Research paper

Unreciprocated sedimentation along a mud-dominated continental margin, Gulf of Mexico, U.S.A.: Implications for sequence stratigraphy in muddy settings devoid of depositional sequences

Andrew S. Madof a, *, Nicholas Christie-Blick b, Mark H. Anders c, Lawrence A. Febo a

a Chevron Energy Technology Company, Houston, TX 77002-7308, USA
b Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000, USA
c Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, VA 22030, USA

ARTICLE INFO

Article history:
Received 6 July 2015
Received in revised form 24 December 2016
Accepted 24 December 2016
Available online 26 December 2016

Keywords:
Gulf of Mexico
Seismic stratigraphy
Reciprocal sedimentation
Fill-and-spill
Mass transport complex
Minibasin
Deep-water

ABSTRACT

According to widely accepted sequence stratigraphic and fill-and-spill models, sedimentary cyclicity along continental margins is modulated by relative sea-level change, whereas smaller-scale intraslope accommodation is controlled by the filling of pre-existing bathymetric depressions. Although these concepts are presumed to apply to shelf-to-slope settings regardless of grain size, we have tested both hypotheses in the mud-prone lower Pliocene to Holocene of offshore Louisiana, Gulf of Mexico, and reach different conclusions. We determine that over the last ~3.7 Myr, differential accumulation and accompanying salt tectonism dislocated the fine-grained shelf and slope, prevented the development of sedimentary reciprocity at 10–100 kyr time scales, and inhibited fill-and-spill accumulation. We show that only 3% of “lowstand” mass transport deposits can be correlated to low stands in relative sea level, whereas approximately 30% of the deposits are related to transgressions and high stands; the remaining 67% are poorly constrained. Mass transport deposits also show no clear evidence of up-section increases in bypass. Based on our results, we conclude that the dominant control on stratigraphic architecture in offshore Louisiana was not relative sea-level change or patterns of accommodation, but rather differential deposition and concomitant salt-related subsidence, which controlled the distribution of facies, timing and location of mass transport deposits, and rates of sediment accumulation. Our conclusions highlight the importance of sediment supply and local tectonism, and caution against a priori use of conventional sequence stratigraphic and fill-and-spill models to decipher the stratigraphic evolution of actively-deforming mud-dominated continental margins. We therefore recommend treating stratigraphic models as testable hypotheses, rather than as methods of interpretation, particularly in fine-grained areas devoid of well-developed depositional sequences and in settings lacking intraslope ponded-to-perched accumulations.

© 2016 Published by Elsevier Ltd.

1. Introduction

It has long been assumed that sea-level change constitutes the primary control on sedimentary cyclicity at continental margins (Vail et al., 1977; Haq et al., 1987, 1988; Vail, 1987; Jervey, 1988; Posamentier et al., 1988; Posamentier and Vail, 1988; Weimer, 1990; Posamentier and Allen, 1999; Posamentier and Kolla, 2003; Saller et al., 2004; Catuneanu et al., 2011). According to this view, sediments accumulate preferentially on the shelf when sea level is high and in off-shelf locations when sea level is low – a pattern that has been referred to as reciprocal sedimentation (Wilson, 1967). The transitions between these different styles of deposition are thought to correspond with the rising and falling of base level (forced regression — see Posamentier et al., 1990). Variations in facies, stratigraphic architecture, and the development of depositional sequences therefore are interpreted to relate closely to sea-level change. Although relative changes in sea level are envisaged in terms of the interaction between eustasy and subsidence (Jervey, 1988), the concept does not provide a clear view of three-dimensional effects or the impact of local patterns of deformation. Intraslope sedimentation is thought to be influenced also by a
second factor in settings associated with salt tectonics: the manner in which bathymetric depressions (minibasins) are filled and bypassed, punctuating the down-system transport of sediment (Prather et al., 1998; Beaubouef and Friedmann, 2000; Booth et al., 2000, 2003; Winker and Booth, 2000; Mallarino et al., 2006; Prather et al., 2012). In the so-called fill-and-spill model, depositional patterns are assumed to be controlled solely by ponded-to-perched sediment accumulation and not by varying rates of differential subsidence, which are presumed to be operating on significantly longer time scales.

This study uses two-dimensional (2-D) and three-dimensional (3-D) seismic and biostratigraphic data from early Pliocene to Holocene deposits, offshore Louisiana (Gulf of Mexico), to test well-accepted reciprocal sedimentation and fill-and-spill models. We extend the conclusions of Madof et al. (2009) by incorporating additional 3-D seismic from the intraslope setting and regional 2-D seismic from the shelf, as well as biostratigraphic data. We find that through our integrated analysis, there exists no simple spatial or temporal relationship between the shelf and slope over the past ~3.7 Myr. This conclusion is based on the interpretation that stratigraphic surfaces in offshore Louisiana are discontinuous across shelf-to-slope settings, that the mud-prone continental margin is generally devoid of well-developed depositional sequences, and that the study area was not largely influenced by persistent and large-scale coarse-grained sediment sources from the early Pliocene to Holocene.

Our study area, which includes portions of South Peltó, Ship Shoal, South Timbalier and Bay Marchand, Ship Shoal South Addition, South Timbalier South Addition, Ewing Bank, and Green Canyon protraction areas (Figs. 1 and 2), has received significant academic and industrial attention owing to the abundance of hydrocarbons in shallow to deep-marine sands (Woock and Kin, 1987; McBride et al., 1998; Varnai, 1998; Weimer et al., 1998; Quinn, 2005, 2006). Although much of the data acquired for oil and gas exploration in the Gulf of Mexico is proprietary and confidential, our study focuses on the commercially less sensitive stratigraphy above the allochthonous salt canopy.

2. Geological setting

2.1. Tectonics

The study area includes portions of the inner and outer continental shelf and upper slope, offshore Louisiana (Fig. 1), and is part of the larger Gulf of Mexico passive continental margin, which formed during the break-up of Pangea and development of the North American, South American, and African plates (Buffler and Sawyer, 1985; Salvador, 1987; Feng et al., 1994; Pindell and Kennan, 2009). During the late Triassic to early-middle Jurassic, crustal extension was accommodated on basement-involved normal faults. Evaporation of sea water in restricted marine embayments immediately prior to continental separation resulted in the accumulation of ~1–3 km of middle Jurassic Louann salt in two structurally-controlled depressions (Salvador, 1991; Bird et al., 2005). These depressions, which were separated by a mid-oceanic ridge, were stranded on the northern and southern margins as the Gulf of Mexico widened via seafloor spreading (see Fig. 2 of Sandwell et al., 2014).

Cenozoic loading of evaporites in the northern Gulf of Mexico gave way to large-scale and in-sequence salt-related structures: an inboard shelf detachment province and an outboard shelf minibasin province. During the Oligocene to Miocene, the onset of

![Fig. 1. Map illustrating salt-withdrawal intraslope minibasins, Pleistocene paleogeographic features, and selected datasets from the Gulf of Mexico. Solid white lines (onshore) show rivers, dashed black line (offshore) approximates shelf-break break, and solid black line (offshore) delineates Sigsbee Escarpment. Pleistocene features (from Winker and Booth, 2000) are abbreviated as follows. Shelf margin deltas: RD = Rio Grande, CD = Colorado, BTD = Brazos-Trinity, MDW = Mississippi Western, MDE = Mississippi Eastern. Submarine canyons: PC = Perdido, AC = Alaminos, KC = Keathley, BC = Bryant, MC = Mississippi. Submarine fans: RF = Rio Grande, CF = Colorado, BTF = Brazos-Trinity, AF = Alaminos, BF = Bryant. Seismic data used for this study are shown in blue (2-D) and red (3-D); additional datasets shown are from Anderson et al., 2004 (black lines), Kölla et al., 2000 (white lines), and Hart et al., 1997 (black square). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image-url)
extension above the detachment level corresponded with the development of large-displacement listric normal faults that soled into a regional post-Paleogene interval. Lateral spreading continued into the Plio-Pleistocene, leading to numerous detachment structures on the outer shelf and to well-developed intraslope salt dome-minibasins on the slope (Diegel et al., 1995). It is these salt dome-minibasins, circular to elliptical subsidence-related depressions flanked by salt stocks, that are responsible for the current bathymetric configuration of the northern Gulf of Mexico (see Fig. 1).

2.2. Sedimentation

Since the early Neogene, accommodation in the Gulf of Mexico was controlled primarily by deposition and contemporaneous subsidence into shallow salt displaced from depth (i.e., allochthonous). From the late Miocene to late Pliocene, the ancestral Mississippi River migrated westward (Winker and Booth, 2000), and delivered sediment to shelf and intraslope areas. Coarse-grained deep-water sediments are thought to have ponded in intraslope depressions, with the locus of sedimentation positioned on the upper continental slope (Prather et al., 1998). By the early to middle Pleistocene, the Mississippi River captured the Ohio and western Appalachian drainage basins, followed by the upper Missouri and Great Plains catchment areas. This drainage reorganization resulted in a significant increase in sediment supply, which along with the development of submarine canyons on the shelf (Prather et al., 1998; Galloway et al., 2000, 2004, 2011), led to bypassing of fine-grained sediments through upper slope minibasins and ultimately to their deposition on the lower slope. The locus of sedimentation thus shifted basinward with respect to time.

Over the last 120 kyr, areas outboard of major Quaternary sediment sources in the northern Gulf of Mexico (e.g., Rio Grande, Colorado, and Brazos drainages) are thought to have been significantly influenced by eustatic change (Kolla et al., 2000; Anderson et al., 2004, 2016). As a result, highstand, lowstand, and transgressive deposits are found to track with oxygen isotope stage (see Anderson et al., 2004). Yet in areas lateral to sand-prone accumulations, and in successions older than the Quaternary (this study), the effect of sea-level change on the development of muddy successions has not been widely recognized.

2.3. Study area salt tectonics

In the vicinity of the study area, the Louisiana shelf is underlain by a series of prominent seaward-dipping listric normal faults that
3. Methodology

3.1. Seismic reflection data

The 2-D and 3-D seismic reflection data used in this study cover approximately 11,212 km² (4329 mi²) of the Louisiana offshore (Fig. 2A). The 2-D profiles intersect the 3-D volume (Fuji, Mazama, and Hornet basins; Fig. 2B) at the continental slope, which is located in the southern part of the study area. At that location (Fig. 3), check shot data from Soto (1997) for the Fuji #1 well (GC 506 Texaco 1) were used to construct a time-to-depth plot (Fig. 4A) and an interval sediment velocity curve (Fig. 4B). Sediment velocities, which range from 1524 m/s (5000 ft/s) near the seafloor to 2086 m/s (6844 ft/s) at 6509 ms TWTT (22,275 ft), were used to estimate thickness for seismic stratigraphic intervals in the study area.

The 2-D data, acquired in 2002–2003 and processed in 2003, are distributed along 21 north-south profiles, and intersect 48 sections oriented east-west (Fig. 2). The data represent a total line length of over 5428 km (3372.8 mi), and extend to 6000 ms TWTT. North-south lines are from 5.6 to 160.7 km (3.5 to 99.9 mi) long, and are located 1–10 km (0.6–6.2 mi) apart with an average spacing of less than 3.5 km (2.2 mi). East-west trending sections are

2.6–62.7 km (1.6–39 mi) long, and are located 1.5–16.5 km (0.9–10.3 mi) apart, also with an average spacing of less than 3.5 km (2.2 mi).

The 3-D seismic volume, acquired in 1999–2000 and reprocessed in 2001, covers 78 outer continental shelf (OCS) blocks on the upper slope, encompasses a total surface area of more than 1820 km² (702.7 mi²), and extends to a depth of 6000 ms TWTT (6050 m; 19,848 ft; Fig. 2). The volume has a 4 ms vertical sampling rate, and a bin spacing of 20 × 12.5 m (65.6 × 41 ft). An 18 block sub-volume of this dataset provided the basis for our earlier article (Madof et al., 2009).

Frequency, amplitude, and phase are comparable in the two seismic datasets (Fig. 5), thereby easing the correlation of specific seismic features between 2-D lines (shelf) onto the 3-D volume (slope). Fig. 5A and D displays the amplitude-frequency spectra of the data as a function of depth, and shows that on average, the 2-D data range from 9 to 20 Hz, whereas the 3-D data range from 10 to 40 Hz (dominant frequency) (see Table 1). The phase of the data, which was determined from the sea floor reflection (Fig. 5B and E), is estimated as zero (American) in the 2-D data, and tends negatively in the 3-D data. Wavelength was calculated by dividing the interval sediment velocity (Fig. 4B) by the dominant frequency (Fig. 5A). The limit of separability (i.e., seismically resolving a top from a base — tuning or resolution) was calculated by taking one quarter of the wavelength. Deposits above tuning can be measured in cross section and observed in map view; deposits above the limit of detectability (i.e., one eighth of the wavelength) are too thin to be observed in cross section, but can be readily detected in plan view in 3-D data.

Wavelength, separability, and detectability are plotted as a function of depth in Fig. 5C and F (see Table 1). Wavelengths from the 2-D data range from approximately 100 m (measured from 0 to 2000 ms) to 280 m (measured from 4000–6000 ms), while wavelengths from the 3-D data range from 60 m (measured from 2000–4000 ms) to approximately 250 m (measured from 4000–6000 ms). Uncertainty in interpretations, as well as wavelength, therefore increases with depth.
3.2. Age control and biostratigraphy

Available age control within the study area consists of 10 late Neogene to Quaternary biostratigraphic datums. These were used for regional correlation and for the creation of an internally consistent time-stratigraphic framework. Four shelf markers were established in wells drilled in the northern portion of the study area, and six slope datums in wells drilled in southern Fuji and Mazama basins. It proved not possible for us to gain access to proprietary borehole data collected beneath the shelf; for this reason, we are not able to identify the specific wells on which the biostratigraphic interpretation is based.

The shelf biostratigraphy is based on last occurrences of the early Pliocene planktonic coccolith *Amaurolithus tricorniculatus* (~3.7–3.96 Ma; Poore et al., 1983; Berggren et al., 1985; Roof et al., 1991; Knappertsbusch, 2000); two late Pliocene planktonic...
foraminifers, *Pulleniatina obliquiloculata* (~3.33–3.56 Ma; Shipboard Scientific Party, 1995; Chaisson and Pearson, 1997) and *Globorotalia multiconcerata* (~2.9–3.12 Ma; Berggren et al., 1985, 1995b; Chaproniere et al., 1994; Ragani et al., 2008); and the early Pleistocene benthic foraminifer *Angulogerina B* (~1.5–2.3 Ma; Anderson et al., 1991; Zhang and Watkins, 1994; Galloway et al., 2000; Galloway, 2001). In an earlier unpublished investigation, these 4 shelf markers were tied to a regional and merged 2-D/3-D seismic survey, and used to create regional-scale biostratigraphic horizons for the northern Gulf of Mexico (M. Filewicz, personal communication, 2008).

The slope biostratigraphy is based on last occurrences of the late Pliocene planktonic coccolith *Discocystis brouweri* (~1.89–2.06 Ma; Backman and Pestiiaux, 1987; Berggren et al., 1995a; Lourens et al., 1996; Lourens et al., 2004); two early Pleistocene benthic foraminifers, *Hyalinea balthica* (~1.22 Ma; Waterman et al., 2009) and *Stilostomella antillea* (~0.78 Ma; Witrock et al., 2003); two middle Pleistocene planktonic coccoliths *Gephyrocapsa caribbeanica* (~0.21–0.25 Ma; Hine and Weaver, 1998) and *Pseudoemiliania lacunosa* (~0.45–0.46 Ma; Thierstein et al., 1977; Gard, 1988; Raffi and Flores, 1995; Flores and Marino, 2002); and one benthic foraminifer *Globorotalia inflata* (~0.0105–0.012 Ma; Kennett et al., 1985). The 6 slope datums were established while drilling in southern Fuji and Mazama basins, and tied to 3-D seismic data at that time (T. Elliott, personal communication, 2006). Uncertainties in the position of these markers permit locations as much as 80 ms (72.2 m; 236.9 ft) below and as much as 20–25 ms (18–22.6 m; 59.2–74 ft) above currently interpreted levels.

3.3. Reflection tracing

Although conventional seismic stratigraphic methods hinge on reflection tracing to delineate unconformity-bounded units (Mitchum et al., 1977), sequences in our study area are not well developed, and reflections are physically discontinuous over distances greater than tens of kilometers (Fig. 6A). As such, the use of biostratigraphic datums were necessary to establish a regional time-stratigraphic framework (Fig. 6B), which extends from the northern limit of the inner shelf (2-D grid) to the northern portion of the upper slope (3-D volume).

Biostratigraphic datums tied to 2-D data on the shelf were manually mapped southward towards the slope. At locations where faulting and localized salt stocks offset horizons, loops were tied around structural complexities to minimize miscorrelating across them. Some “jump correlations” were nonetheless unavoidable. With the exception of tracing *Angulogerina B* (~1.5 Ma) into Mazama basin, faulting and the occurrence of salt bodies hindered correlation of shelf datums southward of the northern limit of Fuji and Mazama basins. Accordingly, the overlying *P. lacunosa* (~0.45 Ma) marker was the only slope datum that could be tied around structure from the 3-D volume to the 2-D seismic grid, and traced northward beneath the shelf. Smaller-scale stratigraphic features (i.e., reflection truncations, shingled and oblique reflections, and chaotic intervals) were subsequently mapped in detail between 2-D regional surfaces.

Eighty-eight surfaces were picked on the 3-D volume (i.e., 30 in Fuji basin; 22 in Mazama basin; 5 in Hornet basin; and 31 in between basins) primarily on the basis of continuity and amplitude, and were used to interpret seismic facies in the intraslope setting. High-amplitude laterally continuous surfaces were consequently chosen directly above or below chaotic intervals, and where reflections display a low cross-sectional continuity and ribbon-shaped plan-view morphology. As outlined by Madof et al. (2009), horizons were picked variously on a peak, trough, or zero crossing. The 3-D propagator algorithm was subsequently used to cross-correlate nearest-neighbor seismic traces to within a defined interval of confidence. This procedure resulted in 3-D seismic surfaces, which were inspected on every inline and crossline, and manually corrected where the propagator algorithm miscorrelated.

In addition to scrolling through the data and picking reflections, seismic facies were interpreted on 3-D data via horizon slicing and time slicing (see Brown et al., 1981; Zeng et al., 1995; Zeng and...
Hentz, 2004). Horizon slicing, a procedure that requires mapping a reflection, shifting it in time, and extracting amplitude onto the surface, was most useful when the interval of interest displayed irregular topography. Time slicing, a method that involves moving a horizontal plane parallel to the time axis, was used on flattened volumes to identify stratigraphic elements, and quickly to place groups of reflections into an orientation consistent with deposition onto a flat surface. These widely-used seismic interpretation techniques established confidence in recognizing and delineating seismic facies in three dimensions (see Posamentier et al., 2014).

4. Seismic facies, large-scale incision, and stratigraphic architecture

Amplitude, continuity, internal architecture, external form, lower and upper bounding surfaces, and truncation were used to identify four seismic facies, and to delineate large-scale incision. Seismic facies consist of hemipelagites and muddy turbidites, followed in descending order of abundance by mass transport complexes (MTCs), shelf edge sediments, and channelized sandy turbidites (Figs. 7 and 8). Hemipelagites and muddy turbidites are positioned throughout all stratigraphic intervals within the study area, whereas MTCs become more prevalent in outboard areas and in younger sections above the Angulogerina B (≥1.5 Ma) and H. balthica (≥1.22 Ma) datums. In proximal regions, five complexes of shelf edge sediments directly overlie and underlie the P. lacunosa (≥0.45 Ma) datum; these deposits consist of offlapping oblique to shingled cliniforms and cannot be traced updip or downdip into unconformity-bounded sequences. In distal locations, channelized sandy turbidites are contained within slope valleys above the P. lacunosa (≥0.45 Ma) datum, and cannot be mapped outside of Fuji and Mazama basins. Large-scale inboard incision, on the other hand, is manifested as six shelfal submarine canyons that are positioned directly above and below the P. lacunosa (≥0.45 Ma) datum. These features are not mappable over distances greater than tens of kilometers because they are either truncated by a high-angle erosional surface or extend off the 2-D grid.

Analogous seismic facies have been identified and well documented throughout the Gulf of Mexico (Prather et al., 1998; Beaubouef and Friedmann, 2000; Booth et al., 2000, 2003; Posamentier, 2003; Expedition 308 Scientists, 2005; Mallarino et al., 2006; Kolla et al., 2007; Prather et al., 2012), as well as in a variety of structural and stratigraphic settings worldwide (Deptuck et al., 2003; Haflidason et al., 2004, 2005; Lee et al., 2004; Martinez et al., 2004; Posamentier et al., 2014).
et al., 2005; Moscardelli et al., 2006; Deptuck et al., 2007; Moscardelli and Wood, 2008).

4.1. Hemipelagites and muddy turbidites: Observations

The hemipelagite and muddy turbidite facies consists of laterally continuous, parallel, nondescript high- to low-amplitude reflections. The facies exhibits a tabular, wedge, or lenticular external form, and is underlain by a non-erosive, planar or hummocky basal surface. Successions are distributed throughout the study area, becoming less prevalent at shallow stratigraphic levels and at southern (intraslope) locations. Units constituting the facies range in thickness from ≤ 10 ms (9 m; 29.6 ft) to ≥ 1000 ms (902.5 m; 2960.9 ft), and in surface area from ≤ 250 m2 (2691 ft2) to ≥ 250 km2 (96.5 mi2). Individual deposits generally thin and thicken above topographic highs and lows, respectively. The facies is therefore not well developed over minibasin-flanking salt stocks, but is abundantly present in basin depocenters (see Figs. 9 and 10).

4.2. Hemipelagites and muddy turbidites: Interpretations

We interpret the hemipelagite and muddy turbidite facies to represent a mixture of both gravity- and suspension-driven sedimentation. Gravity-driven accumulations result from non-erosive mud-rich turbidity currents derived from fine-grained sediments located in inboard regions, whereas suspension-driven deposits (drapes) are a consequence of hemipelagic fallout and condensation during times of decreased sediment supply. The resolution of available seismic data does not allow partitioning hemipelagites from muddy turbidites.

4.3. MTCs: Observations

The MTC facies consists of laterally continuous to discontinuous, hummocky to chaotic high- to low-amplitude reflections. Accumulations in the study area are locally disorganized, folded, and faulted. The facies exhibits a tabular, wedge, lenticular, or mounded external form, and is underlain by erosional, scoured, or non-erosive high- to low-angle surfaces. Successions are located throughout the offshore Louisiana area, becoming more abundant and amalgamated in progressively shallower stratigraphic intervals and at southern (intraslope) locations. Within the 3-D volume, at least twelve MTCs are identified in Fuji basin (Fig. 9), and with no fewer than twenty such deposits in Mazama basin (Fig. 10).

Units constituting the facies range in thickness from ≤ 10 ms (9 m; 29.6 ft) to ≥ 700 ms (631.8 m; 2072.7 ft), in surface area from ≤ 35 km2 (13.5 mi2) to ≥ 537 km2 (207.3 mi2), and in volume from ≤ 1 km3 (0.2 mi3) to ≥ 139 km3 (33.3 mi3). Successions within the facies generally thin towards topographic highs. The internal architecture of the MTC facies is variably disorganized, folded, and faulted. Disorganization ranges from slightly inclined reflections to nearly complete seismic transparency. Where reflections are folded (Fig. 11), fold wavelengths range from ≤ 100 m (328 ft) to ≥ 1.5 km (0.9 mi), and amplitudes from ≤ 20 ms (18 m; 59.2 ft) to ≥ 100 ms (90.2 m; 296 ft). Where reflections are
offset, faulting is generally found to be of reverse separation. In one example from Fuji basin, 0.8 to 1.3 km (0.5 to 0.8 mi) of shortening (calculated from fault heave — MTC no. 9F) was accommodated on numerous reverse faults located within the deposit (see Madof et al., 2009).

Basal features flooring the MTC facies consist of erosional, scoured, and non-erosive high- to low-angle surfaces. Erosion is thought to have removed <250 m² (2691 ft²) to ≥50 km² (19.3 mi²) of material, resulting in ≤10 ms (9 m; 29.6 ft) to ≥200 ms (180.5 m; 592.2 ft) of relief. Erosion is generally greatest at areas flanking topographic highs. Linear scours (Fig. 12) range in length from <12.5 m (41 ft) to ≥32.5 km (20.2 mi), in width from <12.5 m (41 ft) to ≥2.5 km (1.6 mi), and in relief from ≤10 ms (9 m; 29.6 ft) to ≥50 ms (45.1 m; 148 ft). Converging and diverging scours are found to terminate abruptly down system. Where erosional features do not floor MTCs, deposits are underlain by non-erosive high- to low-angle surfaces.

4.4. MTCs: Interpretations

We interpret the MTC facies to represent a spectrum of gravity-driven sedimentation, resulting from erosive and non-erosive slides, slumps, and debris flows (Madof et al., 2009). These subdivisions are below the resolution of available seismic data, but are possible to distinguish at the scale of outcrop, and piston and conventional core (cf., Mulder and Cochonat, 1996; McHugh et al., 2002; Pickering and Corregidor, 2005; Jenner et al., 2007; Tripsanas et al., 2008; Ogata et al., 2014). The lithology of the MTC facies is a function of the original failure material, as well as sediment entrained during flow, which we interpret to consist primarily of hemipelagites and muddy turbidites.

In the study area, the internal architecture and basal features associated with MTCs form as a result of downslope motion. As the materials flow, trailing edges are thinned, extended, and faulted (listric, normal structures; Edwards et al., 1995). Although updip regions may be bounded by headscars and characterized by tilted blocks, zones of evacuation are rarely observed on our seismic data. Yet, at the leading edges of accumulations, thickening, disorganization, folding, and faulting (high-angle reverse and thrust structures) result in zones of accumulation that are readily observed in the region. These features are generally bounded by frontal ramps and are characterized by compressional ridges (Martinez et al., 2005; Moscardelli et al., 2006; see Figs. 5D and 6 of Madof et al., 2009 for examples). Although updip and downdip zones have been found to be linked by detached transfer faults, these features frequently have poor preservation potential and are not observed in our seismic data.

Basal features flooring MTCs develop as a result of both coupling to the substrate and decoupling from it, processes that are manifested in the study area as incision and low-angle detachment surfaces, respectively. Where erosion has occurred, the depth of incision is generally found to be greatest under the thickest portion
of the deposit (see Madof et al., 2009). In our area, the development of linear scours arises as portions of pre-existing material (cohesive blocks) are integrated into the deposit, and subsequently erode into the underlying substrate. Scours are topographically sensitive, and are observed to converge in confined settings and diverge in unconfined ones; these features terminate down system as blocks disassemble or are forced into the overlying deposit at breaks in slope (Posamentier and Kolla, 2003). Where high- to low-angle detachment surfaces underlie MTCs in our study area, hydroplaning (i.e., sliding on a basal fluidized layer) is assumed to be the dominant transport mechanism (Mohrig et al., 1998; Gee et al., 2006).

4.5. Shelf edge sediments: Observations

The shelf edge facies consists of five complexes of laterally continuous, oblique to shingled high- to low-amplitude offlapping reflections. The facies exhibits a wedge to lenticular external form, and is underlain by non-erosive planar to concave, high- to low-angle surfaces. The five units are present north of the modern shelf-slope break and extend beyond the 2-D data (Fig. 13). Units constituting the facies range in thickness from <140 ms (126.3 m; 414.5 ft) to >330 ms (297.8 m; 977.1 ft), in length (measured parallel to the apparent dip of reflections) from <2.5 km (1.6 mi) to >49.5 km (30.8 mi), and in width (measured perpendicular to the apparent dip of reflections) from <2 km (1.2 mi) to >58.5 km (36.4 mi).

4.6. Shelf edge sediments: Interpretations

We interpret the shelf edge facies to represent progradation of sand-prone shallow marine sediments (clinothems) into progressively deeper water. These deposits may be part of a larger shelf-edge deltaic or shoreface system, but in the absence of lithofacies calibration, it is not currently possible to further refine our interpretation. Where observed, we interpret offlapping clinofoms to signify the development of bypass with steep clinform gradients suggesting relatively high-energy depositional environments (Mitchum et al., 1977; Tesson et al., 2000; Patruno et al., 2015). Asymmetric clinofornt lengths, seen on Fig. 13, are interpreted to be controlled by complex three-dimensional shifts in the relationship between accommodation creation and sediment supply (see Madof et al., 2016), and therefore imply composite along-strike geometries.

4.7. Channelized sandy turbidites: Observations

The channelized sandy turbidite facies consists of laterally discontinuous, variably arranged high-amplitude reflections (see Figs. 9 and 10 of Madof et al., 2009). Accumulations in the study area display a ribbon-shaped external form and low cross-sectional continuity. The facies exhibits tabular, wedge, lenticular, and mounded internal elements, and is underlain by erosional and scoured high- to low-angle surfaces. Within the 3-D volume, at least three sets of channelized sandy turbidites are identified in Fuji.
Fig. 11. Examples of MTC folds from Mazama basin. A) Horizon slice with extracted amplitude, located internal to MTCs no. 11M and 12M. Amplitude scale applies to entire figure. B) Enlargement of uninterpreted (top) and interpreted (bottom) southern portion of surface, showing axial traces. Blue arrows show interpreted sediment transport direction. C) Uninterpreted (top) and interpreted (bottom) east-west oriented seismic profile. Note position of horizon slice in uninterpreted view. Modified from Madof (2010). Seismic data courtesy of CGG-Veritas. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Examples of MTC scours from Mazama basin. A) Uninterpreted (left) and interpreted (right) time-structure map of base of MTC no. 8M. B) Uninterpreted (left) and interpreted (right) time-structure map of base of MTC no. 6M. C) Amplitude map of base of MTC no. 4M. D) Enlargement of uninterpreted (left) and interpreted (right) middle portion of surface in C. Blue arrows show interpreted sediment transport direction. E) Amplitude map of base of MTC no. 3M. F) Enlargement of uninterpreted (left) and interpreted (right) southern portion of surface in E. Modified from Madof (2010). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
basin, and at least one in Mazama basin (Fig. 14).

Units constituting the facies range from individual channels to sets of channel complexes. Individual channels are approximately ≤ 10 ms (7.9 m; 29.6 ft) in depth, with sets of channels displaying ≥ 40 ms (36.1 m; 118.4 ft) of relief. Deposits range in width from ≤ 12.5 m (41 ft) to ≥ 250 m (820.2 ft), and in length from ≤ 3.7 km (2.3 mi) to ≥ 30 km (18.6 mi). Elements are variably arranged into channel complexes, each bounded below by a major

Fig. 13. Distribution of shelf edge sediment facies. Plan view (left) shows extent of overlapping clinoforms (green polygons) and dip direction (white arrows point down gradient). Hachured lines signify slumped shelf edge accumulations. Shelf edge sediments are numbered from oldest (no. 5) to youngest (no. 1). Cross-sections (uninterpreted — middle and interpreted — right) highlight shelf edge sediment no. 1. Amplitude is the same as in Fig. 7. Modified from Madof (2010). Seismic data courtesy of TGS-Nepec. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Distribution of channelized sandy turbidites (map view) within 3-D seismic volume. A) Transparent sea floor superimposed over turbidites at depth. TWTT scale relates to turbidites. Star indicates location of structural sill separating Fuji basin (west) from Mazama-Hornet basins (east). Arrows in B) indicated interpreted trajectory of channelized sandy turbidites in Fuji basin. Modified from Madof (2010).
scour surface (i.e., reflection truncation) and above by a planar to irregular boundary. Complexes are ≤75 ms (67.7 m; 222.1 ft) to ≥200 ms (180.5 m; 592.2 ft) deep, ≤0.7 km (0.4 mi) to ≥3 km (1.9 mi) wide, and ≥30 km (18.6 mi) long (see Madof et al., 2009).

Both small-scale channels and large-scale complexes display a meandering morphology and a bypass character. Where present, accumulations in the 3-D data generally show an up-section increase in sinuosity, length, and swing (meander-loop expansion), but lack sweep (down-system meander-loop migration). Levees and lateral accretion are not found to be associated with individual channels, and may be below seismic detectability.

4.8. Channelized sandy turbidites: Interpretations

We interpret the channelized sandy turbidite facies to represent deposition from confined gravity-driven coarse-grained turbidity currents. Our interpretation of lithology is based on high-amplitude reflections and a ribbon-shaped external form, as well as from our calibration of seismic to well log and core (see Fig. 3).

The morphology, bounding surfaces, and internal architecture associated with channelized sandy turbidites in our 3-D data result from the alternation of incision and deposition at a variety of scales (Deptuck et al., 2003, 2007; McHargue et al., 2011). We interpret composite and master scour surfaces located at the base of channel complexes to form during times of erosion; these features are subsequently filled and onlapped by channelized sandy turbidites, hemipelagites, and muddy turbidites during non-erosional episodes. Although incision associated with the base of individual channels develops as sediments flow downslope, this scale of erosion is well below the resolution of our seismic data. The lack of levees associated with the features also indicates either that channels in our study area were deeper than the thickness of a typical turbidity current, or that the upper parts of flows contained insufficient mud to account for significant deposition (Posamentier and Kolla, 2003).

We interpret changes in grain size, flow parameters, and gradient to be responsible for the up-section increase in sinuosity, length, and swing observed on our 3-D seismic data (Peakall et al., 2000a; Kolla et al., 2007). These vertical changes develop through time as sandy turbidite channels broaden, are filled, and eventually bypassed (Peakall et al., 2000a, 2000b). Along with this evolution, deep-water channels in the 3-D data are observed to decrease in width and depth downslope.

4.9. Submarine canyons: Observations

Submarine canyons in the study area consist of either a composite or master basal scour surface, marked by reflection truncation, onlapped by high- to low-amplitude reflections of shingled, oblique, draping, and chaotic character. Incision ranges in depth from ≤10 ms (9 m; 29.6 ft) to ≥815 ms (735.5 m; 2413.1 ft), in width from ≤6.5 km (4 mi) to ≥20 km (12.4 mi), and in length from ≤7.5 km (4.7 mi) to ≥52.5 km (32.6 mi). At least six submarine canyons are identified in the 2-D data, north of the modern shelf-slope break (Fig. 15), with the four oldest systems truncated by a high-angle northeast-southwest oriented erosional surface. Canyons become progressively shallower, and generally wider, in an eastward direction.

4.10. Submarine canyons: Interpretations

We interpret the submarine canyons to represent a complex process of multi-scale bypass and erosion (Harris and Whiteway, 2011), propagating downslope by incision (Imran et al., 1998) or updip by retrogressive failure (Pratson et al., 1994; Pratson and Coakley, 1996). Canyons are found to initiate as locally over-steepened sediments trigger eroding sediments to flow down slope, leading to the development of MTCs. Over time, incision propagates upslope, evolving into headward-eroding systems. Although both updip- and downdip-propagating mechanisms have been inferred for the generation of submarine canyons, it remains unclear if features in our study area may also have formed via submarine erosion by dense shelfal waters (Canals et al., 2006). In either case, submarine canyons on the 2-D data are filled and onlapped by a variety of deposits, such as shelf edge sediments, hemipelagites and muddy turbidites, and MTCs.

4.11. Sediment transport directions

We interpret shelf edge sediments (Table 2), submarine canyons (Table 3), and channelized sandy turbidites to have flowed south and southeast, whereas MTCs are thought to have had significantly more directional variability. Ten intrabasinal and two extrabasinal MTCs within Fuji basin were transported radially into the basin’s depocenter (Madof et al., 2009), while eight intrabasinal and twelve extrabasinal deposits within Mazama basin were emplaced both radially and southwards, towards that basin’s depocenter (Figs. 16 and 17; Table 4). We find all MTCs within Fuji and Mazama (a total of 18 intrabasinal and 14 extrabasinal) to be contained within basin depocenters, and not to have breached the southern sill and flowed southwards.

The majority of MTCs that fill Fuji basin were sourced from its margins, while those that fill Mazama basin were derived from updip salt-controlled structural highs, which are currently located outboard of the modern shelf-slope break (Fig. 18). Fig. 19 shows the intrabasinal (squares) and extrabasinal (circles) MTCs filling Fuji and Mazama as a function of volume, and with respect to time. Based on available age control, a marked increase in MTC generation occurs in Fuji basin at ~0.45 Ma and in Mazama basin, and continues to the present. Measurements also illustrate that smaller MTCs are far more prevalent than larger ones, with the most common volume being 10–20 km³ in Fuji basin and 0–10 km³ in Mazama basin (Fig. 19C and D).

We estimate emplacement directions for MTCs from axial surfaces, basal erosion, head scarp, scours, and thinning directions. MTCs flowed approximately perpendicular to fold axial surfaces and head scarp, and parallel to underlying scours. Basal erosion and thinning directions were used to distinguish the center of the deposit from lateral and downdip margins (feather edges), and therefore provide less confidence in inferring sediment transport directions. Features located on basal surfaces of MTCs within Mazama basin were measured (Table 5) and plotted on rose diagrams (Fig. 20).

4.12. Stratigraphic architecture

The stratigraphic architecture of the offshore Louisiana consists of two large-scale assemblages, bracketed by biostratigraphic intervals, and interpreted on the basis of facies types. The first assemblage spans from ~3.7 Ma to ~0.45 Ma, and consists primarily of hemipelagites, muddy turbidites, and MTCs (see Figs. 7–8); MTCs become more prevalent in increasingly shallower and outboard sections. The first assemblage is generally devoid of sand-prone systems in the offshore Louisiana.

The second assemblage spans from ~0.45 to 0.0 Ma, and in addition to the facies of the first assemblage, contains inboard sand-prone submarine canyon fill and shelf edge sediments, as well as outboard channelized sandy turbidites. The base of the second assemblage (~0.45 Ma) is the only biostratigraphic datum that displays a potential for sequence stratigraphic significance: it has
characteristics of an updip flooding surface (e.g., located above inner and outer shelf sand-prone systems — Figs. 13 and 15) that grades laterally into an outboard sequence boundary (e.g., located below MTC no. 10F — see Fig. 9).

Table 2
Measurements of clinoforms from 2-D seismic lines. Maximum thickness was calculated by multiplying half of the measurement in milliseconds by interval velocity (Fig. 4B). Note that maximum progradation was calculated from extent of observed offlap, and that all clinoforms extend laterally (strike) beyond limit of 2-D data.

<table>
<thead>
<tr>
<th>Canyon</th>
<th>Maximum thickness (m)</th>
<th>Maximum progradation (km)</th>
<th>Progradation direction</th>
<th>Underlying canyon(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 5</td>
<td>358</td>
<td>14.5</td>
<td>SE</td>
<td>No. 3a and 3b</td>
</tr>
<tr>
<td>No. 4</td>
<td>293</td>
<td>50.5</td>
<td>SE</td>
<td>No. 2</td>
</tr>
<tr>
<td>No. 3</td>
<td>151</td>
<td>31</td>
<td>S, SE</td>
<td>No. 1</td>
</tr>
<tr>
<td>No. 2</td>
<td>310</td>
<td>19.5</td>
<td>S, SE</td>
<td></td>
</tr>
<tr>
<td>No. 1</td>
<td>163</td>
<td>18</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Measurements of submarine canyons from 2-D seismic lines. Maximum relief on incision was calculated by multiplying half of the measurement in milliseconds by interval velocity (Fig. 4B). Note that canyons show more relief with decreasing age. * = truncated vertically by overlying canyon or erosional edge; † = eroded laterally by overlying canyon. 1 = clinoforms; 2 = contorted hemipelagites; 3 = muddy turbidites; 4 = MTCs.

<table>
<thead>
<tr>
<th>Canyon</th>
<th>Maximum relief (m)</th>
<th>Maximum width (km)</th>
<th>Transport direction</th>
<th>Canyon fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4b</td>
<td>244*</td>
<td>6.5†</td>
<td>SE</td>
<td>2,3,4</td>
</tr>
<tr>
<td>No. 4a</td>
<td>271</td>
<td>7.5†</td>
<td>SE</td>
<td>2,3,4</td>
</tr>
<tr>
<td>No. 3b</td>
<td>294</td>
<td>8.5†</td>
<td>SE</td>
<td>3</td>
</tr>
<tr>
<td>No. 3a</td>
<td>353*</td>
<td>11.5†</td>
<td>SE</td>
<td>2,3,4 locally capped by 1</td>
</tr>
<tr>
<td>No. 2</td>
<td>686</td>
<td>20†</td>
<td>SE</td>
<td>2,3,4 locally capped by 1</td>
</tr>
<tr>
<td>No. 1</td>
<td>735</td>
<td>14</td>
<td>SE</td>
<td>2,3,4 locally capped by 1</td>
</tr>
</tbody>
</table>
Fig. 16. Summary of inferred emplacement directions (black arrows) and minimum surface areas (brown polygons) for MTCs in Fuji and Mazama-Hornet basins. Dashed arrows indicate a tentative interpretation, while diagonal lines delineate erosion by overlying MTCs. See Table 5 for additional information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Summary diagram (from Fig. 16) for Fuji and Mazama-Hornet basins showing all interpreted transport directions (arrows), with respect to time (rainbow gradient). Warmer colors indicate older deposits, while cooler colors show younger ones. Note that MTCs within Fuji basin flow radially towards the depocenter, while MTCs in Mazama-Hornet basin primarily flow southward. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

<table>
<thead>
<tr>
<th>Maximum thickness (m)</th>
<th>Minimum surface area (km²)</th>
<th>Volume (km³)</th>
<th>Features used to interpret sediment transport direction(s)</th>
<th>Propagation direction(s)</th>
<th>Intra- or extrabasinal</th>
<th>Minimum number of component MTCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuji basin MTCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.12F 338</td>
<td>137</td>
<td>23</td>
<td>1, 4, 5</td>
<td>NE, NW</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.11F 169</td>
<td>160</td>
<td>14</td>
<td>5</td>
<td>SE</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.10F 309</td>
<td>201</td>
<td>31</td>
<td>1, 5</td>
<td>E, NE, SE</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.9F 319</td>
<td>220</td>
<td>35</td>
<td>1, 5</td>
<td>S</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.8F 137</td>
<td>219</td>
<td>15</td>
<td>1, 3, 4, 5</td>
<td>NW</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.7F 75</td>
<td>178</td>
<td>7</td>
<td>1, 5</td>
<td>E, SE</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.6F 53</td>
<td>204</td>
<td>5</td>
<td>1, 2, 5</td>
<td>NE, SE</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.5F 308</td>
<td>250</td>
<td>39</td>
<td>4, 5</td>
<td>N, NE</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.4F 147</td>
<td>147</td>
<td>11</td>
<td>1, 5</td>
<td>SE, SW</td>
<td>Intra</td>
<td>4</td>
</tr>
<tr>
<td>No.3F 195</td>
<td>240</td>
<td>23</td>
<td>1, 5</td>
<td>NE, SW</td>
<td>Intra</td>
<td>5</td>
</tr>
<tr>
<td>No.2F 186</td>
<td>106</td>
<td>10</td>
<td>1, 2, 5</td>
<td>NE, SE, SW, W</td>
<td>Intra</td>
<td>4</td>
</tr>
<tr>
<td>No.1F 163</td>
<td>196</td>
<td>16</td>
<td>1, 2, 5</td>
<td>NE, SE, W</td>
<td>Intra</td>
<td>5</td>
</tr>
<tr>
<td>Mazama basin MTCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.19M 234</td>
<td>99</td>
<td>12</td>
<td>4, 5</td>
<td>SE</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.18M 119</td>
<td>55</td>
<td>3</td>
<td>4, 5</td>
<td>SE</td>
<td>Intra</td>
<td>1</td>
</tr>
<tr>
<td>No.17M 285</td>
<td>174</td>
<td>25</td>
<td>1, 5</td>
<td>S, SE</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.16M 150</td>
<td>223</td>
<td>17</td>
<td>1, 5</td>
<td>E, SE, SW</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.15 79</td>
<td>97</td>
<td>4</td>
<td>4, 5</td>
<td>SE</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.15.1M 210</td>
<td>87</td>
<td>9</td>
<td>1, 5</td>
<td>SW</td>
<td>Intra</td>
<td>1</td>
</tr>
<tr>
<td>No.14M 288</td>
<td>419</td>
<td>60</td>
<td>1, 4, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.13M 64</td>
<td>194</td>
<td>9</td>
<td>1, 4, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.12M 207</td>
<td>311</td>
<td>32</td>
<td>1, 4, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.11M 338</td>
<td>460</td>
<td>78</td>
<td>1, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.10M 232</td>
<td>384</td>
<td>45</td>
<td>1, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.9M 264</td>
<td>393</td>
<td>52</td>
<td>1, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.8M 206</td>
<td>166</td>
<td>17</td>
<td>1, 4, 5</td>
<td>SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.7M 86</td>
<td>160</td>
<td>7</td>
<td>4, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.6M 619</td>
<td>450</td>
<td>139</td>
<td>1, 4, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>1</td>
</tr>
<tr>
<td>No.5M 376</td>
<td>69</td>
<td>13</td>
<td>1, 5</td>
<td>NW</td>
<td>Intra</td>
<td>1</td>
</tr>
<tr>
<td>No.4M 440</td>
<td>537</td>
<td>118</td>
<td>1, 4, 5</td>
<td>S, SE, SW</td>
<td>Extra</td>
<td>2</td>
</tr>
<tr>
<td>No.3M 41</td>
<td>35</td>
<td>1</td>
<td>4, 5</td>
<td>S</td>
<td>Intra</td>
<td>1</td>
</tr>
<tr>
<td>No.2M 124</td>
<td>38</td>
<td>2</td>
<td>1, 4, 5</td>
<td>SE</td>
<td>Intra</td>
<td>2</td>
</tr>
<tr>
<td>No.1M 333</td>
<td>323</td>
<td>54</td>
<td>1, 5</td>
<td>SE, SW</td>
<td>Extra</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 17. Measurements of MTCs from 3-D seismic volume. Maximum thicknesses were calculated by multiplying half of the measurement in milliseconds by interval velocity (Fig. 4B). Volume of MTCs was estimated as wedge shaped, and was therefore calculated by taking product of maximum thickness and minimum surface area divided by 2. 1 – axial surface; 2 – basal erosion; 3 – head scarp; 4 – scour; 5 – thinning directions.

Oblique view (looking north from slope) of modern seafloor, with source-area interpretations of MTCs. White stars identify interpreted intrabasinal MTC sources, whereas black stars identify extrabasinal ones. Dashed line approximates shelf-slope break. Artificial lighting is from the south. Vertical exaggeration = 7.5 x. Figure made using Virtual Ocean (Marine Geoscience Data System, 2009) accessed on 09-20-2009. Modified from Madof (2010).
5. Stratigraphic models

5.1. Sequence stratigraphy versus active deformation

It is generally accepted that relative sea-level change results in reciprocal sedimentation at continental margins (Vail et al., 1977; Haq et al., 1987, 1988; Vail, 1987; Jervey, 1988; Posamentier et al., 1988; Posamentier and Vail, 1988; Weimer, 1990; Posamentier and Allen, 1999; Catuneanu, 2002; Posamentier and Kolla, 2003; Saller et al., 2004; Catuneanu, 2006; Catuneanu et al., 2011). According to this view, during high stands, sand is thought to accumulate preferentially in shallow-marine settings on the shelf, while hemipelagics accumulate in deep-water environments on the slope. As sea level falls, basinward-directed MTCs are initiated from upper slope failures triggered by increases in pore-fluid pressures in low permeability zones. During low stands, coarse-grained deposits are expected subsequently to fill incised valley systems on the shelf, as fine-grained sediments collect on the slope. Accumulations backstep and the cycle resets with a high stand of sea level.

A fundamental assumption of models involving reciprocal sedimentation is that depositional sequences develop in close proximity to relatively long-lived and coarse-grained sediment sources. Yet, in lateral areas dominated by muddy accumulations (this study), sequences are rarely developed, making a test of stratigraphic concepts problematic. To correct for these issues, we examine the concept of reciprocal sedimentation by using our time-stratigraphic framework to compare patterns of observed facies (Figs. 7–15) with those predicted by sequence stratigraphic models. We use the definition of relative sea level from Jervey (1988) to determine the relationship between eustasy and subsidence; the eustatic component of relative sea level (from Miller et al., 2005) is shown in Fig. 21. To better understand the deformational component, we use geometric criteria from seismic data to determine uplift (upward-rotation of reflections) and subsidence (downward-rotation of reflections). The absolute value of vertical displacement is not possible to determine in the absence of high-resolution paleodepth proxies.

Based on our test, and the fact that the Louisiana margin is devoid of well-developed depositional sequences, we conclude that reciprocal sedimentation does not adequately describe the stratigraphic evolution of the continental margin during the late Pliocene to Holocene. Our determination is centered on the observation that cycles of sea-level change are not timed to seismic facies, reflection geometries, or significant surfaces. For example, MTCs in shelf-to-slope settings do not coincide with relative sea-level falls, and generally do not propagate away from the shelf-slope break. Out of the 32 total MTCs in Fuji and Mazama-Hornet basins (18 intrabasinal and 14 extrabasinal), only 3% (1 of 32 — no. 9F) can be
correlated to a low stand in sea level, approximately 30% (9 of 32 nos. 8F–1F; 5M) are correlatable to transgressions and high stands, and the remaining 67% (22 of 32) do not have sufficient age resolution to make a determination. In addition to the timing of MTCs, erosional surfaces located at the base of the deposits are not sequence boundaries because they are limited in areal extent, tied to specific salt structures, and do not extend onto the shelf. This is readily obvious from the base of the second assemblage (~0.45 Ma), which laterally transitions from a flooding surface on the shelf into a sequence boundary on the slope.

In shelfal locations, clinoforms (Fig. 13) are only observed in the study area during the last ~0.45 Myr, and do not occupy the maximum basinward position at the largest sea-level fall (~0.45 Ma). This implies that even if shallow marine deposits were influenced by sea-level change, they were not fundamentally controlled in the same way as Quaternary deposits (see Anderson et al., 2004; and Anderson et al., 2016). Submarine canyons (Fig. 15), on the other hand, are present only before ~0.45 Ma, and are not associated with major sand delivery to the study area (Fig. 9). Nor are they tied to the largest sea-level fall. Based these observations, reciprocal sedimentation does not adequately describe the shelf or slope stratigraphy of offshore Louisiana because it makes incorrect assumptions on the origin of depositional cyclicity.

5.2. Fill-and-spill versus subsidence and margin failure

Fill-and-spill models have been used to interpret the stratigraphic evolution of the salt-controlled Gulf of Mexico slope (Satterfield and Behrens, 1990; Prather et al., 1998, 2012; Winker and Booth, 2000), and have been a significant exploration concept in the search for oil and gas in deep-water and mobile-substrate environments. According to these models, minibasins undergo a three-part evolution from ponded, to perched, to complete bypass (Beaubouef and Friedmann, 2000; Booth et al., 2000, 2003; Mallarino et al., 2006). The fill-and-spill cycle initiates as extrabasinal coarse-grained and slumped sediments are transported longitudinally into salt-bounded depressions. Along with hemipelagites, accumulations pond and heal minibasins to their spill points (Fig. 22A – left). Continued fine-grained sediment perches from above the basin exit point to the local slope profile of the basin (Fig. 22A – middle); erosion of pre-existing deposits subsequently initiates down-slope bypass (Fig. 22A – right). Prather et al. (1998) applied fill-and-spill models to the Gulf of Mexico (their Fig. 25), and concluded that ~1 Myr (2.85–1.84 Ma) of ponding (filling) gave way to more than ~0.3 Myr (1.05–0.70 Ma) of bypass (spilling) on the upper slope, and in Fuji and Mazama-Hornet basins more specifically. The authors determined that the transition from ponding to bypass was a consequence of increased

Fig. 20. Rose diagrams of directional indicators from MTCs, with interpreted sediment transport directions displayed by blue arrows. A-D) Axial surfaces (folds) from Fuji basin. E-H) Scours marks from Mazama basin. See Table 5 for tabulated data for Mazama basin, and Madof et al. (2009) for data pertaining to Fuji basin. N = population size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
rates of sediment accumulation, which resulted from the capture of the Ohio and Missouri Rivers by the Mississippi River.

We have tested the interpretations of Prather et al. (1998) on Fuji and Mazama-Hornet basins, and reach different conclusions.

Fig. 21. Sea level curve (i.e., eustasy plus water loading) from Miller et al. (2005). Time scale is from Cohen et al. (2013). * = biostratigraphic datums from slope; † = biostratigraphic datum from shelf.
Based on our observations, we determine that during the last ~3.7 Myr, ponding in basin depocenters was the dominant mode of sediment accumulation, and that no bypass or major down-system transport occurred. As a result, we propose a structural-stratigraphic model that better accounts for the seismic geometry and stratigraphic evolution of minibasins. Our model shows that displacement of salt with depth and in lateral areas leads to ponding of intrabasinal sediments (Fig. 22B — left), which prompts depocenter subsidence and concomitant flank uplift (Fig. 22B—middle). This dynamic and three-dimensional process leads to oversteepened and rotated basin margins, which subsequently fail and generate intrabasinal MTCs (Fig. 22B — right). The process also occurs on a larger-scale and is responsible for creating extrabasinal MTCs. Because MTCs remobilize deposits on basin highs, hemipelagites and muddy turbidites occur only in thin carapaces above mini-basin flanks. Alternatively, where thick sediment accumulations exist over basin flanks, they tend to suppress surface expressions of underlying salt, and result in non-oversteepened conditions. This relationship implies a negative correlation between depth to salt and oversteepening (Fig. 23). Regardless of the local effects of gradient-induced failure, our process-driven model casts doubt on the abundant use of fill-and-spill models on salt-controlled minibasins, and highlights the need for understanding active deformation during deposition, and especially in three dimensions (see Sylvester et al., 2015).

6. Stratigraphic evolution of a decoupled shelf and slope

Our study area represents a fine-grained and structurally-active end-member where salt tectonics are interpreted to have decoupled the shelf and slope from early Pliocene to Holocene times. Depositional processes occurring on the slope (i.e., MTCs), therefore, do not have shelfal equivalents, and vice versa. From the early Pliocene to middle Pleistocene, relatively slow sedimentation resulted in basinward-thickening shelf sediments (Figs. 7—8), and decreased slope accumulation (Fig. 24A). Diminished rates of deposition led to reduced subsidence, and as a result, halokinetic cycles episodically generated small numbers of MTCs (Fig. 24B). In the northern part of the study area, because of kilometer-scale spacing of 2-D seismic profiles, individual MTCs cannot be tied to specific structures, but are assumed to have originated in a similar fashion. The lack of observed clinoforms (not including those in Fig. 13) hinders an interpretation for the position and trajectory of the shelf-slope break, and may imply either that not enough coarse-grained sediment was available to develop these features, or that clinoforms were subsequently re-mobilized into MTCs. The paucity of submarine canyons also suggests that erosion was not a dominant process during this time. Early Pliocene to middle Pleistocene accumulations are thus interpreted to have recorded episodic halokinetic cycles on the shelf and slope, and not sea-level change or perched-to-ponded accommodation.

From the middle Pleistocene to present, comparatively rapid accumulation resulted in the deposition of basinward-thickening shelf deposits (Figs. 7—8), and increased slope accumulation. Enhanced rates of sedimentation, along with a major sea-level lowstand may have been responsible for the development of submarine canyons (Fig. 24C) and shelf edge clinoforms (Fig. 24D), which subsequently backstepped before ~0.45 Ma (Fig. 24E). From this time until recent, increased loading-induced subsidence generated salt-controlled cycles, which were responsible for the vast number of MTCs found within the study area (Fig. 24F). Middle Pleistocene to recent sedimentation is therefore inferred to have preserved an exceedingly incomplete record of eustatic oscillation on the shelf, and cyclicity controlled by salt tectonics on the slope. During the past ~3.7 Myr, the absence of direct communication between shelf and slope areas led to a decoupling of these bathymetric provinces.

7. Conclusions

We have taken an integrative approach to interpreting the stratigraphy of offshore Louisiana, by incorporating 2-D and 3-D seismic and biostratigraphic data. We have tested models relating to both reciprocal sedimentation and fill-and-spill processes, and instead determine that varying rates of differential sediment
accumulation and subsidence into allochthonous salt better explain the stratigraphic evolution of the late Neogene to Quaternary. Sea-level change at 10–100 kyr cycles plays a minimal role in the development of facies distribution, stratigraphic architecture, and
large-scale geometry. Our data suggest that fine-grained sedi-
mentary systems with mobile substrates be re-evaluated in terms
of active deformation via differential subsidence, rather than a
priori use of conventional sequence stratigraphic and fill-and-spill
models.

Acknowledgements

The authors acknowledge Chevron for summer internships (Madof) and for access to proprietary biostratigraphic data, Com-
pagnie Générale de Géophysique-Veritas for the loan of 3-D seismic
reflection data, TGS-NOPAC Geophysical Company for loan of 2-D
seismic reflection data, Paradigm for providing access to commer-
cial interpretation software, and National Science Foundation grant
OCE 01-19019 for the support of related sequence stratigraphy
studies (Christie-Blick). We are especially grateful to Tom L. Elliott,
Mark Filewicz, Barney Isen, David C. Lentricchia, Ivan D. Marroquin,
Martin A. Perlmutter, Serge Sauvagnac, Luc Schlumberger, Nat G.
Smith, and Roger Witmer for making it possible to undertake this
project. We thank Sean D. Connell, Ashley D. Harris, Simon Lang,
and Morgan D. Sullivan for engaging discussions about earlier in-
terpretations, as well as comments from Sverre Henriksen and two
anonymous reviewers. Lamont-Doherty Earth Observatory con-
tribution number 8065.

References

northern Gulf of Mexico margin: a synthesis. In: Anderson, J.B., Fillon, R.H. (Eds.), Late Quaternary Stratigraphic Evolution of the Northern Gulf of Mexico
Margin, vol. 79. Society of Economic Paleontologists and Mineralogists Special
Publication, pp. 1–23.
2016. Recycling sediments between source and sink during a eustatic cycle:
systems of late Quaternary northwesternmost Gulf of Mexico basin. Earth Sci.
References distribution number 8065.

Brown, A.R., Dahm, C.G., Graebner, R.J., 1981. A stratigraphic case history using
two-generated by retrogressive slope

Buell, R.T., Sawyer, D.S., 1985. Distribution of crust and early history, Gulf of
Carbotte, S.M., Arko, R., Chayes, D.N., Haxby, W., Lehner, K., O’Hara, S., Ryan, W.B.F.,
grated data management system for Ridge2000 and MARGINS research. EOS 85, 553–559.
Catuneanu, O., 2002. Sequence stratigraphy of clastic systems: concepts, merits, and
p.

nostratigraphic Chart. Episodes 36, pp. 199–204.

Petroleum Geol. 20, 649–676.

Déptuck, M.E., Sylvester, Z., Pirmez, C., O’Byrne, C., 2007. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleisto-

Dielg, F.A., Karlo, J.F., Schuster, D.C., Shoup, R.C., Tauer, P.R., 1995. Cenozoic struc-
tural evolution and tectono-stratigraphic framework of the northern Gulf
Geologists Memorial, pp. 109–151.

failure, Santa Barbara basin, California continental borderland. J. Sediment.
Res. 65, 57–68.

Expedition 308 Scientists, 2005. Overpressure and Fluid Flow Processes in the
In: Ridge Drilling Program Preliminary Report 308.

Mesozoic–Cenozoic subsidence history, western deep Gulf of Mexico
bassin.

giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy

Galloway, W.E., 2001. Cenozoic evolution of sediment accumulation in deltaic and
shoreline depositional systems, northern Gulf of Mexico basin. Mar.
Petroleum Geol. 18, 1031–1040.

history of the Gulf of Mexico basin. Am. Assoc. Petroleum Geol. Bull. 84,
1743–1774.

Haddad, S. and M. Cribbs, 2002, Determining reservoir stratigraphic continuity via
well testing in deepwater Gulf of Mexico, Fuji prospect: Society of Petroleum
Engineers Annual Technical Conference and Exhibition, 29 September – 2

Haidaszien, H., Sejrup, H.P., Nystad, J., Mienert, J., Bryn, P., Lien, R., Forsberg, C.B.,

Haflidason, H., Sejrup, H.P., Forsberg, C.B., Bryn, P., 2005. The dating and

Haq, B.J., Hardenbol, J., Vail, P.R., 1987. Chronology of flooding sea levels since the

Haq, B.U., Hardenbol, J., Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and

