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Astronomically tuned geomagnetic polarity timescale 

for the Late Triassic 

Dennis V. ~ e n t '  and Paul E. Olsen 
Larnont-Doherty Earth Observatory, Palisades, New York 

Abstract. Cycle stratigraphic and magnetostratigraphic analyses of a -5000-m-thick composite 
section obtained by scientific coring in the Newark rift basin of eastern North America provide a 
high-resolution astronomically calibrated geomagnetic polarity timescale (GPTS) spanning over 30 
m.y. of the Late Triassic and earliest Jurassic. Only normal polarity is found in -1000 m of 
interbedded volcanics and continental sediments of earliest Jurassic age but a total of 59 normal and 
reverse polarity magnetozones are delineated in the underlying 4000+ m of Late Triassic 
continental sediments. Lithologic facies response to climatically induced lake level variation 
provides a full spectrum of Milankovitch cyclicity; the prominent 404 kyr orbital eccentricity 
climate cycle has a mean thickness of about 60 m and is the basis for scaling most of the 
stratigraphic section in time. When indexed to available radioisotopic dating, the resulting 
astronomically calibrated GPTS spans from the 202 Ma TriassicIJurassic boundary to 233 Ma. 
Results of detailed sampling profiles across 42 magnetozone boundaries representing 35 different 
polarity reversals indicate transition durations that average 7.9 kyr, comparable to the estimated 
duration of recent polarity reversals. The polarity intervals have, a mean duration of 0.53 m.y. 
with a corresponding reversal rate of 1.88 m.y:' and no significant polarity bias and are closely 
approximated by an exponential distribution with a gamma index k indistinguishable from 1. 
The longest polarity interval is about 2 m.y., and the shortest is about 0.02 m.y. The overall 
statistical properties indicate that the behavior of the geomagnetic field in the Late Triassic was not 
very different from that in the Cenozoic. This geomagnetic polarity record of the Late Triassic 
provides a well-dated chronostratigraphic framework suitable for detailed global correlation. 

1. Introduction 
The efficacy of magnetostratigraphic correlations relies on 

the identification of a characteristic temporal sequence of 
normal and reverse polarity intervals. A geomagnetic polarity 
timescale (GPTS) also provides one of the few lines of 
empirical evidence for the evolution of the geodynamo 
[McFadden and Merrill, 1984; Courtillot and Besse, 1987; 
Larson and Olson, 19911. However, geomagnetic polarity 
history is well known over only about the past 175 m.y. where 
the availability of numerous marine magnetic anomaly 
profiles from extant modern ocean floor allows the 
construction of a complete reference sequence of polarity 
reversals [e.g., Cande and Kent, 1992, 1995; Channell et 
al., 199.51. This detailed polarity record, calibrated by 
magnetobiostratigraphic correlations of several well-dated 
tiepoints, constitutes a framework for virtually all modern 
integrated geologic timescales for the late Jurassic, Cretaceous 
and Cenozoic [Gradstein et al., 1995; Berggren et al . ,  
1995al. 
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The development of a geomagnetic polarity timescale 
(GPTS) for earlier time intervals has been much slower and has 
relied on piecing together magnetostratigraphic records of 
variable length, fidelity, and chronological control (see 
review by Opdyke and Channell [1996]). Progress would 
clearly be expedited by long reference sections, i.e., 
stratigraphic analogues to magnetic anomaly profiles. In this 
regard, a thick and complete continental section was recently 
cored by scientific and geotechnical drilling in the Newark rift 
basin of eastern North America. Cycle stratigraphic and 
magnetostratigraphic analyses of this -5000-m-thick 
composite section provide the basis for a candidate GPTS for 
virtually all of the Late Triassic and the lowermost Jurassic 
[Kent et al., 1995; Olsen and Kent, 1996; Olsen et a l . ,  
1996 a,b]. 

In this paper, we present a refinement of the initial 
magnetostratigraphic results for the Newark basin section by 
determining the thickness and duration of polarity transition 
zones and confirming short polarity intervals with additional 
sampling. The cycle stratigraphy has also been extended to 
older strata by the definition of eight new members. We are 
thus able to calculate an astronomically tuned OPTS for over 
24 m.y. of the late Triassic using a methodology similar in 
concept to that employed with great success but independent of 
the seafloor record in the late Neogene [Shackleton et al., 
1990; Hi lgen ,  1991; Berggren et al., 1995bl. Almost a 
further 7 m.y. of record is obtained by extrapolation of 
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sedimentation rates determined by cycle stratigraphy. 
Although not contiguous in age with the seafloor record, the 
31-m.y.-long GPTS based on the Newark succession is 
sufficiently long and precise for comparative statistical 
analysis of the reversal sequence. 

2. Background 
The potential for detailed linkage of cycle stratigraphy and 

magnetostratigraphy in the Newark basin sequence was 
indicated in studies of the discontinuous outcrop [e.g., Witte 
et at., 19911 and motivated scientific drilling under the 
Newark Basin Coring Project (NBCP) [Olsen and Kent, 19901. 
Continuous coring with virtually complete recovery at seven 
drill sites produced a total of 6770 m of core representing 
practically the entire section of Upper Triassic continental 
sediments as well as some of the lowermost Jurassic 
interbedded continental sediments and lavas of the Newark 
igneous extrusive zone. Accounting for -30% redundancy 
between the stratigraphically overlapping cored sections and 
normalizing the relative thicknesses to a representative core 
site (Rutgers), a 4660-m-thick composite section was 
assembled [Olsen et al., 1996al. The remainder of the 
Jurassic section was studied in a series of geotechnical test 
borings by the Army Corps of Engineers [Fedosh and Smoot, 
1988; Wine and Kent, 1990; Witte et al., 1991; Olsen et 
at., 1996bl. The lithostratigraphy, magnetostratigraphy, 
and cycle stratigraphies of the composite section of >5000-m 
aggregate thickness are summarized in Figure 1. 

The Stockton Formation is the lowermost stratigraphic 
unit and consists of buff-colored to red arkosic siltstones and 
sandstones of predominantly fluvial to shallow lacustrine 
facies. There are hardly any age diagnostic fossils in the lower 
and middle Stockton Formation, but palynostratigraphy 
indicates a Carnian age for at least the upper Stockton 
Formation [Cornet,  1977, 1993; Cornet and Olsen, 19851. 
The overlying Lockatong (Camian) and Passaic (latest Camian 
to earliest Hettangian) formations consist of lacustrine 
deposits that display a pronounced cyclic variation in 
lithofacies related to depth of water. These cyclic changes in 
lake level are climatically induced and occur in a hierarchical 

pattern consistent with Milankovitch orbital forcing [ V a n  
Houten, 1964; Olsen, 1986; Olsen and Kent, 19961. 

The fundamental Milankovitch variation is the Van Houten 
cycle which is recognized on a stratigraphic scale of 3 m to 6 
m in the NBCP cores and corresponds to climate change at 
precessional periodicities (-20 kyr). The expression of Van 
Houten cycles is modulated by several orders of orbital 
eccentricity variations, especially with periods around 100 kyr 
and most prominently by the 404-kyr eccentricity orbital 
variation which we have referred to as the McLaughlin cycle 
[Olsen, 1986; Olsen and Kent, 19961. 

The McLaughlin cyclicity effectively corresponds to the 
mappable lithostratigraphic members of the Lockatong and 
Passaic Formations. Although the absolute lithologic 
expression of the cycles varies considerably as a result of the 
evolution of the basin and lateral position within the basin, as 
well as the possible effects of even longer orbital cycles 
[Olsen and Kent, 19991, the 404-kyr McLaughlin cycle is a 
robust variation that can be traced throughout the lacustrine 
facies of the Lockatong and Passaic Formations. A subtle 
expression of the McLaughlin cycle also provides the basis for 
a cycle stratigraphy in the very shallow lacustrine to fluvial 
sediments of the upper Stockton Formation where we can 
identify eight new members, from top to bottom, RaR-1 to 
RaR-8, where RaR stands for the Raven Rock locality where 
this part of the Stockton Formation is known to be well 
exposed. The 404-kyr eccentricity cycle [Laskar ,  1990; 
Berger and Loutre, 19911 appears to be the most stable orbital 
periodicity over geologic time [Berger et al., 1992; Laskar 
et al., 19931. Accordingly, the 404-kyr McLaughlin cycle is 
used as the basis of a homogeneous age model for the Newark 
section. 

We  recognize 60 full  McLaughlin cycles or 
lithostratigraphic members in the NBCP cores, 52 as identified 
in the Lockatong and Passaic Formations by Olsen et al. 
[1996a] plus the eight new cycles in the uppermost Stockton 
Formation (Figure 1). A histogram of McLaughlin cycle 
thicknesses shows a single, well-defined peak at about 60 m 
(Figure 2a). An additional cycle corresponding to the Exeter 
member in the uppermost Passaic Formation contains the 
Triassic/Jurassic boundary but is interrupted by the Early 

Figure 1. (opposite) Composite section of continental sediments and some interbedded basalt in the Newark 
basin based on seven long NBCP drill cores [Olsen et al., 1996al and a series of Army Corps of Engineers 
(ACE [Fedosh and Smoot, 19881 whose stratigraphic ranges are shown at left. Depth in composite section is 
based on stratigraphic thicknesses normalized to Rutgers drill core using lithologic and log correlations in 
overlap intervals [Olsen et al., 1996al. Palynofloral zonation [Cornet,  1977, 1993; Cornet and Olsen, 
19851 was based on outcrop samples and provides the stage-level biostratigraphic dating. The ^ ~ r / ^ ~ r  dates 
of 201k1.7 Ma [Sutter, 19881 and U-Pb zircon dates averaging 202k1 Ma [Dunning and Hodych, 19901 are 
for Palisade sill which is most likely equivalent to the Preakness Basalt. Formations and members are 
described by Olsen et al. [1996a, b] with 8 new members (RaR-1 to RaR-8) in upper part of Stockton 
Formation. Magnetostratigraphy (normal polarity in filled and reverse polarity in open bars) of NBCP cores 
from Kent et al. [1995] and this paper. Magnetostratigraphy of Jurassic igneous extrusive zone (Orange 
Mountain Basalt, Feltville Formation, Preakness Basalt, Towaco Formation, Hood Mt. Basalt) and Boonton 
Formation includes data from Mclntosh et al. [1985], Prevot and McWilliams [1989], Witte and Kent 
[1990], and Witte et al. [1991]. Magnetozone depths (using refined boundaries determined in this paper for 
magnetozones in Passaic Formation ) were converted to a GPTS by assuming each lithologic member is a 404- 
kyr McLaughlin cycle and indexing the interpolated relative chronology to an estimated age of 202 Ma for the 
Triassic/Jurassic boundary. Polarity chrons are labeled E l  to E24 from Kent et al. [1995]. Note that Chron 
E24 is renamed from E23n.2n in the original Newark nomenclature of Kent et al. [I9951 and corresponds to 
the long normal polarity magnetozone that begins just below the Triassic/Jurassic boundary and extends 
through the Jurassic extrusive zone into the Boonton Formation. 
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Figure 2. Histogram of thicknesses of (a) McLaughlin 
lithologic member cycles, and (b) magnetic polarity zones in 
upper Triassic sediments recovered in NBCP drill cores from 
Newark Basin section. 

Jurassic Orange Mountain Basalt. However, cycle 
stratigraphic analysis of the sedimentary units interbedded 
with the three major basalt flow units in the Newark basin 
indicates that the igneous activity occurred over only one or 
two albeit very thick McLaughlin cycles, or a total duration of 
about 580 kyr, in the earliest Jurassic [Olsen et al., 1996bl. 

A total of 60 normal and reverse magnetic polarity 
intervals (Chrons E l r  to E24n) were delineated in the 
composite profile for the Stockton, Lockatong and Passaic 
Formations [Kent et at . ,  19951 (Figure 1). The very thick 
normal polarity magnetozone (E24n) which encompasses the 
lower Jurassic igneous extrusive zone and Boonton Formation 
has been elevated in rank from its previous designation 
(E23n.2n) on the strength of data supporting the existence of 
the preceding short reverse polarity interval (E23n.lr. which 
has in turn become E23r). The top of this uppermost 
magnetozone E24n as well as the base of the lowermost 
reverse polarity interval (Elr)  in the Stockton Formation were 
not recovered. Excluding these from consideration leaves 58 
complete magnetozones of which 42 (E9n to E23r, formerly 
designated as E23n.h) are fully represented in the cyclical part 
of the section. 

The NBCP cores were originally sampled at 2.5-m to 3-m 
intervals. The magnetostratigraphy was based on vector 
endpoint analyses of complete progressive thermal 
demagnetization; characteristic magnetizations were isolated 
over the highest unblocking temperature range, whereas 
magnetic overprints recovered over low to moderate 
unblocking temperatures were used to azimuthally orient the 
samples [Kent et al., 19951. Data recovery rates were lowest 
(only -60%) in the Lockatong and Stockton Formations 
because of less favorable magnetic properties in the dark 
shales and coarse buff-colored sandstones in these units 
whereas the predominantly red siltstones of the Passaic 
Formation (represented in five of the seven drill cores) yielded 
useful magnetic data in >85% of the samples. The average net 
magnetostratigraphic resolution was -3.3 m, which in the 
cyclical Lockatong and Passaic formations corresponds to the 
nominal thickness of the 20-kyr Van Houten cycle [Olsen and 
Kent ,  19961. Although the overall number of magnetic 
polarity intervals is similar to the number of McLaughlin 
cycles, a histogram of polarity interval thickness resembles 
an exponential distribution (Figure 2b) compared with the 
more bell-shaped or Gaussian distribution of cycle thickness 
(Figure 2a). 

3. Duration of Polarity Transitions 
To refine the stratigraphic position of the polarity 

magnetozones and to obtain constraints on the duration of the 
polarity transitions, we resampled magnetozone boundaries in 
the Passaic Formation at a closer spacing of nominally 0.3 m. 
About 3 to 6 m of section that bracketed the change in polarity 
identified previously [Kent et al., 19951 were sampled in 42 
profiles representing the 35 polarity transitions (seven 
redundantly) bounding magnetozones E13n to E23r as recorded 
in the Martinsville, Weston, Somerset, Rutgers, and Titusville 
drill cores. Polarity transitions for magnetozones E l r  to E12r 
recorded in the Nursery and Princeton drill cores were not 
resampled because of anticipated low data recovery rates in the 
dark shale facies in the Lockatong Formation and the more 
heterogeneous fluvial to shallow lacustrine facies in the upper 
Stockton Formation, as well as the absence of cycle 
stratigraphic age control in the lower and middle Stockton 
Formation. The new samples were processed according to the 
same laboratory techniques, analytical methods, and data 
acceptance criteria described by Kent et al. [1995j. Examples 
of transition records are shown in Figure 3. 

Apparent changes in polarity occur over stratigraphic 
intervals that range from <0.5 m to >4 m, and average 
1.50zk0.83 m (standard deviation) for the 42 records (Figure 
4a). It is possible that some of the very thin polarity 
transitions may represent local hiatuses. Other transitions 
may appear expanded due to either prolonged magnetization 
acquisition [e.g., Channel1 et al . ,  19821 or the inclusion of 
intermediate magnetization directions (i.e., VGP latitudes 
more than 30' from polar) that may be artifacts of poor 
recording properties or superposed magnetization vectors 
[e.g., Langereis et al., 1992; Kent and Schneider, 19951. 
However, intermediate directions as well as more poorly 
resolved magnetization components that tend to occur i n  
samples from magnetozone boundaries may also reflect 
acquisition in weak, transitional geomagnetic fields during 
polarity reversals. In any case, the close congruity of 
magnetozone boundaries with respect to lake level cycles over 
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Figure 3. Polarity transition records for (a) magnetozone E23r (formerly E23n.lr) in the Martinsville drill 
core, just below the contact with the Orange Mountain Basalt, and (b) magnetozone E19n in the upper part of 
the Somerset drill core and the lower part of the Weston drill core which were correlated on the basis of the 
Ukrainian member which has a prominent black shale at its base. Virtual geomagnetic pole (VGP) latitudes are 
for characteristic magnetizations determined from principal component analysis of generally the 650' to 
680Â° thermal demagnetization steps and oriented azimuthally using overprint magnetizations (see Kent et 
al.  [I9951 for details). Circles with crosses are samples with poorly defined characteristic magnetization 
(MAD>15'). Polarity column is solid for normal polarity, open for reverse polarity, and stippled for uncertain 
or intermediate (VGP latitudes +60Â° directions. For reference, Chron E19n has a duration of 0.151 m.y. 
according to cycle stratigraphy, whereas Chron E23r has a estimated duration of 0.026 m y .  and is one of the 
shortest polarity intervals in the Newark GPTS. Lithology column shows gradations from red siltstones 
(open) to gray (stippled) and black (solid) shales, and the Orange Mountain Basalt in the Martinsville drill 
core. 
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recovered at the bottom or top of a drill core, the sediment 
accumulation rate for the immediately adjacent complete 
McLaughlin member-cycle was used. The 42 records give 
transition durations ranging from 1.8 to 20 kyr with a mean of 

mean = 1.5 m 7.9k4.5 kyr (Figure 4b). This compares favorably with 
std dev = 0.83 m estimates of about 4 to 10 kyr for the duration of the 

BrunhesIMatuyama, the most recent and best documented 
geomagnetic reversal transition [e.g.. Clement and Kent, 
19841. From the standpoint of correlation, the estimated mean 
duration of polarity transitions in the Newark section indicates 
that the practical limit of magnetostratigraphic resolution 
should be better than about one-half of a 20-kyr Van Houten 
orbital precession cycle. 

4. Geomagnetic Polarity Timescale 
To construct a geomagnetic polarity timescale, we use an 

age model that assumes that each of the 60 complete 
lithostratigraphic members in the cyclical uppermost 

Thickness, m Stockton, Lockatong and Passaic Formations represents a 
404-kyr orbital eccentricity cycle. The cyclical late Triassic 
portion of the Newark basin section thus represents over 24 
m.y. of sediment accumulation with an average rate of 160 m 
m.y.-l based on normalized thicknesses (Figure 5). 

The relative ages of magnetozone boundaries (midpoints of 
~ t d  dev = 4.5 kyr the polarity transitions) were determined by linear 

interpolation within the enclosing or nearest 404-kyr 
McLaughlin member cycles. Where the same magnetozone 
was identified in stratigraphically overlapping drill cores, the 
average interpolated position within the correlative 
McLaughlin member-cycle was used (rather than just the 
downdip portion of each overlap record as done by Kent el al. 
[1995]). Between-core differences as a decimal fraction of a 
McLaughlin cycle average 0.018, equivalent to about 7.5 kyr, 
which is of the order of the calculated mean transition duration 
and effective magnetostratigraphic resolution. 

The ages for magnetozones E9r and E9n can now be 

0 5 10 15 20 
Duration, kyr 

Figure 4. Histograms of (a) thicknesses and (b) the 
corresponding durations for 42  magnetozone polarity 
transitions representing 35 geomagnetic reversals sampled in 
the Passaic Formation in NBCP cores. Sampling interval was 
nominally 0.3 m. Durations estimated using local 
sedimentation rates from enclosing or nearest 404-kyr. 
McLaughlin member cycle. 

lateral distances of tens of kilometers in the Newark Basin 
(e.g.. Figure 3 and Kent et a l .  [I9951 and Olsen et a l .  
[1996a]) suggests that the magnetizations were acquired close 
to the time of deposition. We therefore suggest that 
intermediate or poorly defined directions at magnetozone 
boundaries can be used to approximate the polarity transition 
interval in these Late Triassic sediments. 

The transition zone thicknesses were converted to time 
based on sediment accumulation rates calculated for the 
enclosing 404-kyr McLaughlin member cycle in terms of its 
actual (not normalized) stratigraphic thickness; these local 
sediment accumulation rates vary from -100 to 300 m m.y.-' 
and average 191 m m.y.'l For four transition records that occur 
in a McLaughlin member cycle whose base or top was not 

determined by interpolation using the eight newly recognized 
McLaughlin member cycles (RaR-1 to RaR-8) at the top of the 
Stockton Formation in the Princeton drill hole. Moreover, the 
average sediment accumulation rate of 96.2 m m.y."' calculated 
for these cycles in normalized depth units is used to 
extrapolate ages for magnetozones E l r  to E8r in the 
noncyclical lower and middle part of the Stockton Formation 
in the Princeton drill core. Previously, a sediment 
accumulation rate of 140 m m.y.-l based on the cycles in the 
lower Lockatong Formation was used to extrapolate the ages of 
all Stockton magnetozones (E l r  to E9r) in the Princeton drill 
core [Kent et at., 19951. 

The internal cycle chronology is indexed to an absolute 
geologic tin.e framework by concordant dates of 201k2.7 Ma 
( " ~ r p ~ r  [Suf fer ,  19881) and 202kI Ma (UIPb zircon 
[Dunning and Hodych, 1990]), or a simple average of 201.5 
Ma for the Palisade sill. Physical and geochemical evidence 
suggests that the Palisade sill is most likely contemporaneous 
with the second (Preakness Basalt) of the three major lava 
units in the Watchung syncline [Kodama,  1983; Ratcliffe, 
19881. The exact correlation between the Palisade sill and the 
basaltic extrusive rocks, however, is not very critical because 
the difference in age between the oldest and youngest lavas is 
only 580 kyr according to cycle stratigraphy of the 
interbedded sediments [Olsen et al . ,  1996bl. This age span is 
well within the quoted analytical uncertainty of the isotopic 
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Figure 5. Ordinal series of lithologic members (McLaughlin cycles) with respect to composite depth 
(normalized to the Rutgers drill core) in NBCP cores (solid circles [Kent et at., 19951) with addition of eight 
new members in upper Stockton Formation (open circles). Age model assumes each McLaughlin cycle 
represents 404 kyr and a date of 202 Ma for the Triassic/Jurassic boundary in lower part of Exeter Member 
(61st cycle). Boxes are stratigraphic intervals and corresponding age ranges represented in the NBCP drill 
cores. Diagonal line in box for Princeton drill core shows extrapolated sedimentation rates from the eight new 
members in  upper Stockton Formation. 

dates. The palynological Triassic/Jurassic boundary lies in the 
uppermost Passaic Formation, within the second Van Houten 
cycle above the base of the Exeter Member and one or two Van 
Houten cycle (-30 kyr) below the local equivalent of the 
Orange Mountain Basalt [Fowell and Olsen, 19931. The 
Preakness Basalt is separated from the Passaic Formation by 
the Feltville Formation and the Orange Mountain Basalt. 
Assuming that the Exeter Member is the initial part of the 
McLaughlin cycle that also includes the Feltville Formation 
(as well as the negligible geologic time span thought to be 
represented by the intervening Orange Mountain Basalt), we 
obtain a rounded estimate of 202 Ma for the age of the 
Triassic/Jurassic boundary. 

The North Mountain Basalt of the Fundy Basin has 
produced U-Pb zircon dates averaging 202k1 Ma which support 
a comparable age for the nearly suprajacent Triassic/Jurassic 
boundary in that basin [Hodych arid Dunning, 19921. An age 
of 202 Ma for the Triassic/Jurassic boundary is not 
significantly different than the age of 205.7k4.0 Ma quoted for 
this system boundary in the most rtcent Mesozoic timescale of 
Gradstein et al. [1995]. Moreover, preliminary U-Pb dates on 
ash layers in ammonoid-bearing rriarine strata from the North 
American Cordillera also Suggest a younger age of -200 Ma for 
the Triassic/Jurassic boundary [Palfy et al., 19981. Triassic 
chronology in light of Newark cycle stratigraphy is discussed 
further by Kent and Olsen [ I  9991. 

We  use an age of 202 Ma for the Triassic/Jurassic boundary 
as recorded in the Newark Basin to anchor the relative timing 
of the McLaughlin cycles. The magnetic polarity chrons 
interpolated from this cycle stratigraphy are used to construct a 
GPTS for >30 m.y. of the Late Triassic (Table 1). 

5. Statistical Analysis of Reversal Sequence 
For the Late Triassic GPTS from the Newark Basin, a total 

of 59 polarity reversals defines 58 complete polarity intervals 
(E2n to E23r (formerly E23n.lr)) spanning 30.80 m.y. The 
mean duration of the polarity intervals is 0.53 m.y., 
corresponding to a mean reversal rate of 1.88 m.y.-'. The 29 
normal and the 29 reverse polarity intervals have similar mean 
durations (0.50 and 0.56 my. ,  respectively), and with normal 
polarity occupying 47% and reverse polarity 53% of the total 
time span, there is no significant polarity bias. Similar 
statistical measures are obtained for the 42 polarity intervals 
(E9n to E23r) encompassing 23.00 m.y. with direct 
astronomical age control: mean interval duration is 0.55 my. ,  
mean reversal rate is 1.83 m . y . ,  and the normal and reverse 
polarity intervals have mean durations of 0.49 and 0.61 m.y., 
respectively. 

There are long-term fluctuations in reversal rate in the 
range of -1.5 to 3 m.y.-i. Higher reversal rates tend to occur at 
both the beginning and end of the sequence, but there is no 
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Figure 6 .  (a) Ordinal sequence of 59 geomagnetic reversals 
for Newark GPTS (Chrons E2n to base of E23r inclusive) 
versus age as determined in NBCP drill cores. Solid circles are 
43 reversal ages interpolated from enclosing McLaughlin 
cycle; open circles are 16 reversal ages based on extrapolation 
of sedimentation rates from cycle stratigraphy to lower part of 
Stockton Formation in Princeton drill core. Lines of constant 
reversal rate are shown for reference; mean reversal rate for 
entire Newark GPTS is 1.88 m . y . ' .  ( b) Cumulative 
distribution of 58 polarity intervals in Newark GPTS. Curved 
line is a best fit exponential curve through the data shown for 
reference. Mean duration of polarity intervals (0.53 m.y.) and 
the 404-kyr orbital eccentricity cycle used for age calibration 
are shown by arrows. 

discemable overall trend (Figure 6a). The polarity interval 
lengths are approximated by an exponential distribution 
(Figure 6b). Assuming that the reversal sequence cannot be 
excluded as being stationary, we calculate a gamma index k 
for the distribution according to the maximum likelihood 
method described by McFadden [1984]. The estimated value 
of k  is 1.09 for the entire sequence of 58 polarity intervals 
and 0.93 for the subset of 42 reversals with direct cycle 
stratigraphic age control. Given that the variances in the 

estimates of In [k] are of order 0.05 (standard deviation of In 
[ k ] =  0.22), it would he difficult to reject the null hypothesis 
that the polarity interval lengths have an exponential 
distribution (k = 1). 

6. Discussion and Conclusions 
The Late Triassic GPTS based on the Newark 

magnetocyclostratigraphic record reveals an almost idealized 
geomagnetic field reversal behavior. There is no polarity 
bias, and the average polarity transition duration of about 8 
kyr is similar to duration estimates for recent polarity 
transitions. Moreover, the exponential distribution of 
polarity interval lengths is a characteristic feature of an 
underlying Poisson stochastic process as suggested by C o x  
[1968, 19691 and advocated by McFadden [I9841 for the 
heretofore much better known Cenozoic record of geomagnetic 
reversals. These attributes support our contention that the 
Newark polarity sequence represents a high fidelity record of 
Late Triassic geomagnetic reversals. 

Assuming that the McLaughlin cycles represent the 404- 
kyr orbital eccentricity variation, which is perhaps the most 

Table 1. Newark Geomagnetic Polarity Timescale 

Chron Cycle Depth, m Age, Ma 

TrIJ 
E24n 
E23r 
E23n 
E22r 
E22n.2n 
E22n. lr 
E22n. 1 n 
E21r.3r 
E21r.2n 
E21r.2~ 
E21r.ln 
E21r.l~ 
E21n 
E201.2r 
E20r. ln 
E20r.lr 
E20n 
E19r 
E19n 
E18r 
E18n 
E17r 
E17n 
E16r 
E16n 
E15r.21 
E15r.In 
E151,lr 
E15n 
E14r 
E14n 
El 3r 
E13n.2n 
E13n.lr 
E13n.ln 
E12r 
E12n 
El lr 
El ln 
ElOr 
ElOn 
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Table 1. (continued) 

Chron Cycle Depth, m Age, Ma 

E9r 
E9n 
E8r 
E8n 
E7 r 
E7n 
E6r 
E6n 
E5r 
E5n.2n 
E5n.lr 
E5n.ln 
E4r 
E4n 
E3r 
E3n 
E2r 
E2n 
Elr (partim) 

Chon is magnetic polarity interval defined in NBCP cores whose 
polarity is designated by suffix n for normal and r for reversed (see 
Kent et at. [I9951 for further explanation of nomenclature). The base 
of each chon is given as the fractional position from the base of the 
enclosing McLaughlin member cycle, counted upsection from RaR-8 
(informal cycle 1) in Stockton Formation to Exeter Member (informal 
cycle 61) in uppermost Passaic Formation. The Exeter Member is 
truncated by Orange Mountain Basalt, hence position of 
TriassicIJurassic (Tr/J) boundary and the base of Chron E24n within the 
Exeter Member are according to Van Houten cycles from correlative 
outcrop exposures [Fowell and Olsen, 19931; note also that Member T- 
U is considered as concatenation of two member cycles (see Figure 1). 
Depth is composite stratigraphic thickness scaled downward from base 
of Orange Mountain Basalt and normalized to Rutgers drill core based 
on successive core overlap correlations [Olsen et al., 1996al. Ages for 
the base of Chrons E9n to E24n are based on interpolation within 
McLaughlin member cycles which are assumed to represent the 404-kyr 
orbital eccentricity variation. Ages for the base of Chron Elr (partim), 
which is also the base of the NBCP section, to Chron E8r are based on 
extrapolation of sedimentation rates in Princeton drill core. The relative 
chronology is indexed to the TrIJ palynofloral boundary with a 
radiometric age estimate of 202 Ma and other parameters shown in first 
row. The interpolated values of position in cycle, depth, and age are 
quoted with a precision needed for internal consistency. 

stable of the relevant astronomical periodicities [Berger et  
al., 19921, we calculate a mean geomagnetic reversal rate of 
1.88 m.y."I for more than 30  m.y. of the Late Triassic. 
Reversal rates of 2.8 to 2.9 m.y.-I have been previously 
estimated from magnetostratigraphic studies of Carnian and 
Norian Tethyan marine sections by Gallet et al. [1992, 
19931. However, these authors noted that exclusion of less 
reliable polarity intervals defined by only single samples 
lowers these estimates of reversal rate to 1.8 to 1.9 m.y.-l, 
values that are virtually identical to the reversal rate we 
estimate from the Newark OPTS (Figure 7). 

In terms of correlation, the Tethyan polarity sequence for 
the Norian can be reasonably matched to the Newark OPTS 
[Kent et al., 19951. This correlation would require that 
Tethyan biozones, which are sometimes assumed to be of equal 
duration in chronostratigraphic applications, vary in duration 
by a factor of 2 or more. For the Carnian, correlation of the 
generally more fragmented and highly condensed polarity 
successions available from the Tethyan realm to the Newark 
GPTS is still not obvious [Kent et al., 1995; Gallet et al . ,  
19961. Confirmation of the Newark reversal pattern for the 
late Carnian (from E9n to E13r) has nevertheless been 
obtained in a -3000-m-thick continental sedimentary section 
in the Dan River-Danville basin of North Carolina and 
Virginia located >600 km from the Newark Basin [Kent and 
Olsen, 19971. 

There is no evidence in either the Tethyan sections or the 
Newark GPTS for a prominent interval of low relative reversal 
rate [Johnson et al., 19951 or strong normal polarity bias 
[Algeo, 19961 at around the Triassic/Jurassic boundary. In 
the Late Triassic, the reversal rate actually tends to be higher 
in the 5 to 10 m.y. just prior to magnetozone E24n in the 
Newark GF'TS (Figure 6a). Magnetozone E24n, which starts 
just below the Triassic/Jurassic boundary and encompasses the 
igneous extrusive zone and overlying sediments in the Newark 
basin, is of the order of 1000 m thick. This might make it the 
thickest polarity interval in the Newark sequence but not the 
longest because at least the exposed portion is less than 1 
m.y. long on the basis of cycle stratigraphy and there are nine 
other polarity chrons in the Newark GPTS that are longer than 

0 50 100  150 200 250 300 350 

Age (Ma) 
Figure 7.  Geomagnetic reversal rate since 350 Ma [after Gallet et al . ,  19921. LNS is (Cretaceous) Long 
normal superchron and LRS is (Kiaman) Long reverse superchron. Interval from about 160 Ma to Present 
where reversal rate can be precisely estimated from marine magnetic anomalies is shaded. Individual 
magnetostratigraphic studies (open circles) provide reversal rate estimates for times prior to 160 Ma and in 
some cases are based on filtered subsets of data that are thought to be more reliable (see Gallet et al. [I9921 
for references and discussion). Reversal rate of 1.88 m.y:' for Late Triassic determined in this paper is shown 
by solid horizontal bar. 
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1 m.y. (Table 1). T h e  apparent ly short duration of  the 
Hettangian (e.g.,  3.8 m.y. [Grads t e in  e t  al. ,  19951) and the 
documentation of magnetic reversals by the Sinemurian if not 
the later part of the Hettangian in marine sediments of the 
Paris Basin [Yang  e t  al. ,  19961 further limit the possibilities 
fo r  a s ignif icant ly long polarity interval in  the earliest 
Jurassic. 

T h e  earliest Jurassic (Hettangian) was not only an interval 
of predominantly normal polarity but evidently also a time of  
widespread igneous activity and thick accumulation of strata in 
the rift basins o f  the Atlantic margins [ M c H o n e ,  1996;  
O l s e n  e t  a l . ,  1996bl .  T h i s  sugges t s  a n  a l t e rna t ive  
explanat ion fo r  indications of  a n  apparent ly low relative 
reversal rate and  s trong normal polarity bias at  around the 

Triassic/Jurassic boundary; that is, paleomagnetic results from 
t h e  Het tang ian  m a y  s i m p l y  b e  over - represen ted  in 
paleomagnet ic  compi la t ions  such  as those analyzed by 
J o h n s o n  e t  a l .  119951 and  A l g e o  [1996]. T h e  t iming 
between major changes in reversal rate over the Phanerozoic 
has  long been recognized to  be  -200 m y . ,  paced by the 
Cretaceous Long  Normal, the Penno-Carboniferous (Kiaman) 
Long  Reverse interval, and perhaps the Ordovician Polarity 
Bias  interval [e.g., M c E l h i n n y ;  1971; Irving and Pul laiah,  
19761. If an intervening Triassic/Jurassic o r  Early Jurassic 
polarity feature is a n  artifact of  sampling bias, a s  w e  suspect, 
-200 m.y. would remain the most significant time constant for 
long-term f ield behavior ,  presumably ref lect ing mant le  
con t ro l .  
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