-
ity field. The partitioning behaviour of radium is still
poorly constrained and will be assumed to be constant
with height. However, as long as DRa . 0.1DTh

then its actual value makes little difference to the ra-
dium activity ratios as these are controlled principally
by the partitioning of thorium. Experiments on Ba,
used as an analogue for Ra, show that DBa/DTh ∼
0.1 [26, 28].

Figure 8 shows two end-member solutions for such
a two layer column where melting begins at 80 km
and the garnet-spinel transition occurs ∼ 60km [40].
For simplicity the melting rate is assumed to be con-
stant throughout the column. Figure 8a shows the so-
lution where the melt re-equilibrates with the solid
throughout the column. While this solution is some-
what more complicated than the one-stage model, the
essential behaviour is the same. Even though melt-
solid interaction in the upper layer will tend to drive
(230Th/238U) activity ratios to values < 1, because
of the relatively long half-life of 230Th, any excesses
produced in the lower layer can be preserved to the
surface as long as the total extraction time is less
than tc. Only the very slowest extraction times will
produce activity ratios less than one. Radium, how-
ever, is still assumed to be more incompatible than
thorium throughout the column and records the rela-
tive residence times of 230Th and 226Ra near the sur-
face. In contrast, Fig. 8b shows the solution for frac-
tional melting and “disequilibrium transport.” Again
(230Th/238U) activities greater than one are produced
because nearly all of the 238U series elements are frac-
tionated within the first ∼ 1% of melting (approxi-
mately the lowest 2–3 km in the column) and therefore
are only affected by garnet partitioning. The radium
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Figure 8: A comparison of two end-member calculations for a two-stage melting column with equilibrium bulk partition co-
efficients consistent with recent partitioning experiments. In both calculations the melting column is 80 km deep. Partition
coefficients for the lower 20km are DU = 0.00162, DTh = 0.00074 (∼ 10% garnet plus 10%cpx). The upper 60 km has
DU = 0.0006, DTh = 0.000975 (15%cpx). DRa is still unconstrained and is chosen to be = 10−5 for the entire column.
Shaded contours show the reference values (230Th/238U)= 1.1, (226Ra/230Th)= 2.25. (a) “equilibrium” transport calculation
with melt and solid interaction throughout the column. Because 230Th can remember interaction with garnet, 230Th excesses
can still be produced if the extraction time is less than tc. Only slower extraction will produce (230Th/238U) < 1. Radium
behaves exactly as in the single-stage calculation and only records the ratio of residence times near the top of the column. (b)
Fractional melting and disequilibrium transport produce smaller 230Th and negligible 226Ra excesses for the same parameters.
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excesses, however, are also produced at the bottom of
the column and will decay before they can be erupted
unless the melt moves sufficiently fast for the radium
to traverse 80km within its half-life (see below).

Between these two solutions lie a large number of
related models. In addition to varying the partition co-
efficients or the depth to the garnet-spinel transition,
we could also vary the melting rate within the col-
umn, change the degree of re-equilibration of melt and
solid as a function of height or even extend the calcu-
lation to two-dimensional flow models. Appendix A
shows how to quantify these effects, but because of the
large number of adjustable parameters and scenarios,
we have not explored these more complicated models
in any detail. The important point to stress is that it
is only differences in the total residence time of each
element that controls the amount of secular disequi-
librium. Thus it is not particularly difficult to produce
230Th excesses if some melting occurs in the presence
of garnet as the half-life of 230Th is sufficiently long to
“remember” the garnet field. The principal constraint
on all of these models is to produce both 230Th and
226Ra excesses for the same physical regime.

The primary difficulty with the new partitioning
data is the very small values of the partition coeffi-
cients. With values as small as those suggested, it is
difficult for any of the models to produce large 226Ra
excesses using “reasonable” melting rates and porosi-
ties. Dynamic melting models require slower melting
rates to offset the efficient stripping of elements due
to fractional melting. These models, however also re-
quire very fast extraction rates to preserve 226Ra ex-
cesses to the surface. The combination of slow melt
production rates and fast extraction rates imply that
there can only be a very small residual porosity in
steady-state. Examination of Fig. 8b or Eq. (5) shows
that conservation of mass requires residual porosities
φ . 10−4 throughout most of the melting column
if the extraction time is required to be one half-life
of 226Ra. Melt transport with melt-solid interaction,
however also needs small porosities comparable to
the partition coefficient of thorium if the different ef-
fective velocities are controlled solely by equilibrium
bulk partitioning. At the small porosities required to
generate large 226Ra excesses, the melt velocity is
sufficiently high that full volume chemical equilibra-
tion may not be maintained if the effective diffusiv-
ity of the solid is small. These difficulties lead us to
several alternative suggestions to account for the ob-

served 238U-series excesses in Fig. 1.

Perhaps the simplest explanation for the large 226Ra
excesses in MORB is that they are not primary mag-
matic features and it has yet to be shown conclusively
that the 226Ra excesses are not the result of near sur-
face contamination. Nevertheless, all of the analy-
ses shown in Fig. 1 were made on carefully picked
and processed, fresh MORB glasses. Furthermore, off
axial glasses show (226Ra/230Th) equilibrium that is
consistent with ages inferred from paleomagnetically
determined spreading rates [6]. Thus any contamina-
tion would need to occur prior to quenching. Assimi-
lation of barite, which is precipitated from hydrother-
mal systems at ridge axes with extreme (226Ra/230Th)
ratios (e.g. [43]), could account for the large 226Ra ex-
cesses shown in Fig. 1. However, there are further
chemical signatures associated with barite assimila-
tion and a detailed study is needed to evaluate if such
parameters correlate with 226Ra excesses. Since it is
the combined thorium and radium data that places the
strongest constraints on the rates of mantle processes,
if the radium is not coupled to the thorium, then much
of the fun in this system is lost.

If the 226Ra activities are primary, however, we still
need a mechanism that can produce large 226Ra ex-
cesses and still be consistent with the new partitioning
data. It is important to stress that though we have used
bulk partition coefficients to control the effective ve-
locities of elements in these simplest models, the only
really important requirement for radioactive disequi-
librium is that parent and daughter nuclides travel at
different speeds. We suggest that other processes may
also produce differential transport velocities that can
lead to secular disequilibrium. For example, one pos-
sibility is that different degrees of surface adsorption
or interaction with crystal grain boundaries could also
cause variable transport velocities. While this sugges-
tion is admittedly speculative, it does have several in-
triguing features that we feel merit some further dis-
cussion. First, unlike volume partitioning, surface or
grain boundary effects need not be isolated to a few
specific mineral phases but could occur on all melt-
solid interfaces. Thus even if the principal phase con-
trolling bulk partitioning is exhausted by melting, sur-
face effects could still operate. The quantitative re-
sults of section 3 show that large radiogenic excesses
do not require large amounts of melt-solid interaction
(i.e. effective partition coefficients do not need to ex-
ceed ∼ 0.01). Second, if the residence time of ele-
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ments is controlled by surface processes, then these
effects would only be noticeable in the ratios of short-
lived radiogenic nuclides which are sensitive to trans-
port times. Relatively small amounts of surface inter-
action could have a significant effect on radioactive
disequilibrium yet have a negligible effect on the ra-
tios of stable incompatible elements. Thus it may be
possible to produce secular disequilibrium in MORB
even if the mantle undergoes fractional melting as is
suggested by modeling of other geochemical systems
[44-46].

Another possibility for enhancing differential resi-
dence times is, if in addition to veins or channels, the
melt exists as a connected grain boundary phase as
was discussed in the previous section. In the simplest
calculations, it is assumed that all melt traveled at ve-
locityw and all the solid traveled at velocityW . How-
ever, if there are actually two porosities, one govern-
ing the volume of melt in the channels and one gov-
erning the interstitial melt phase that travels near the
solid velocity, then it is possible for elements to travel
at different velocities if there is some interaction be-
tween the veins and the interstitial melt.

These suggestions clearly need to be addressed
quantitatively. However, as long as the different el-
ements have different residence times, excesses will
result. At this point we acknowledge that the magni-
tude of these processes are unconstrained, largely be-
cause of our lack of information about the surface and
transport properties of aggregates of mantle minerals,
and of the microscopic physics of melting in a deform-
ing upper mantle. Further experimental evidence is re-
quired to evaluate these suggestions.

6 Conclusions

We have shown that melt transport with interaction be-
tween the solid and liquid can have large effects on the
abundances of short-lived radionuclides by changing
the residence times of parent and daughter elements.
As long as the parent spends more time in the melting
system than the daughter, excess daughter will be pro-
duced. For the same parameters, the transport calcu-
lations with solid-liquid interaction produce larger ex-
cesses than dynamic melting or disequilibrium trans-
port models and do not require rapid melt extraction.
For (favourable) conditions, our calculations can pro-
duce both 230Th and 226Ra excesses that are compa-
rable to those observed at moderate to fast spreading
ridges using physically reasonable transport veloci-

ties. The melt transport models can be extended to
include the results of recent partitioning experiments,
but results suggest that additional processes may still
be required to fully explain the observations.
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29 C.J. Allègre, 230Th dating of volcanic rocks. A
comment, Earth Planet. Sci. Lett., 3, 338, 1968.
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A Appendix: Additional analysis

Section 2 presented the specific equations for a one-
dimensional steady-state upwelling column with con-
stant melting rate, equilibrium melting and transport
with a single set of constant partition coefficients.
This appendix shows how to generalize this model
to allow for variable melting rates, non-constant par-
tition coefficients and disequilibrium melt transport.
It also presents a simple approximate solution to
Eq. (15) to demonstrate that the numerical results are
correct.

A.1 General equations for one-
dimensional, steady-state columns

Conservation of mass for a two-phase system of melt
and solid is
∂(ρfφ)
∂t

+∇· (ρfφv) = Γ (16)

∂[ρs(1− φ)]
∂t

+∇· [ρs(1− φ)V] = −Γ (17)

where Γ is the melting rate which can be a function
of height and time (see Table 1 for notation; see [12]
for the derivation of conservation equations). In one
dimensional steady-state melting columns, Eqs. (16)
and (17) can be integrated directly using the boundary
conditions at the base of the column (z = 0) that the
porosity φ = 0, and the solid upwelling velocity isW0

to give

ρfφw =
∫ z

0

Γdz (18)

ρs(1− φ)W = ρsW0 −
∫ z

0

Γdz (19)

where in steady-state Γ = Γ(z) i.e. the melting rate is
only a function of height. Equation (18) states that in
steady-state, the melt flux, ρfφw at any height in the
column simply balances the total melt production up
to that height. Now, by definition, the degree of melt-
ing that the solid experiences in steady-state is

F (z) =

∫ z
0

Γdz
ρsW0

(20)
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which is the ratio of the total melt production flux to
the flux of solid that enters the base of the column.
Therefore if Γ is assumed to be constant throughout
the melting region and the maximum degree of melt-
ing at height d is Fmax then Eq. (20) shows that the
melting rate must be Γ = ρsW0Fmax/d which is
identical to Eq. (4). If the melting rate is variable with
height, then Eq. (20) can still be used to derive the de-
gree of melting and Eqs. (18)–(19) become

ρfφw = ρsW0F (21)

ρs(1− φ)W = ρsW0(1− F ) (22)

and F = F (z) (see also [15]). Given any functional
relationship between porosity and melt and solid ve-
locities, Eqs. (21)–(22) can be solved to give the
porosity as a function of height. In the simplest model
problem, we have used Darcy’s law driven solely by
the density difference between melt and solid with a
power law relationship between porosity and perme-
ability. For a more general set of equations governing
the separation of melt from solid in multi-dimensions
see [12-14, 16, 17].

A.2 Equilibrium chemical transport
with non-constant bulk distribution
coefficients

Using Eqs. (21)–(22) with Eq. (1) and rewriting
Eq. (20) as Γ = ρsW0 dF/dz, then the general equa-
tion for the evolution of radiogenic elements in a one-
dimensional, steady-state column where the element
maintain chemical equilibrium at all times is

dcfi
dz

=
−cfi

Di + (1−Di)F
d

dz
[Di + (1−Di)F ] +[

λi−1 [ρfφ+ ρs(1− φ)Di−1] cfi−1 − λi [ρfφ+ ρs(1− φ)Di] c
f
i

]
ρsW0 [Di + (1−Di)F ]

(23)

where F , Di are now functions of position z. The set
of equations in (23) can be solved for cfi by the same
numerical schemes used for constant melting rate and
partition coefficients (although in general it is usually
numerically more stable to solve for Ui = ln(cfi /c

f
i0)

than to solve for the cfi ’s directly). Note also that if
the elements are stable (λi = 0 for all i), then Eq. (23)
can be solved analytically to produce the equation for
batch melting (Eq. 13) independent of porosity or melt
separation.

A.3 Disequilibrium chemical transport
with non-constant bulk distribution
coefficients

Equation (1) presumes that the melt and the solid
matrix re-equilibrate instantly throughout the melting
column, i.e. the solid interacts with all the melt that
passes through it. This feature results in melt compo-
sitions that are equivalent to batch melts for stable el-
ements. At the opposite extreme it is straightforward
to derive equations for a system where the solid melts
to produce a melt that is locally in equilibrium with
the solid; however, the solid does not interact chem-
ically with melts that are produced lower in the col-
umn. Physically this corresponds to melt that can seg-
regate into chemically isolated channels or veins (see
[19]). In this case conservation of mass for trace el-
ement i must be calculated in both the solid and the
liquid and the generalization of Eq. (1) is

∂

∂t
ρs(1−φ)csi+∇·ρs(1−φ)Vcsi = −Γcsi

Di
+ρs(1−φ)

[
λi−1c

s
i−1 − λicsi

]
(24)

∂

∂t
ρfφc

f
i +∇·ρfφvcfi =

Γcsi
Di

+ρfφ
[
λi−1c

f
i−1 − λic

f
i

]
(25)

The first term on the right hand side of Eqs. (24) and
(25) is the change in concentration in the solid and
melt due to the production of a melt in local chemi-
cal equilibrium with the solid (i.e. an instantaneous
fractional melt). The second term is the balance of ra-
dioactive production and decay in the solid and liquid
respectively. Again, for one-dimensional steady-state
melting columns, Eqs. (24) and (25) can be rewritten
using Eqs. (20)–(22) to give

dcsi
dz

=
csi (1− 1/Di)

1− F
dF

dz
+

(1− φ)
W0(1− F )

[
λi−1c

s
i−1 − λicsi

]
(26)

dcfi
dz

=

(
csi/Di − cfi

)
F

dF

dz
+

ρfφ

ρsW0F

[
λi−1c

f
i−1 − λic

f
i

]
(27)

Comparing the last term in each of these equations to
the equations for w andW (Eqs. (21) and (22)) shows
that elements travel either at the solid velocity or at the
melt velocity but that in either reservoir, the system
will tend towards secular equilibrium if unsupported
by melting. If F (z), Di(z) and φ(z) are known func-
tions of height, Eqs. (26)–(27) can be solved numeri-
cally for the concentration of all elements in the solid
and liquid as a function of height in the column. Note
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again that for a stable trace element (λi = λi−1 =
0) with constant bulk partition coefficient Di, these
equations can be solved analytically to show that

csi
csi0

= (1− F )(1/Di−1) (28)

cfi

cfi0
=

1
F

∫ F

0

csidF =
Di

F

[
1− (1− F )1/Di

]
(29)

which are precisely the equations for a fractionally
melted solid and an aggregated fractional melt.

Equations 13 and 28–29 show that, for stable ele-
ments, there is a one-to-one correspondence between
the classic equations of batch and fractional melting
and the one-dimensional equilibrium melting columns
with melt transport. It should be stressed that in ei-
ther of these calculations, a small porosity or the sep-
aration of melts from solid does not a priori imply
that melting is fractional. The important parameter
is not the physical melt fraction, φ, but the volume
of melt that can equilibrate with the solid (in the dy-
namic melting models, this volume is controlled by
φeq). If the solid re-equilibrates with all of the melt
that passes through it, one-dimensional columns will
produce small porosity melts with the concentration of
a batch melt with degree of melting Fmax. If the melt
and solid have no interaction during transport, the col-
umn produces integrated fractional melts. This result
is a rather deep consequence of the strict conservation
of mass constraints imposed by the restrictions of one
dimensionality and steady-state. In two and three di-
mensions, additional effects can occur [47, 48].

A.4 Approximate solution for the en-
richment factor αi

One of the principal properties of the equilibrium
transport solution is that it shows two different be-
haviours depending on whether the extraction time of
the daughter element is slow or fast compared to its
half-life. To demonstrate that this is the expected be-
haviour of the governing equations, it is useful to con-
sider an approximate solution to Eq. (15) for the en-
richment factor for 230Th. In the full solution (Figs. 3–
5), the effective velocities are a function of height in
the column; however, much of the behaviour of the so-
lution can be recovered if we assume that these veloc-
ities are approximately constant (but not equal). If we
also note that there is little total decay of 238U during

transport then we can set αU ∼ 1 (Fig. 3c). In this
case Eq. (15) can be solved analytically to show that at
the top of the column, the enrichment in thorium over
batch melting is

αTh ∼
(

1− tU
tTh

)
exp [−λThtTh] +

tU
tTh

(30)

where tU = d/w̄Ueff and tTh = d/w̄Theff are the aver-
age extraction times for uranium and thorium respec-
tively. and d is the depth of the melting column

Therefore, for extraction times that are long com-
pared to the half-life of thorium (λThtTh � 1), the
enrichment goes to the ratio of the extraction times,
tU/tTh = w̄Theff/w̄

U
eff . Examination of Eq. (13)

shows that this ratio is independent of the upwelling
rate W0. For long extraction times, it is only the top
of the column that controls what can be measured at
the surface. Equation (13) shows that, near the top of
the column, the ratio of the velocities depends only on
porosity and ranges from 1, when there is no melt sep-
aration, to a maximum that is the approximately the ra-
tio of the partition coefficientsDU/DTh. These max-
imum enrichments occur for large degrees of melting
and porosities much smaller than the partition coeffi-
cients. This behaviour can be seen in Fig. 5. For short
extraction times, Eq. (30) becomes

αTh ∼ 1 + λTh [tU − tTh] (31)

and depends on the difference in extraction time be-
tween parent and daughter. The difference in times
depends on the upwelling velocity but is independent
of φmax for porosities much smaller than the partition
coefficients. For φmax > DTh, the difference in ex-
traction times also depends on porosity and decreases
rapidly as the melt separation becomes less signifi-
cant. Again, this is the behaviour shown in Fig. 5a.
The behaviour of 226Ra is similar to that of 230Th but
the positions of the two behavioural regimes are dif-
ferent because of the differences in half-life and com-
patibility.


