Effect of aridity on δ13C and δD values of C3 plant- and C4 graminoid-derived leaf wax lipids from soils along an environmental gradient in Cameroon (Western Central Africa)

Valérie F. Schwab a,⁎, Yannick Garcin b, Dirk Sachse b, Gilbert Todou c, Olivier Séné c, Jean-Michel Onana d, Gaston Achoundong d, Gerd Gleixner a

a Max-Planck-Institut für Biogeochemie, Jena, Germany
b DFG-Leibniz Center for Surface Process and Climate Studies, Institut für Erd- und Umweltwissenschaften, Universität Potsdam, Germany
c Faculté des Sciences, University of Maroua, Cameroon
d National Herbarium of Cameroon, IRAD, Yaoundé, Cameroon

A R T I C L E I N F O

Article history:
Received 25 February 2014
Accepted 9 September 2014
Available online 2 October 2014

Keywords:
Evapotranspiration
D-enrichment
Pentacyclic triterpene methyl ethers
PTMEs
n-Alkane
Compound-specific isotope
Paleo
Climate
Proxy

A B S T R A C T

The observation that the hydrogen isotope composition (δD) of leaf wax lipids is determined mainly by precipitation δD values, has resulted in the application of these biomarkers to reconstruct paleoclimate from geological records. However, because the δD values of leaf wax lipids are additionally affected by vegetation type and ecosystem evapotranspiration, paleoclimatic reconstruction remains at best semi-quantitative. Here, we used published results for the carbon isotope composition (δ13C) of n-alkanes in common plants along a latitudinal gradient in C3/C4 vegetation and relative humidity in Cameroon and demonstrated that pentacyclic triterpene methyl ethers (PTMEs) and n-C29 and n-C31, in the same soil, derived mainly from C4 graminoids (e.g. grass) and C3 plants (e.g. trees and shrubs), respectively. We found that the δD values of soil n-C27, n-C29 and n-C31, and PTMEs correlated significantly with surface water δD values, supporting previous observations that leaf wax lipid δD values are an effective proxy for reconstructing precipitation δD values even if plant types changed significantly. The apparent fractionation (εapp) between leaf wax lipid and precipitation δD values remained relatively constant for C3-derived long chain n-alkanes, whereas εapp of C4-derived PTMEs decreased by 20% along the latitudinal gradient encompassing a relative humidity range from 80% to 45%. Our results indicate that PTME δD values derived from C4 graminoids may be a more reliable palaeo-ecohydrological proxy for ecosystem evapotranspiration within tropical and sub-tropical Africa than n-alkane δD values, the latter being a better proxy for surface water δD values. We suggest that vegetation changes associated with different plant water sources and/or difference in timing of leaf wax synthesis between C3 trees of the transitional class and C3 shrubs of the savanna resulted in a D depletion in soil long chain n-alkanes, thereby counteracting the effect of evapotranspiration D enrichment along the gradient. In contrast, evaporative D enrichment of leaf and soil water was significant enough to be recorded in the δD values of PTMEs derived from C4 graminoids, likely because PTMEs recorded the hydrogen isotopic composition of the same vegetation type.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The observation that the hydrogen isotope composition (δD) of n-alkanes correlates with precipitation δD values over a large spatial scale (e.g. Sauer et al., 2001; Sachse et al., 2004, 2012; Garcin et al., 2012) has resulted in their widespread use for reconstructing past climate (e.g. Hou et al., 2008; Mügler et al., 2010; Sinninghe Damsté et al., 2011; Schefuss et al., 2011; Handley et al., 2012; Guenther et al., 2013). However, because n-alkane δD values can be additionally affected by secondary factors such as vegetation type (e.g. Krull et al., 2006; Sachse et al., 2012) or ecosystem evapotranspiration (e.g. Smith and Freeman, 2006; Sachse et al., 2010; Kahmen et al., 2013a,b), paleoclimatic reconstruction based on their integrated isotopic signal in geological records remains qualitative or semi-quantitative. By measuring the carbon isotope composition (δ13C) and δD values of lipids specifically derived from
C3 plants (e.g. trees or shrubs) and C4 graminoids (e.g. grass) in soil from a latitudinal gradient in C3/C4 vegetation and aridity of Cameroon, we aimed to determine the reliability of lipid δD values as paleo-precipitation and ecosystem paleo-evapotranspiration proxies.

Plant water source δD value and subsequent evaporative D enrichment of leaf water mainly control leaf wax lipid δD value (e.g. Sachse et al., 2012; Kahmen et al., 2013a,b). Recently, it has been demonstrated that evaporative D enrichment of leaf water, which is expected to be greater under arid conditions, is linearly related to the D enrichment of n-alkanes in both C3 trees and C4 graminoids grown under controlled conditions in climate chambers (Kahmen et al., 2013a). These results allow quantifying the D enrichment of n-alkanes driven by leaf water evaporative D enrichment and thus might potentially be applied to contemporary plants as ecohydrological proxies for evapotranspiration (Kahmen et al., 2013b). It has been demonstrated that evaporative D enrichment of leaf water occurs to a lower extent in C4 graminoids than in C3 plants, resulting in cultured plants to lower n-alkane δD values (by 50‰) in C4 graminoids than in C3 plants (Kahmen et al., 2013a). However in arid ecosystems, water in the upper soil layers is commonly D-enriched relative to the water in deeper soil layers (e.g. Schulze, 1986; Dawson and Pate, 1995; Oliveira et al., 2005). Because shallow rooted C4 graminoids (e.g. grass) typically access more D-enriched water than deeper rooted C3 plants (e.g. trees or shrubs), stratification in soil water δD values might result alternatively in heavier n-alkanes in C4 graminoids than in C3 plants (Krull et al., 2006). Consequently, intrinsic factors related to different plant physiology between C3 plants and C4 graminoids may either increase or decrease the effects of aridity on their leaf wax lipid δD values (e.g. Bi et al., 2005; Chikaraishi and Naraoka, 2006, 2007; Smith and Freeman, 2006). Without better knowledge of the effect of these factors on the integrated plant lipid δD values in geological records, quantitative interpretations will remain limited.

Because isotope fractionation during carbon fixation differs between plant pathways, C3 and C4 plants differ in their carbon isotope composition (Farquhar et al., 1989). Commonly, C3 plant-derived lipids exhibit δ13C values of ca. −35‰ ± 5‰ and C4 plant-derived lipids ca. −20‰ ± 2‰ (Chikaraishi et al., 2004; Rommerskirchen et al., 2006b). Despite possible δ13C enrichment during soil degradation (e.g. Chikaraishi and Naraoka, 2006), plant-derived lipid δ13C values faithfully record the biosynthetic pathway of the producers and have thus been widely used to infer the relative contribution of C3 and C4 plants to soil organic matter (e.g. Rommerskirchen et al., 2006b; Diefendorf et al., 2011; Garcin et al., 2014).

The C4 photosynthetic pathway occurs primarily within monocotyledonous plants and particularly among grasses (Poaceae) and sedges (Cyperaceae) (Ehleringer et al., 1997). Poaceae (graminoids) is a large family including more than 10,000 species that are particularly well represented in drier vegetation zones of tropical Africa (Tieszen et al., 1979). Pentacyclic triterpene methyl ethers (PTMEs) are found in variety of plants. But, because they typically occur in high abundance in C4 graminoids (Poaceae; e.g. Ohmoto and Natori, 1969; Jacob et al., 2005), they have been used to infer grass contribution in geological records (Jacob et al., 2008; Oyo-Ita et al., 2010). Recently, they have been reported in substantial amount in savanna soil, making them attractive as a potential grass biomarker in C4-dominated environments (Mendez-Millan et al., 2014).

Garcin et al. (2014) measured bulk and n-alkane δ13C values of the common C3 plants and C4 graminoids of a climatic and vegetation gradient along a south–north transect in Cameroon. The transect was characterized by a progressive change in vegetation from C3-dominated rainforest to C4-dominated dry savanna and by a decrease in relative humidity (RH) from 80% to 45%. By comparing the δ13C values of n-alkanes in plants and sediments against the relative abundance of C3/C4 plant cover in the region, Garcin et al. (2014) developed a new model to reconstruct C3 vegetation cover in arid environments based on sedimentary n-alkane δ13C records. Here, we have used bulk and n-alkane δ13C values of the C3 plants and C4 graminoids from the former study to assess the photosynthetic origin of soil n-alkanes and PTMEs from the same study sites. By combining the δ13C and δD values of these soil lipids, we aimed to differentiate the combined influences of climate and vegetation types (e.g. mostly C3 trees and shrubs and C4 graminoids) on leaf wax lipid δD values in the soil. The reliability of these lipids to record paleo-precipitation δD values and ecosystem evapotranspiration across the studied transect is discussed.

2. Study area
2.1. Climate

On the extreme south of the transect, the Debundscha (Debu), Ossa (Ossa) and Barombi (Baro) sites have a humid and hot climate with mean relative humidity (RH) ca. 85% (New et al., 2002) and mean annual temperature (MAT) ca. 26°C. Precipitation (ca. 2500–12,000 mm/yr) occurs throughout the year, without a marked dry season (Table 1). Northwards, the length of the dry

Table 1

<table>
<thead>
<tr>
<th>Latitude Site code</th>
<th>Climate</th>
<th>Vegetation</th>
<th>Soil n-alkane and PTME distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RFF (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0547 Mora</td>
<td>45</td>
<td>27.2</td>
<td>540</td>
</tr>
<tr>
<td>10.5082 Rhum</td>
<td>46</td>
<td>22.7</td>
<td>970</td>
</tr>
<tr>
<td>7.2533 Mamg</td>
<td>57</td>
<td>26.3</td>
<td>1560</td>
</tr>
<tr>
<td>7.1307 Tizo</td>
<td>63</td>
<td>21.8</td>
<td>1450</td>
</tr>
<tr>
<td>6.6245 Tabe</td>
<td>63</td>
<td>21.7</td>
<td>1450</td>
</tr>
<tr>
<td>5.0364 Asso</td>
<td>66</td>
<td>23</td>
<td>1740</td>
</tr>
<tr>
<td>8.3909 Mane</td>
<td>77</td>
<td>16</td>
<td>2700</td>
</tr>
<tr>
<td>4.6544 Baro</td>
<td>81</td>
<td>24.9</td>
<td>2550</td>
</tr>
<tr>
<td>4.1034 Debu</td>
<td>82</td>
<td>25.7</td>
<td>1170</td>
</tr>
<tr>
<td>3.7686 Ossa</td>
<td>82</td>
<td>26.3</td>
<td>2900</td>
</tr>
</tbody>
</table>

CPI (16–33) = δD odd Cn/δD even Cn; CPI (25–33) = ((C25 + C27 + C29 + C31) / (C17 + C19 + C21 + C23 + C25 + C26 + C28 + C29 + C30 + C32)) * (C25 + C27 + C29 + C31 + C33/C4n + C26 + C28 + C29 + C30 + C32); ACL (16–33) = (C16n + n/2)/C2n; δD PTMEs = ΔδD PTMEs (2δD PTMEs – 2n-alkanes) + 100; RH = relative humidity; MAT = mean annual temperature; MAP = mean annual precipitation; RF = rainforest; TZ = transition zone; HA = high altitude site; DS = dry savanna; fC3 = predicted areal fraction of C3 vegetation ± 1 standard deviation.

a From Garcin et al. (2012).

b From Garcin et al. (2014).

c Overestimated.
season increases drastically, while mean annual precipitation (MAP), MAT and RH decrease. In the mountain ranges of western Cameroon, the Manengouba (Mane) site at ca. 2000 m above sea level (a.s.l.) has the most pronounced mountainous climate and the coolest MAT (ca. 18°C) of the transect. MAP is high (2700 mm), with precipitation occurring throughout the year but maximizing from July to October. The Assom (Asso), Tabéré (Tabe) and Tizong (Tizo) sites are on the Adamawa Plateau, with an elevation of ca. 1500 m a.s.l. In the area, MAT is ca. 22°C and the rainy season is limited to 7 months (April to November) with a MAP of ca. 1500 mm. The Mangueuwa (Mang) site is on the southern edge of the North Region and has a rain pattern close to the sites of the Adamawa Plateau, with MAP ca. 1500 mm and MAT ca. 26°C. Located in the northernmost region, the Mora (Mora) and Rhumsiki (Rhum) sites are the driest sites on the transect. Rhum, at an altitude of 1000 m a.s.l. has mean RH ca. 45%, MAT ca. 23°C and MAP ca. 700 mm/yr. Located on a lowland area (ca. 400 m a.s.l.), Mora has a close mean RH of ca. 45%, but higher MAT (ca. 27°C) and lower MAP (ca. 500 mm/yr). At both of these drier sites, the dry season is longer (up to 7 months) and occurs from October to April.

2.2. Vegetation

The sites of the transect can be categorized, according to Mayaux et al. (1999) and White (1983), into three distinct main vegetation classes from south to north (Fig. 1). Close to the Atlantic coast, the Debu, Ossa and Baro sites are located in the vegetation of the rainforest, which is dominated by dense evergreen forest (Mayaux et al., 1999). The large canopy prevents the formation of shrubs and herbs that represent <10% of the vegetation (Mayaux et al., 1999). The latitudinal intermediates, sites Asso, Tizo, Tabe, Tizo and Mamg sites is characterized by a tree savanna (Mayaux et al., 1999). In the transitional zone between the rainforest in the south and the dry savanna in the north, the vegetation of the Asso, Tabe, Tizo and Mang sites is characterized by a tree savanna and woodland vegetation with up to 60% of shrubs and herbs (Mayaux et al., 1999). Deciduous trees lose their leaves briefly at different times, bringing a permanent green character to the canopy, while shrubs and herbs show a high degree of seasonality, with major growth during the rainy season (Mayaux et al., 1999). The high altitude site, Mane has a strongly disturbed Afromontane vegetation. Due to intensive pasture, the original forest, that covered ca. 30% of the lake catchment area, has been replaced mainly by grasses (Garcin et al., 2012). In the north, the Mora and Rhum sites are located in the dry savanna, dominated by C₄ grasses (Still and Powell, 2010). Shrubs are sparse and trees are located on the border of the water source (Mayaux et al., 1999). In this vegetation class, growth of both C₃ shrubs and C₄ grasses occurs mainly during the rainy season (Mayaux et al., 1999).

2.3. Isotope hydrology

The hydrogen isotope composition of plant xylem water, river water and groundwater, as well as precipitation from localized and sporadic rainfall events occurring in Cameroon during May, October and November 2009, were published by Garcin et al. (2012). As no mean annual precipitation δD values were available for the study area, surface water values (δDsw) were estimated from these data. In summary, the average δDsw values (−12.3 ± 3.7‰) for the Ossa, Debu and Baro sites on the Atlantic Coast were 15‰ heavier than the average δDsw values (−26.8 ± 4.2‰) for the Mora and Rhum sites on the extreme north of the transect. The latitudinal intermediates, sites Asso, Tizo, Tabe and Mang, showed average δDsw values of −16 ± 1‰. The most depleted value of −38.9‰ was at the highest site, Mane, and reflected isotopically lighter precipitation due to the higher elevation.

3. Sampling and analytical procedure

3.1. Field sampling

Four to six topsoil (0–5 cm) samples from locations representative of vegetation in the lake catchment were collected using a hand-operated soil sampler (Eijkelkamp, Giesbeek, The Netherlands) in November 2009. Before analysis, the samples were sieved using a 400 μm mesh sieve to remove roots and other coarse material. The different soil samples were subsequently mixed and freeze-dried.

3.2. Lipid extraction and pre-treatment

To ensure a sufficient amount of PTMEs for hydrogen isotope analysis, ca. 20 g of each soil sample were prepared for extraction. As an internal standard, n-C37 (Sigma–Aldrich) was added to each freeze-dried sample prior to extraction with an automated solvent extractor (ASE-200, Dionex Corp., Sunnyvale, CA, USA). The system was operated with dichloromethane/methanol (DCM/MeOH) 9/1 at 120°C, 2000 psi for 15 min in 3 cycles. The solvent was removed under a stream of N2 using a rapidvap labconco system (Labconco Corporation, Kansas City, MO, USA). The extract was separated using column chromatography on pre-combusted and partially deactivated Al₂O₃ into three fractions: F1 eluted with hexane/DCM (9:1, v/v) and containing n-alkanes, F2 eluted with hexane/DCM (1:1, v/v) and containing the PTMEs, and F3 eluted with DCM/MeOH (1:1, v/v) and containing the alcohols. The n-alkanes in F1 and PTMEs in F2 were assigned and quantified using gas chromatography (GC) coupled via a splitter to a flame ionization...
detect or (FID; Agilent 7890A) and a quadrupole mass-selective detector (MSD; 5975C, Agilent Technologies, Palo Alto, USA) at the Biomarker Laboratory of the University of Potsdam. The GC instrument was equipped with a HP5-MS column (30 m, 0.25 mm, 0.25 μm film thickness). He was the carrier gas and the oven temperature program was: 70 °C (2 min) to 320 °C (held 21 min) at 11 °C/min. The PTV injector was operated splitless at an initial temperature of 70 °C. With injection, the injector was heated to 300 °C (held 2.5 min) at 720 °C/min. The PTMEs were assigned on the basis of published mass spectra (Jacob et al., 2005; Oyo-Ita et al., 2010). For quantification, FID peak areas were compared with those of the internal standard and an external n-alkane standard mixture at different concentrations.

3.3. Compound-specific carbon and hydrogen isotope analysis

Measurement of the carbon and hydrogen isotope composition of the n-alkanes and the PTMEs was performed using a GC-isotope ratio mass spectrometry (GC-IRMS) system (DeltaPlus XL, Finnigan MAT, Bremen, Germany) at the Max Planck Institute for Biogeochemistry, Jena. For hydrogen isotope analysis, the GC instrument (HP5890, Agilent Technologies, Palo Alto, USA) was equipped with a DB1-ms column (50 m, 0.32 mm i.d., 0.52 μm film thickness, Agilent). The injector at 280 °C was operated in splitless mode at a constant 1 ml/min. The oven temperature was maintained for 1 min at 60 °C, heated at 8 °C/min to 320 °C and held 30 min. For carbon isotope analysis, the gas chromatograph (HP5890, Agilent Technologies, Palo Alto, USA) was equipped with a DB1-ms column (30 m, 0.32 mm i.d., 0.52 μm film thickness, Agilent). The injector at 280 °C was operated in splitless mode at a constant flow of 1 ml/min. The oven temperature was maintained for 1 min at 70 °C, heated at 5 °C/min to 300 °C, held 15 min and then heated at 30 °C/min to 330 °C and held 3 min. Isotope values, expressed in the δ notation (‰), were calculated with ISODAT software vs. reference gas. The values were converted to the Vienna standard mean ocean water (VSMOW) scale using a mixture of n-alkanes (C17 to C43) of known isotopic composition. The carbon and hydrogen isotope composition of the n-alkanes was determined off-line using a thermal conversion elemental analyzer (TC/EA: Thermo-Fisher, Bremen, Germany) interfaced to a DELTA V PLUS.

![Fig. 1. Map showing the different vegetation classes for the Cameroon transect. Circles represent the locations of the study areas within the rainforest, transitional zone and dry savanna vegetation classes. The map was adapted from Mayaux et al. (2002) based on satellite imagery that provided a representation of the different ecosystem structures (plant types). Note that the highland vegetation of Mane is not differentiated.](image-url)
IRMS system via a Conflo III combustion interface (Thermo-Fisher, Bremen, Germany). Instrument performance and the H_3^+ factor were determined on a daily basis using a tank of H_2 reference gas (Hilkert et al., 1999) and the mixture of n-alkanes (C_{17} to C_{33}) of known isotopic composition. The H_3^+ factor was <11 and stable during analysis. We report isotopic fractionation between two substances, δD_a and δD_b, as enrichment factor ($\varepsilon_{a/b}$) defined as:

$$
\varepsilon_{a/b} = \frac{\delta D_b - 1}{\delta D_a + 1} - 1
$$

(1)

Fig. 2. Histograms of soil distributions and concentrations of total n-alkanes and total PTMEs. RF = rainforest; TZ = transition zone; DS = dry savanna.
4. Results

4.1. Distribution and abundance of n-alkanes in soils

Soil n-alkanes ranged from C₁₂ to C₃₃ and displayed a strong predominance of long chain n-alkanes [average chain length (ACL) from 22 to 29] and high carbon preference index (CPI₂₅₋₃₃ from 6 to 20; Table 1 and annex Table 1). The distributions in the vegetation classes of the rainforest and the transitional zone were dominated by n-C₃₁ and n-C₂₉, respectively (Fig. 2). In the dry savanna, the distributions displayed an increase in the relative abundance of the longer chain n-alkanes that maximized at C₃₃. Concentration of individual n-alkanes ranged from < 1 to 450 µg/g dry mass (DM; annex Table 1). Total concentration of n-alkanes (from C₁₂ to C₃₃) ranged from 260 to 1180 µg/g DM and showed an overall decrease toward the drier north of the transect (Table 1).

4.2. Distribution and abundance of PTMEs in soil

Various PTMEs, such as taraxer-14-en-3β-ol (sawamilletin), urs-12-en-3β-ol ME (α-amyrin ME), olean-18-en-3β-ol ME (miliacin), lup-20(29)-en-3β-ol (lupeol), fern-9(11)-en-3β-ol ME (arundoin) and arbor-9(11)-en-3β-ol ME (cylindrin) were observed in soil samples (annex Table 2). Typical distributions of the major PTMEs are shown in Fig. 3. Total concentration ranged from < 1 to 180 µg/g DM (Table 1) and the average tended to increase northward from < 1 µg/g DM in the rainforest to 150 µg/g DM in the dry savanna to > 180 µg/g DM at the high altitude site Mane (Table 1; Fig. 2). In samples from the rainforest, sawamilletin was the most abundant PTMEs at up to 2 µg/g DM, while in the dry savanna miliacin predominated at up to 140 µg/g DM. In samples from the transitional vegetation class, both sawamilletin (up to 50 µg/g) and miliacin (up to 120 µg/g) were dominant (annex Table 2). The concentrations of sawamilletin and miliacin (Table 1) relative to n-alkanes [PTMEs = (ΣPTMEs/ΣPTMEs + Σn-alkanes) × 100 (%)] were significantly higher in the dry savanna (PTMEs ca. 20%) and the transitional zone (PTMEs ca. 14%) than the rainforest (PTMEs < 1%).

4.3. Carbon isotope composition of n-alkanes and PTMEs in soil

The δ¹³C values of the long chain n-alkanes in common C₄ and C₃ plants of the study sites along the transect were presented by Garcin et al. (2014). In the soil samples, δ¹³C values of n-C₂₅, n-C₂₇, n-C₂₉, n-C₃₁ and n-C₃₃ were in the range −40.9‰ to −18.1‰ (annex Table 3). In the dry savanna, the n-C₂₅ to n-C₃₃ values (mean −25.3 ± 3.2‰) were on average 9.2‰ more positive than those for the vegetation classes of the rainforest (mean −34.5 ± 3.5‰). In the transitional zone, the values of n-C₂₅ to n-C₃₃ were intermediate (mean −29.3 ± 3.7‰). At Mane, Asso, Tabo, Tizo and Mang sites, the values for n-C₂₇ (mean −23.1 ± 4.4‰) were up to 14‰ more positive than for the shorter chain homolog. In general, the δ¹³C values for n-C₂₇, n-C₂₉, n-C₃₁ and n-C₃₃ correlated positively with each other, and negatively with δDsw (Table 2).

Only sawamilletin and miliacin had sufficient concentration and purity for direct GC-IRMS analysis (annex Table 3). In the vegetation class of the rainforest, sawamilletin δ¹³C values were −37.1‰ (Debu) and −38.1‰ (Baro). For the other vegetation classes, the values for sawamilletin and miliacin were similar, averaging −15.7‰ ± 0.8 and −15.5‰ ± 0.6, respectively. The δ¹³C values of sawamilletin correlated positively with the those for n-C₂₇, n-C₂₉, n-C₃₁ and n-C₃₃ (Table 2).

4.4. Hydrogen isotope composition of n-alkanes and PTMEs in soil

The hydrogen isotope composition of n-C₂₅, n-C₂₇, n-C₂₉, n-C₃₁ and n-C₃₃ ranged from −142‰ to −172‰ (annex Table 4). In general, the δD values for n-C₂₇, n-C₂₉ and n-C₃₁ correlated with each other, while no correlation was observed between the δD values of n-C₂₇–₃₁ and n-C₃₃ (Table 2). The hydrogen and carbon isotope composition of n-C₂₉, n-C₃₁ and n-C₃₃ were negatively correlated (Table 2).

In the rainforest class, the δD values of sawamilletin were −145‰ ± 1. At all other sites, sawamilletin (−172‰ ± 10) and miliacin (−169‰ ± 11) were both D depleted by 30‰ relative to sawamilletin from the rainforest (annex Table 4). Large differences in lipid δD values between n-alkanes and PTMEs were found in the vegetation class of the transitional zone, where PTME δD values were up to 21‰ more negative than n-alkane values. In this zone, the n-C₃₁ δD values were intermediate between n-C₂₇–₃₁ and PTME δD values. In the vegetation classes of the rainforest and dry savanna, δD values of long chain n-alkanes and PTMEs were similar. The δD values of sawamilletin correlated positively with δDsw values, but negatively with the δ¹³C values of n-C₂₇, n-C₂₉, n-C₃₁ and n-C₃₃ (Table 2).

5. Discussion

5.1. Source of soil n-alkanes

The predominance of long chain n-alkanes with strong CPI (Table 1) in soil samples indicated their origin from higher plants (Eglinton and Hamilton, 1967). Common C₄ graminoids in Africa typically show a higher abundance of longer chain (> C₃₁) n-alkanes and δ¹³C values up to 13‰ more positive than C₃ plants (e.g. Rommerskirchen et al., 2006a; Vogts et al., 2009; Bush and...
In geological records, a shift to longer chain and more 13C-enriched n-alkanes is thus commonly attributed to vegetation changes from C3 tree- to C4 grass-dominated ecosystems (Rommerskirchen et al., 2006b). However, it is well known that leaf bulk δ^{13}C values of C3 plants may also be affected by the physiological response of the plant to aridity (Farquhar et al., 1989), with δ^{13}C values above -25% in environments with MAP < 500 mm/yr and δ^{13}C values around -30% in environments with MAP > 1000 mm/yr (Stewart et al., 1995; Kohn, 2010; Diefendorf et al., 2011). At the sites along the transect, Garcin et al. (2014) showed that lacustrine sedimentary n-C29 and n-C31 were derived mainly from C3 plants (mostly trees and shrubs) and their 13C enrichment along the latitudinal gradient likely reflected a physiological response of C3 plants to aridity rather than an increasing contribution of C4 plants to the sediments. In line with this interpretation, we argue that the 13C-enrichment of n-C29 and n-C31 in soils from the study sites, recorded mainly the physiological response of C3 plants to aridity, as the slope of the correlation of the n-alkane δ^{13}C values in soil vs. RH was identical to the slope of the correlation of the n-alkane δ^{13}C values in the major C3 plants of the area vs. RH (Fig. 4A and B). In the transitional zone, particularly at the Mane and Asso sites, soil n-C33 δ^{13}C values showed a different trend, exhibiting more positive δ^{13}C values (Fig. 4C) likely due to a greater contribution of C4 graminoid-derived n-C33. The results showed that, along the transect, soil n-C29 and n-C31 probably better constrained the isotope signal of C3 plants than C4 graminoids, whereas soil n-C33 δD values that integrated a higher proportion of C4 graminoids may give a mixed signal of the different plant types.

5.2. Source of soil PTMEs

In soil samples from the transitional zone and dry savanna, the δ^{13}C values of miliacin and sawamilletin were ca. 4$\%$ more negative than those of leaf bulk of common C4 plants (Fig. 5), supporting the C4 biosynthetic origin of the soil PTMEs (e.g. Chikaraishi et al., 2004; Diefendorf et al., 2011). In the rainforest class, sawamilletins 13C depleted by ca. 3$\%$ relative to leaf bulk of common C3 plants, supported a biosynthetic origin from the C3 pathway for this compound (Fig. 5).

Common and important C4 producers of miliacin are the domesticated Pennisetum sp. and Panicum miliaceum (Jacob et al., 2008; Bossard et al., 2011). The occurrence of these species associated with the high concentration of miliacin in the northern dryer sites of the transect (up to 150 μg/g DM: Table 1), support the statement that miliacin may possibly be used to track past millet agriculture dynamics (Bossard et al., 2013). Some Eragrostae as Eragrostis ferrigunea have been additionally described as important C4 producers of miliacin (Jacob et al., 2005). The occurrence of different species of this genus in sites of the transitional zone and dry savanna (Garcin et al., 2012) suggested that Eragrostae may be an additional important source of miliacin in geological records. Common C4 graminoid producers of sawamilletin are some Panicoideae such as Saccharum robustum (sugar-cane: Smith and Martin-Smith, 1978) and Miscanthus sacchariflorus or Echinochloa crusgalli (Jacob et al., 2005), which are common in wet (MAP > 1000 mm/yr)
environments. C3 graminoids are commonly referred to as perenni-
“cool-seasonal” grass such as some Poeae such as Festuca
spp., Poa pratensis or C3 panics species which, in the tropical
forest, are particularly represented in shaded habitat and may rep-
resent ca. 40% of the total grasses (Klink and Joly, 1989). However,
as sawamilletin has not been reported in these grasses, an origin
of C3-derived sawamilletin at the sites of the rainforest from C3
trees such as Diospyros spp. (Ebenaceae) and Bosisstoa spp. (Rutaceae) is
more likely (Jacob et al., 2005).

In the transect, the change from the rainforest to the transition
zone was characterized by a ca. 15% drop in the C3 vegetation cover
(Table 1). This vegetation change was recorded in soil by a sharp
increase of the PTME concentration and PTME/n-alkane ratios
(Table 1 and Fig. 2). These observations support previous state-
ments that PTME are produced mainly by C4 graminoids (Jacob et al., 2005) and suggest that in tropical and sub-tropical soil
records increasing concentration of PTME relative to n-alkanes may
be used to infer vegetation change from rainforest to transition
zone.

5.3. Soil n-alkane and PTME δD values vs. surface water δD values

Similarly biosynthesized compounds generally display a
positive correlation in δD to each other as well as their δ13C values
(Chikaraishi et al., 2004). Along the transect, the correlation of δD and
δ13C values for n-C27, n-C29 and n-C31 were in line with a common C3 plant origin. In contrast, the absence of the above correlation
between these n-alkanes and n-C33 suggests a different biosynthetic source for n-C33 in the soils. Based on n-C33 δ13C values,
a higher contribution of C4 graminoids to soil n-C33 seems plausible (Table 2). The significant correlation between δDapp and
δD values for mainly C3 plant-derived n-alkanes (Fig. 6) demon-
strated that leaf wax lipid δD values are an effective proxy for
reconstructing average precipitation δD values, despite large vege-
tation changes (e.g. Sachse et al., 2006; Liu and Yang, 2008; Garcin
et al., 2012). As n-C33 included a higher proportion of C4 graminoid
than n-C27,31 alkanes, we suggest that different contributions from
C3 and C4 plants resulted in the insignificance of the correlation
between n-C33 and surface water δD values (Fig. 6). However, this
may also be associated with the fact that δD values of n-C33 could
not be measured at the Mane site with the lightest δDapp values. The
δD values of PTMEs from C3 and C4 pathways correlated signifi-
cantly with δDsw (Fig. 7). However, the correlation becomes at
the limit of the statistical significance (p = 0.08) when only the
δD values of C4 graminoid-derived PTMEs are used. In arid and
semi-arid environments, it has been shown that C3 plant-derived
lipids record mean annual precipitation δD values, as they use
subsurface water which is not or slightly affected by soil water
evaporative δD enrichment (Feakins and Sessions, 2010; Kahmen
et al., 2013b). In contrast, lipid δD values in graminoids that use
soil surface water soil would potentially be more affected by soil water
evaporative δD enrichment. This may have contributed to lower sig-
nificance in the correlation between δD values of C4 graminoids
derived PTMEs and surface water δD values along the transect.

5.4. Aridity effect on lipid δD values of C3 plants and C4 graminoids

Since leaf wax lipid δD values in both C3 and C4 plants are deci-
sively influenced by leaf water evaporative δD enrichment (Kahmen
et al., 2013a,b), the apparent fractionation between lipids and
source water (εapp) should theoretically decrease with aridity.
However, along the latitudinal gradient covering a RH range from
80% to 45%, the εapp of inferred C4 plant-derived n-alkanes
remained relatively constant at −140‰ (Fig. 8). Plant functional
type has an important control on leaf wax lipid δD values. Different
lipid δD values may reflect different growth mechanisms,
Vegetation change is particularly important between plant-derived leaf wax lipids are produced mainly during graminoid-grasses only partially used (68% values along the transect. The influence of evapotranspiration on the isotopic enrichment of plant biosynthetic water and consequently on leaf wax lipid δD values driven by aridity is thus expected to become apparent when the other drivers co-vary in one direction. Conversely, counteracting drivers may cancel the effects of aridity recorded in leaf wax lipid δD values. Here, C₃ vegetation change is particularly important between the transitional zone and the dry savanna, where shrubs replaced trees (Mayaux et al., 1999). In such environments, characterized by long periods of seasonal drought and low annual precipitation amount, the seasonal growth pattern of plants is related mainly to a plant’s ability to maintain a constant water supply throughout the year (e.g. Dawson and Pate, 1995; Dawson et al., 2002; Mayaux et al., 2004). Shrubs with a more shallow rooting system than trees cannot meet their water demand throughout the year and thus develop a growth cycle related to seasonality of rainfall, entering in to a dormancy period during the dry season (Mayaux et al., 2004). In contrast, C₃ trees with a deeper rooting pattern can exploit subsurface water throughout the year (groundwater) and develop an annual growth pattern (Schulze, 1986; Dawson and Pate, 1995; Oliveira et al., 2005). Recent research has shown that the majority of leaf wax development probably takes place during a relatively short period of leaf development (Kahmen et al., 2011; Tippie et al., 2013). Therefore, as precipitation δD values during the rainy season in the tropics are typically more negative (by ca. 20‰) than the mean annual precipitation δD values (Rozanski et al., 1993; Rozanski and Araguas, 1995), leaf wax lipids from C₃ plants with an optimum growth during the rainy season (e.g., shrubs) will likely be more D depleted than lipids from plants with an annual growth pattern (e.g. trees: Sachse et al., 2009; Polissar and Freeman, 2010). In addition, leaf and surface soil water isotopic enrichment is expected to be minimal during the wet season, owing to the high relative humidity during these months. Therefore, it can be hypothesized that, especially in the north of the transect, C₃ plant-derived leaf wax lipids are produced mainly during the wet season, thereby resulting in the constancy of long chain n-alkane εapp values along the transect.

On the other hand, the C₄ graminoid vegetation type in the transitional zone and dry savanna remains similar (Ehleringer et al., 1997; Still et al., 2003) and with a shallower rooting system than trees and brushes, graminoids access more evaporatively D enriched surface soil water (Schulze et al., 1996). This may partially explain why C₄ graminoids PTME δD values were more affected by aridity and the associated soil and leaf water δD enrichment than C₃ plant n-alkanes, and showed a 20‰ increase in εapp toward the drier North (Fig. 8). Furthermore, assuming a constant temperature of 20 °C and equilibrium conditions between atmospheric water vapor and plant source water, current leaf water isotope models (Kahmen et al., 2013a) would suggest an increase in leaf water δD enrichment of ca. 30‰ during a change in RH from 80% to 45%. Therefore, the observation of a 20‰ difference in εapp is in line with the observation that C₄ grasses only partially used (68% was estimated for C₄ grasses) evaporatively D enriched leaf water for lipid biosynthesis (Sachse et al., 2009; Kahmen et al., 2013a). In summary, our results indicate that δD values of C₄ graminoid-derived PTMEs may be a more reliable paleo-ecohydrological proxy for ecosystem evapotranspiration in tropical and sub-tropical Africa than C₃ plant-derived n-alkanes, the latter being a better proxy for surface water (or average precipitation) δD values.

Our PTME δD values were measured in soil of the lake catchments and thus do not provide information on a possible correlation between sedimentary PTME δD values and relative humidity. However, the close patterns between sedimentary, soil and plant n-alkane δ¹³C values (Garcin et al., 2014) in the study sites suggested that soil erosion is the major source of terrestrial biomarkers in the lake sediments and thus that sedimentary PTMEs should have similar isotopic patterns to our soil PTMEs.

Fig. 7. Hydrogen isotope composition of soil PTME vs. surface water δD values.

Fig. 8. Hydrogen isotope composition (top) and fractionation factor (εapp) (bottom) of soil n-C₂₇, n-C₂₉, n-C₃₁ and n-C₃₃ and soil PTMEs vs. relative humidity. The εapp was calculated against surface water. The biosynthetic pathway has been assigned according to the lipid δ¹³C values. The regression lines were calculated using the values of both PTMEs, e.g. sawamilletin and miliacin, derived from the C₄ biosynthetic pathway. RF = rainforest; TZ = transition zone; DS = dry savanna.
6. Paleoenvironmental implications

As C3 and C4 plants synthesize n-alkanes with different hydrocarbon isotope composition (Sachse et al., 2012; Kahmen et al., 2013a), in geological records n-alkane δD values are commonly used in combination with n-alkane δ13C values to evaluate changes in the relative contribution of C3 plant and C4 plant-derived n-alkanes, and in turn to better separate climatic and physiological controls on their integrated hydrogen isotope compositions. We have shown here that different morphology, seasonal growth and/or different timing of leaf wax synthesis in C3 plants may cancel the effect of aridity on C3 plant-derived n-alkanes in soil. This implies that, even when assessing the C3 photosynthetic origin of n-alkanes based on their δ13C values, changes in the C3 plant community may bias the aridity signal on C3 plant-derived n-alkane δD values in geological records. Therefore, only a combination of species identification based on pollen or biomarker records associated with both n-alkane δD and δ13C analyses ought to provide maximum interpretative value to accurately separate climatic and physiological controls on n-alkane δD values in geological records.

Our study suggests that biomarkers, such as PTMEs, that have a dominant plant source in a given environmental context ought to give a more unequivocal hydrogen isotopic signature than n-alkanes. Soil PTME δD values derived from C3 graminoids better recorded aridity than soil leaf wax n-alkanes inferred to be derived mainly from C3 plants. This suggests that these lipids may be an accurate proxy for paleoenvironmental reconstruction in tropical dry Africa, since their δD values are potentially not significantly affected by changes in plant community and growth form. However, in rainforest environments, the δD values of C3 plant-derived sawamilletin were by 20‰ more positive than C4 plant-derived sawamilletin δD values in the drier vegetation zones. Such a difference implies that a different contribution from C3 plant- and C4 plant-derived sawamilletin may potentially bias the effect of aridity on its integrated δD values in geological records. Although miliacin can be produced by both C3 and C4 plants, it was dominantly produced by C4 graminoids in soil along the transect. This suggests that miliacin may potentially be a more reliable proxy than sawamilletin for C4 graminoids and, thus, that its δD values may better record ecosystem aridity in tropical Africa.

We found a substantial concentration of sawamilletin and miliacin (up to 140 μg/g DM) relative to long chain n-alkanes (up to 350 μg/g DM) in soil of the transition zone and dry savanna (annex Tables 1 and 2). Similarly, relative high concentrations of these PTMEs or diagenetically derived product iso-sawamilletin were recently measured in savanna soil (Mendez-Milan et al., 2014) or lake sediment (Jacob et al., 2005), suggesting that PTMEs may potentially become a significant C4 graminoid proxy for drier vegetation zones of Africa. In contrast, in the rainforest PTMEs derived from graminoids were not detected (or were in low concentration), indicating that in cooler and wetter environments, alternative graminoid biomarkers, potentially such as ferroric acid methyl ether which was detected in Eriophorum vaginatum (Schellekens et al., 2013) may be more suitable.

7. Conclusions

By comparing n-alkane δ13C values of the major C3 and C4 plants with the δ13C values of soil long chain n-alkanes at the sites from a latitudinal gradient in Cj/Cc vegetation and aridity in Cameroon, we inferred that soil n-C29 and n-C31 were derived mainly from C3 plants (e.g. trees and shrubs), while the n-C25 included a greater contribution from C4 graminoids. In the vegetation classes of the transitional zone and the dry savanna, δ13C values of PTMEs (mean ±15.6‰), including both sawamilletin and miliacin, supported a C4 graminoid origin, whereas in the rainforest class, up to 24‰ 13C-depleted sawamilletin suggested a C3 plant origin. The significant correlations of the δD values of n-C29 and n-C31, and PTMEs with surface water δD values (δDsw) further demonstrated that leaf wax lipid δD values are an effective proxy for reconstructing mean annual precipitation δD values. Along the latitudinal gradient, covering a relative humidity range from 80% to 45%, the apparent fractionation (fapp) between the n-alkanes, inferred to be derived mainly from C3 plants, and surface water remained relatively constant, whereas fapp for C4 graminoid-derived PTMEs increased by 20‰ with decreasing relative humidity. We hypothesize that vegetation change associated with different plant water sources and/or different seasonal growth periods of leaf wax synthesis resulted in a relatively constant fractionation factor in C3 plants, whereas for C4 graminoids these former factors were constant enough to record the effect evaporative D enrichment driven by aridity on PTME δD values.

Acknowledgments

These research was supported by the MPI-BGC Jena (to V.F.S. and G.G.) and by the German Science Foundation (DFG) to V.G. (GA-1629/1-1&2) and through the DFG Emmy-Noether Programme to D.S. (SA-1889/1-1) and the DFG Leibniz Center for Surface Process and Climate Studies at Potsdam University (to Y.G. and D.S.). We are grateful to the Ministry of Scientific Research and Innovation of Cameroon (Research Permit 54/MINRESI/B00/ C00(C10/C13) and the “Institut de Recherche pour le Développement (IRD)” for administrative and logistical support. We are also grateful to Y. Chikaraishi and an anonymous reviewer for critical comments that greatly improved the quality of the manuscript.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.orggeochem.2014.09.007.

Associate Editor—S. Schouten

References

