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Abstract. Several recent analyses of North American 
paleomagnetic data suggest fast apparent polar wander (APW) 
(-0.75'lm.y.) during the Late Triassic and a modest amount 
(-5') of Colorado Plateau clockwise rotation. Paleomagnetic 
poles from the lower (Camian), middle (Norian), and upper 
(Hettangian) stratigraphic intervals of the Newark Basin, 
however, indicate very slow APW over the Late Triassic and 
provide an alternative interpretation for plateau rotation. The 
middle Newark pole is supported by positive fold and reversal 
tests, precluding remagnetization, and agrees well with the pole 
reported from the Norian Upper Shale Member of the Chinle 
Formation from east central New Mexico as well as the 214 Ma 
Manicouagan pole from Quebec. These poles provide a well- 
defined mean Norian reference pole for cratonic North America 
at 57.4'N 91.0Â° A95=3.8'. Paleomagnetic poles from the 
Chinle Formation on the Colorado Plateau (Owl Rock 
Member, Church Rock Member, and our new result from the 
upper Chinle in Utah) are also well grouped, consistent with 
slow APW over the Norian, but give a mean pole position 
(57.7'N 65.6'E A95=2S0) that differs significantly from the 
Norian pole for cratonic North America. The North American 
Norian poles can be closely reconciled by a 13.5' * 3.5' 
correction for accumulated post-Triassic clockwise rotation of 
the Colorado Plateau associated with Laramide deformation and 
Cenozoic opening of the Rio Grande Rift. This estimate of 
Colorado Plateau rotation is consistent with a systematic 
discrepancy between plateau and cratonic poles for the Early 
Triassic, whereas available late Paleozoic and Jurassic poles are 
judged not to provide definitive constraints on plateau rotation. 
A revised Triassic and Early Jurassic APW path for North 
America shows that the virtual standstill in the Norian, the last 
15 m.y. of the Triassic, was preceded and followed by intervals 
of fast (-1Â°/m.y. angular plate velocity. 

INTRODUCTION 

To explain Cretaceous Laramide deformation in the Rocky 
Mountain region and Cenozoic extension in the Rio Grande 
Rift, Hamilton [I9811 proposed that the Colorado Plateau 
rotated clockwise in two phases relative to the stable craton of 
North America. Because many late Paleozoic and Mesozoic 
paleomagnetic reference poles for North America come from the 
Colorado Plateau, detailed descriptions of the apparent polar 
wander (APW) path for iratonic North America and 
paleomagnetic estimates of the amount of Plateau rotation tend 
to be strongly interdependent. A central issue is whether net 
clockwise rotation of the Colorado Plateau was small (S 5') or 
large (2 10"). 

The paleomagnetic Euler pole (PEP) model of APW for 
North America [Gordon et al., 1984, May and Butler, 19861 
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predicts an angular plate velocity at a constant rate of about 
0.75Oh.y. in the Triassic, and a similarly fast rate (0.66Oh.y.) 
in almost the opposite direction over much of the Jurassic. 
This model of APW is a critical assumption in ,the 
determination of rotation of the Colorado Plateau by the method 
of Bryan and Gordon [1986, 19901. They most recently 
estimated a clockwise plateau rotation of 5.0' * 2.5' to 
optimize the fit of late Paleozoic to Jurassic paleomagnetic 
poles from the plateau and cratonic North America to a PEP 
model path. Even though Steiner [1986,1988] has maintained 
that some pole-to-pole differences indicate a larger plateau 
rotation of 1 lo Â 4'. Bryan and Gordon [I9901 rejected at a high 
formal level of confidence (99.99%) the hypothesis that a 
systematic difference could be as large as 10'. 

Bryan and Gordon [I9901 acknowledged that Cretaceous 
poles, which are not available from the Colorado Plateau, do 
not contribute directly to the estimate of plateau rotation and 
should therefore be excluded from analysis. We suggest that 
Jurassic and Permian poles also do not provide cogent 
constraints on the amount of plateau rotation in the light of 
new data. The synthesis by May and Butler [I9861 already 
showed that there are virtually no coeval cratonic and plateau 
counterparts in the inventory of North American Jurassic poles. 
Now even the overall reliability of many of the Jurassic 
reference poles has become the subject of debate, with the 
availability of new but often conflicting paleomagnetic results 
that allow rather divergent interpretations of Jurassic APW [Van 
Fossen and Kent, 1990, 1992a. b; Butler et al., 19921. With 
regard to late Paleozoic paleomagnetic data, Gordon et al. 
[I9841 recognized that Permian poles from on the plateau 
showed no discernible difference from those off the plateau, 
even though Triassic poles suggested plateau rotation of about 
10Â¡ To explain this discrepancy, Steiner [I9881 suggested that 
the Colorado Plateau experienced a separate rotation in the Late 
Permian, prior to the Laramide and Cenozoic rotations that are 
of interest here. The tectonic implication of the Permian poles 
is complicated, however, by new evidence that portions of 
central New Mexico east of the Rio Grande Rift, where some 
key Permian poles that have been regarded as cratonic references 
were obtained, experienced a similar sense of rotation as the 
Colorado Plateau [Molina-Garza et al., 199 11. 

Our attention therefore focuses on the Triassic for which 
recent paleomagnetic studies provide what we regard as more 
coherent information to separate North American APW from 
Colorado Plateau rotation. The key pole positions in our 
analysis include Late Triassic poles from Newark Basin 
sedimentary rocks [Witte and Kent, 1989; Witte et al., 19911 
and the compilation of Late Triassic North American poles 
judged as reliable by Bazard and Butler [19911, with supportive 
data from our paleomagnetic study of the Chinle Formation. 
Our synthesis supports the virtual absence of APW in the Late 
Triassic that was independently suggested by the Newark results 
and shows that post-Triassic net clockwise rotation of the 
Colorado Plateau must have been consequently large. 

EVIDENCE FOR SLOW APW IN THE LATE TRIASSIC 

Cratonic North American Data 

The Newark Basin is the largest (250 km long and 50 km 
wide) of a chain of Mesozoic rift basins in eastern North 
America that developed in the early stages of formation of the 
Atlantic Ocean. It contains more than 6 km of lacustrine and 
fluvial sediments in a continuous sequence spanning more than 
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25 my., from the middle Carnian to the Hettangian [Comet and 
Olsen, 19851. The paleomagnetically well-studied tholeiitic 
basalts and associated diabase intrusions are volumetrically 
important but are now believed to have been emplaced as part of 
a short-lived (circa 1 my.) igneous episode just after the 
Triassic/Jurassic boundary [Olsen and Fedosh, 1988; Olsen and 
Sues, 19861. The most reliable age for the igneous activity is 
201+1 Ma, based on U/Pb zircon dating on baddeleyite 
[Dunning and Hodych, 19901, which is in good agreement with 
an age of 200 Ma for the TriassicIJurassic boundary in the 
Triassic time scale of Webb [1981]. Younger ages that have 
been reported for the igneous intrusions are now ascribed to 
resetting by a hydrothermal event at about 175 Ma [Sutter, 
19881, which may very well have also remagnetized the igneous 
intrusions and overprinted the basalt magnetizations [Witte and 
Kent, 1989, 1990, 19911. For these and related reasons, the 
status of paleomagnetic poles from the Newark trend igneous 
rocks (labeled N1 and N2 by May and Butler [1986], after 
Smith and Noltimier [1979]) is sufficiently in doubt that these 
once key reference poles have not been used in recent analyses 
of Jurassic APW [e.g., Hazard and Butler, 19911. 

The paleomagnetic study of the Newark Basin by Mclntosh et 
al. [I9851 included a comprehensive sampling of the 
sedimentary rocks. The presence of normal and reversed 
polarities provided evidence for the preservation of an ancient 
component of magnetization in the Newark sedimentary 
section, but the significance of the paleomagnetic directions in 
terms of APW was obscured because of incomplete removal of 
secondary magnetizations after thermal demagnetization to only 
550Â° for most samples. 

Based on complete demagnetization analysis, renewed work 
on the Newark sedimentary rocks has yielded three well defined 
paleopoles from three intervals in stratigraphic succession. A 
lower Newark pole was obtained from Camian red beds of the 
Stockton, Lockatong and lowermost Passaic formations 

(53.5ON 101.6OE A954.8"; Witte and Kent, 19891, a middle 
Newark pole from Norian red beds of the Passaic Formation 
(55.g0N 95.0Â° A954.4O [Witte et al., 19911). and an upper 
Newark pole from Hettangian red beds interbedded with the 
Watchung basalts of the igneous extrusive zone (55.3ON 94.5% 
A95=5.4' [Witte and Kent, 19901) (Figure 1). These paleopoles 
are not significantly different from one another; the largest 
difference (4S0+6.50) is between the lower Newark and middle 
Newark poles, whereas the middle Newark and upper Newark 
poles differ by less than lo. The reliability of the Newark poles 
is supported by a regionally coherent magnetic polarity 
stratigraphy, which is now being corroborated in detail from the 
results of the Newark Basin Coring Project [Kent et al., 19911, 
and by a positive fold test on a syndepositional fold and a 
positive reversal test for the middle Newark pole [Witte et al., 
19911. This evidence clearly shows that remagnetization is not 
a viable explanation for the similarity in paleomagnetic poles 
from lower, middle, and upper Newark rocks. 

The Newark Basin developed along the structural grain of 
Precambrian and early Paleozoic crystalline basement [Ratcliffe 
et al., 1986; Swanson, 19861, making unlikely appreciable 
vertical axis rotation of the entire basin with respect to the 
stable craton of North America. The possibility of "cryptic" 
tectonic rotations localized to the border fault zone of the 
Newark Basin has been suggested by Van Fossen et al. [1986], 
however, to explain aberrant paleomagnetic directions obtained 
from the western limb of the Watchung syncline. Regardless of 
whether the aberrant directions are in fact due to local rotation, 
for which there is no geological evidence, or can be explained 
by secular variation bias or other mechanisms [Kodama, 1987; 
Van Fossen et al., 19871, we have not observed such systematic 
discrepancies where we have sampled elsewhere in the Newark 
Basin. For example, the paleomagnetic directions from 15 sites 
taken on both limbs of the Jacksonwald syncline near the border 
fault give a positive fold test and are concordant with the mean 

Fig. 1. Selected Triassic (circles) and Early Jurassic (triangles) paleomagnetic poles for North America 
with no correction for Colorado Plateau rotation. Open symbols with light confidence envelopes are poles 
from Colorado Plateau and solid symbols with dark confidence envelopes are poles from off the plateau 
(see Table 1 for abbreviations), with standard error (63% confidence) circles approximated as 58% of A95. 
Shown for reference by stippled curves are the Triassic paleomagnetic Euler pole (PEP) track and the 
ensuing portion of the Jurassic PEP track from Gordon et al. [1984]. 
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direction of eight sites from the interior of the basin where 
strata of similar Norian age are gently homoclinal [Witte et al., 
19911. The 23 middle Newark site mean directions were further 
shown to be statistically compatible with a circular (Fisherian) 
distribution, without an elongated scatter or streaking that 
might be expected from either rotations about local vertical axes 
or sampling of rapid APW. 

Slow APW during at least the Norian stage of the Late 
Triassic is supported by the consistency of the middle Newark 
pole with other paleomagnetic results from cratonic North 
America regarded as reliable by Bazard and Butler [1991]. A 
new palmmagnetic pole with a positive reversal test from the 
early Norian Upper Shale Member of the Chinle Formation in 
east central New Mexico falls at 57.4ON 87.8OE A95=5.0Â 
[Bazard and Butler, 19911, which is within 4.2' of and therefore 
not significantly different from the Norian middle Newark pole 
(Figure 1). Similarly, paleomagnetic results from the 
Manicouagan impact structure in the Precambrian shield of 
Quebec [Robertson, 1967; Larochelle and Currie, 19671 give a 
mean pole position at 58.8ON 89.9OE A95=5.g0 [Bazard and 
Butler, 19911 that is not significantly different from the middle 
Newark pole (Figure 1). New high-precision dating by the 
U/Pb zircon method puts the age of the Manicouagan melt 
rocks at 214 Â 1 Ma [Hodych and Dunning, 19921, which 
corresponds to the Norian according to time scales as diverse as 
those of Webb [I9811 and Harland et al. [19901. 

The well-defined mean of the middle Newark, Upper Shale 
and Manicouagan poles (Table 1) at 57.4ON 91.0Â° A95=3.g0 
can therefore be regarded as representative of the stationary pole 
position with respect to cratonic North America over the 

Norian, approximately the last 15 m.y. of the Triassic (215 Ma 
to 200 Ma [Webb, 19811 or 223 Ma to 208 Ma [Harland et al., 
19901). 

Colorado Plateau Data 

For the Colorado Plateau, paleomagnetic data are available 
from rocks of similar Norian age from the Chinle Formation. 
The middle Norian Owl Rock Member sampled in northeastern 
Arizona gives a pole position supported by a positive reversal 
test at 56.S0N 66.4OE A95=2.6O [Bazard and Butler, 19911 
(Figure 1). From paleomagnetic results obtained by Reeve 
[I9751 from the stratigraphically overlying (mid-late Norian) 
Church Rock Member in southern Utah, Bazard and Butler 
[I9911 recalculated a pole position at 59.0Â° 67.0Â° A95=2.S0 
that is virtually identical to the Owl Rock pole. Support for 
this early work on the Church Rock member comes from our 
own pl&magnetic study of approximately equivalent strata of 
the Chinle Formation samoled on the San Rafael swell and near 
Moab, Utah. On the basis of complete progressive thermal 
demagnetization to 680Â°C we obtain high unblocking 
temperature characteristic directions from nine sites that pass a 
reversal test and give a mean paleopole position at 57.5ON 
63.3OE A95=7.3' (see Appendix) (Figure 1). 

These three Chinle poles from the Colorado Plateau are very 
well grouped (Table 1). In the absence of a fold test or a 
regional magnetostratigraphy, remagnetization of the Chinle 
has been suggested [Witte et al., 19911, but we find this 
explanation increasingly unlikely in view of the positive 
reversal test reported for the Owl Rock member by Bazard and 

TABLE 1. Selected Triassic and Early Jurassic Palmmagnetic Poles for North America 

Pla- Cratonic 
Plat, Plon, Plat, Plon, A95, 

Rock Unit Age ON OE ON OE degrees K Ref 

K Kayenta Pliensbachian 
MV Moenave Sinemurian 
NWu Newark upper Hettangian 

NWm Newarkmiddle Norian 
US Upper Shale Norian 
ME Manicouagan 214 Â 1 Ma 
Mean Cratonic Norian (MI, US, NWm): 

CR2 ChurchRock Norian 
CR 1 Church Rock Norian 
OR OwlRock Norian 
Mean Plateau Norian (OR, CR1, CR2): 

NWl Newarklower Camian 
M Moenkopi Scythian 
RP RedPeak Scythian 

Plat and Plon are the latitude and longitude of the paleomagnetic pole in Colorado Plateau and/or 
cratonic North America coordinates, with pole positions in parentheses corrected for 13.5' of clockwise 
plateau rotation about an Euler pole at 36ON 105'W. A95 is radius of cone of 95% confidence about pole; 
K is estimate of Fisher precision parameter. References (Ref) are 1, Bazard and Butler [1991]; 2, Ekstrand 
and Butler [1989]; 3, Witte and Kent [19901; 4, Witte et al. [1991]; 5, Larochelle and Currie [1967]; 
Robertson 119671; 6, Hodych and Dunning [1992]; 7> this study; 8, Reeve [1975]; 9, Witte and Kent 
[19891; and 10, Steiner [1986]. 
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Fig. 2. Mean of Norian palmmagnetic poles for cratonic North America compared to mean of Norian 
poles for Colorado Plateau uncorrected for rotation, both with 95% confidence circles. Trajectory of mean 
plateau Norian pole with increasing amounts of correction for clockwise plateau rotation about Euler pole 
at 36ON 105OW is shown by arrow. Shown for reference by stippled curves are the Triassic palmmagnetic 
Euler pole (PEP) track, the Triassicburassic or J l  cusp, and the ensuing portion of the Jurassic PEP track 
from Gordon et al. [1984]. 

Fig. 3. Selected Triassic and Early Jurassic palmmagnetic poles for North America as in Figure 1 but 
with correction for 13.5' clockwise rotation of the Colorado Plateau (Table 1). Shown for reference by 
light stippled curves are the Triassic palmmagnetic Euler pole (PEP) track, the Triassic/Jurassic or J l  
cusp, and the ensuing portion of the Jurassic PEP track from Gordon et al. [1984]. Our interpretation of 
Triassic and Early Jurassic APW trajectory for North America is shown by the heavier stippled curve. 
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Butler [1991] and in our present study of strata equivalent to the 
Church Rock member. The mean pole position for the three 
plateau Chinle poles at 57.7ON 65.6OE A95=2.5Â¡ however, 
disagrees by over 13' from the mean Norian paleopole for 
cratonic North America at 57.4ON 91.0Â° A95=3.8'. The case 
for fast APW in the Late Triassic largely rests on the 
interpretation that most of this angular difference reflects an age 
progression within the Norian (e.g., between the pole from the 
early Norian Upper Shale member of the Chinle off the plateau 
and the pole from the middle Norian Owl Rock Member of the 
Chinle on the plateau corrected for only 4' of plateau rotation 
[Bazard and Butler, 19911). However, because the lower, 
middle, and upper Newark poles from rocks in stratigraphic 
succession show hardly any evolution in pole position across 
the Norian time interval, and the Norian middle Newark pole 
agrees with the Norian Upper Shale pole from off the Colorado 
Plateau, the difference is here interpreted to be predominantly a 
consequence of relative motion between the plateau and the 
craton since the Late Triassic. 

ESTIMATE OF COLORADO PLATEAU ROTATION 

To estimate the magnitude of Colorado Plateau rotation, we 
assume like Bryan and Gordon [1986,19901 a model of APW 
for North America. Our model, however, features a virtual 
standstill in APW for the last 15 m.y. of the Late Triassic 

which allows us to directly compare the individual sets of 
reliable Norian poles from on and off the plateau. This 
approach thus resembles that of Steiner [1986, 19881 but in our 
case the potential problems of uncertainties in age correlation 
that can complicate the interpretation of pole-to-pole 
comparisons if APW was rapid are minimized. 

An Euler pole located at 36ON 105OW was used to estimate 
the rotation of the Colorado Plateau with respect to cratonic 
North America since the Triassic. This Euler pole is a 
combination of Hamilton's [I9811 Euler pole (39ON 105OW) 
which describes clockwise rotation of the Colorado Plateau to 
account for structures associated with Cenozoic opening of the 
Rio Grande Rift, and Hamilton's [I9881 revised Euler pole 
(34ON 105OW) for clockwise plateau rotation to account for 
structures associated with the Laramide orogeny. Bryan and 
Gordon [1986, 19901 also approximated Hamilton's two-phase 
rotation of the Colorado Plateau by a single Euler pole, located 
in their case at 37ON 103OW using Hamilton's [I9811 earlier 
estimate of the Euler pole (35ON 10lOW) for the Laramide 
phase. Steiner 11986, 19881 on the other hand attempted to 
constrain the location of the Euler pole from the same 
paleomagnetic data used to estimate the amount of plateau 
rotation. 

Obtaining an estimate of Colorado Plateau rotation is 
straightforward. The mean plateau Norian pole (57.7ON 65.6OE 
A95=2.5') is rotated about the Euler pivot until the angular 

Fig. 4. Palmgeographic reconstruction for Pangea (after Ziegler et al. [I9831 using Terra Mobilism) 
positioned with respect to latitude according to mean Norian palmmagnetic pole (57.4ON 91.0Â°E Table 1) 
for cratonic North America. Shaded area in North America is Colorado Plateau. 
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difference with respect to the mean cratonic North American 
Norian pole (57.4% 91.WE A95=3.8') is minimized (Figure 2). 
A correction for 13.5' of clockwise mtation reconciles the mean 
plateau Norian pole to within lo of the mean cratonic Norian 
pole. Confidence limits on the amount of rotation can be 
obtained using the statistics of McFadden and Lowes [1981]. 
We find that the plateau and cratonic North American mean 
poles for the Norian are not significantly different at the 95% 
confidence level at rotation angles from 10' to 17'. Our 
analysis thus suggests that the Colorado Plateau rotated 
clockwise 13.5' Â 3.5' with respect to cratonic North America 
since the Late Triassic. Alternative plateau-cratonic North 
America Euler poles yield practically the same clockwise 
rotations, for example, 13.6' for the combined Euler pole used 
by Bryan and Gordon [1986, 19901, 13.7' for just the Rio 
Grande Euler pole of Hamilton [1981], and 13.5' for just the 
Laramide Euler pole of Hamilton [19881. Thus, as observed by 
Bryan and Gordon [19901, estimates of the angle of rotation are 
insensitive to the precise choice of Euler pole, whose location 
is most usefully constrained by independent geologic criteria. 

CONSISTENCY WITH OTHER PALEOMAGNETIC DATA 

The Early Triassic has been previously considered to provide 
the best set of interval paleopoles to document relative motion 
of the Colorado Plateau. Steiner [I9861 determined that 
11.7'Â±3.7 of clockwise plateau mtation could be inferred from 
the discordance between the mean pole calculated from four 
published paleomagnetic studies of the Early Triassic Moenkopi 
Formation of the Colorado Plateau and the mean pole from 
three studies of the nominally coeval Red Peak Formation of 
Wyoming. Steiner [I9861 (but see Bazard and Butler [1991]) 
argued that age uncertainties are unlikely to account for the 
discordance in pole positions from the Moenkopi and Red Peak 
rocks but cautioned that the cratonic coherence of the Red Peak 
sampling sites in Wyoming, an area affected by Laramide 
deformation, lacks confirmation. 

Ambiguity related to the cratonic coherence of the deformed 
margins of the Colorado Plateau affects the interpretation of 
some other key paleomagnetic data sets. Data from the Early 
Permian Abo Formation have been regarded as providing a 
cratonic reference paleomagnetic pole because the formation 
crops out on the east side of the Rio Grande Rift [Gordon et al., 
1984; Steiner, 1988; Bryan and Gordon, 19901. Yet the recent 
study by Molina-Garza et al. [I9911 shows that the Moenkopi 
Formation at their Sevilleta Grant sampling locality, on the 
eastern margin of the Rio Grande Rift just to the south of 
Steiner's [I9881 study area of the Abo Formation at Abo Pass, 
gives a paleopole very similar to Moenkopi poles from two 

localities on the western (plateau) margin of the rift, which 
together resemble published Moenkopi poles from the interior 
of the Colorado Plateau. Moreover, at Tejon, a locality to the 
north of Abo Pass but also on the east side of the rift, 
magnetizations of the Shinarump member of the Chinle 
Formation were shown to contain Cretaceous(?) and recent 
overprints that were deflected clockwise by over 30'. 
Accordingly, Molina-Garza et al. [I9911 suggested that portions 
of central New Mexico east of the rift may have either rotated 
rigidly with the plateau or experienced a similar sense of 
mtation by independent deformation mechanisms. In light of 
this evidence, the pole from the Shinarump member of the 
Chinle Formation [Molina-Garza et al., 19911 as well from the 
Early Permian Abo Formation [Steiner, 19881 should be 
considered suspect with regard to cratonic coherence. Plateau- 
related mtation of the Abo Formation does, however, point to 
an alternative explanation for the long-recognized similarity of 
Permian poles from the plateau and the "craton" that has less to 
do with an additional Late Permian mtation of the plateau 
[Steiner, 19881 than with an inappropriate cratonic reference. 
Interestingly, Irving and Strong [I9851 suggested the possi- 
bility of a large (-10') clockwise plateau mtation on the basis 
of an analysis of Kiaman (Permo-carboniferous) overprint 
magnetizations in North American Paleozoic rocks. 

REVISED TRIASSIC/EARLY JURASSIC APW FOR 
NORTH AMERICA 

Paleomagnetic poles we use to delineate a Triassic to Early 
Jurassic APW path for North America generally conform to 
those discussed and deemed most reliable by Bazard and Butler 
[1991, Figure 141, with the addition of the recently published 
middle Newark pole [Witte et al., 19911 and our new Church 
Rock pole (Table 1). We did, however, choose to include the 
mean Red Peak and the mean Moenkopi poles as calculated by 
Steiner [I9861 as reasonable if perhaps not precisely coeval (or 
in the case of the Red Peak, not strictly cratonic) Early Triassic 
counterparts from off and on the plateau. Paleomagnetic results 
of Reeve [I9751 from the Church Rock member were also used 
on the strength of corroborating data from our study of 
equivalent stratigraphic units. To maintain consistency with 
Bazard and Butler [1991], we use their recalculation of the 
Church Rock pole that was based on only normal polarity data 
and note that Gordon et al. [I9841 calculated a statistically 
indistinguishable pole (61Â° 64OE A95=3O) from Reeve's [1975] 
data for the Church Rock member that included normal and 
reversed polarities and passed a reversal test. Finally, we omit 
the Shinarump pole because of the complex tectonic setting 
with demonstrated local rotations where it was sampled 
[Molina-Garza et al., 19911. 

Fig. Al. Paleomagnetic results from the Chinle Formation. (a) Map of sampling localities I (sites 
TCHF to TCHJ), I1 (sites TCHA to TCHE), 111 (sites TCHK to TCHM), and IV (sites TCHN and TCHO) 
in Utah. (b) Stratigraphic range of sampling sites shown by solid bars at the four localities (representative 
stratigraphic columns after Stewart et al., [1972]). (c-f) Demagnetograms for representative samples from 
the different localities. Opedsolid symbols are vector end-points projected on vertical/horizontal 
orthogonal planes after each stage of thermal demagnetization. Samples in Figures Alc-Ale have reversed 
polarity, and sample in Figure Alf has normal polarity characteristic magnetization. (g) Site mean 
directions after tilt correction, with opedsolid circles plotted on upperbower hemisphere of equal area net. 
The two smaller circles are for sites TCHI and TCHJ from lower Chinle that were excluded in calculation 
of upper Chinle mean direction shown by star with corresponding circle of 95% confidence based on nine 
sites converted to common normal polarity (Table Al). 
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After 13.5' correction for clockwise plateau rotation, the 
Triassic poles for North America describe an APW path from 
about 49ON 117'E in the Early Triassic to the virtual standstill 
at about 57ON 91Â° by the Norian (Figure 3). APW over the 
Triassic was about 17' of arc distance but the rate of angular 
change was not constant. Instead, an average rate of 0.73'lm.y. 
calculated for the entire Triassic by Bazard and Butler [I9911 is 
more appropriate only for the Early and Middle Triassic because 
of negligible APW in the Norian. The Camian lower Newark 
pole may record an intermediate position of the Triassic APW 
shift (Figure 3). 

The insignificant difference of the Hettangian upper Newark 
pole from the middle Newark and other Norian poles suggests 
that the standstill extended into the earliest Jurassic. However, 
the pole from the Sinemurian Moenave Formation [Ekstrand 
and Butler, 19891, even after 13.5' correction for plateau 
rotation, falls significantly to the west of the upper Newark 
pole (Figure 3). The Moenave pole is based on thorough 
demagnetization experiments and although the mean normal and 
reversed directions are 12' from antipodal, they formally pass a 
reversal test [class C [McFadden and McElhinny, 19901). The 
Moenave may therefore record a westerly excursion in APW, an 
obtunded vestige of the J l  cusp of PEP models. If so, the 
Moenave excursion was rather brief because a new pole reported 
by Bazard and Butler [I9911 from the immediately overlying 
(Pleinsbachian) Kayenta Formation after correction for 13.5' of 
plateau rotation is hardly different from the Hettangian lower 
Newark pole. Furthermore, the Pleinsbachian Kayenta pole is 
not significantly different from Norian poles from the Owl 
Rock or Church Rock members of the Chinle Formation from 
the Colorado Plateau. 

This apparent backtrack of the Kayenta pole was interpreted 
to mark the beginning of an easterly progression of paleopoles 
that define the J l  to J2 PEP Jurassic track [Bazard and Butler. 
19911, but this interpretation will need to be reconciled with the 
emerging evidence for high latitude APW in the Jurassic [Van 
Fossen and Kent, 1990, 1992b; Witte and Kent, 19911. To the 
extent that paleomagnetic poles from the Colorado Plateau are 
used, any revised Jurassic APW path for North America will 
also need to take into account a large clockwise plateau 
rotation. It can nevertheless be concluded at this stage that 
APW for North America must have been at a relatively rapid 
(-1Â°/m.y. overall rate in the Jurassic, to arrive at the distant 
and well-established mid-Cretaceous pole position at 71Â° 
1%'E [Globerman and Irving, 19881. 

DISCUSSION 

Our paleomagnetic estimate of 13.5' of clockwise plateau 
rotation based on Late Triassic data is similar to that of 
Steiner's [I9861 11.7O based on Early Triassic data, but it is 
significantly greater (13.5' Â 3.5' versus 5.0' Â 2.5') than the 
value most recently calculated by Bryan and Gordon [I9901 
from late Paleozoic to Jurassic data. We suggest that Bryan and 
Gordon underestimated the amount of plateau rotation because 
they effectively averaged the large systematic discordance in 
Triassic poles with the generally small discordance of 
ambiguous significance in late Paleozoic poles, and used a 
Jurassic APW model that we now regard as poorly defined at 
best. 

An undercorrection of plateau paleomagnetic poles for 
clockwise rotation (5' or less) has contributed to the impression 
of fast APW continuing through the Late Triassic [Gordon et 

al., 1984; May and Butler, 1986; Bryan and Gordon, 1986, 
1990, Bazard and Butler, 19911. This is largely because the 
discordance between on-plateau and off-plateau Chinle poles was 
presumed to reflect mostly an age difference. Our interpretation 
predicts that the Late Triassic Chinle Formation should show 
little change in paleomagnetic pole position over its 
stratigraphic range at a given locality either on or off the 
plateau, corresponding to the lack of discernible APW we have 
documented for the broadly correlative Newark Basin section. 
For example, the Upper Petrified Forest member of the Chinle 
Formation on the Colorado Plateau (see Bazard and Butler 
[I99 1, Figure 151 for stratigraphic correlations) should give a 
pole position that is virtually the same as the available 
paleomagnetic poles for the Owl Rock and Church Rock 
members from the plateau, but that should differ from the 
reported pole for the presumably coeval Upper Shale member of 
east central New Mexico (off the plateau) by an amount that is 
equivalent within errors to 13.5' of clockwise plateau rotation. 

Hamilton [I9881 estimated on geologic grounds that the 
Colorado Plateau rotated clockwise relative to the craton by 
about 8O since mid-Cretaceous time: about 3' was estimated to 
account for the regional pattern of extension associated with the 
Cenozoic opening of the Rio Grande Rift and the balance (in 
the range of 2' to 8') with a preceding Late Cretaceous phase of 
rotation to account for the spatial distribution of crustal 
shortening across the Laramide belt. Although Hamilton 
[I9881 seemed to favor paleomagnetic estimates of plateau 
rotation that were relatively large [e.g., Steiner, 19861 compared 
to the 4' estimated by Bryan and Gordon [1986], the 
compatibility of the geologic evidence for post-Triassic rotation 
of the Colorado Plateau that totals to the -13.5' indicated by 
our analysis is not unequivocal [Chase et al., 19921 and will 
require further critical evaluation of the extent of Laramide 
shortening as well as Rio Grande Rift-related extension. Local 
clockwise rotations may also more broadly characterize the 
Cenozoic tectonic history of the western interior of the United 
States [e.g.. Eaton, 19791, as documented by paleomagnetic 
data from the eastern margin of the Rio Grande Rift [Molina- 
Garza et al., 19911 and suggested by systematic discrepancies 
with respect to global plate reconstructions of early Tertiary 
poles from western United States sampling localities including 
north central Montana and northwestern Wyoming [Acton and 
Gordon, 19921. 

Finally, the revised pattern of Triassic APW for North 
America can be viewed in a broader palmgeographic context 
During the Triassic, North America was part of the super- 
continent of Pangea. The virtual absence of APW for North 
America over 15 m.y. of the Norian therefore implies that 
Pangea was also stationary with respect to the paleomagnetic 
reference frame during this time (Figure 4). The latitudinally 
static position of Pangea in the Late Triassic, preceded and 
followed by time intervals characterized by fast APW of up to 
-lO/m.y., may be related to large-scale mantle processes 
[Gurnis, 19881. In practical terms, the Norian standstill of 
APW is an ideal time interval for testing and refining models of 
Pangea continental reconstructions as well as for terrane (e.g., 
Colorado Plateau) analysis. 

APPENDIX: NEW CHINLE PALEOMAGETIC RESULTS 

At least five oriented drill core samples were taken from each 
of a total of 15 sites distributed over two localities along 
Interstate 70 on the the San Rafael Swell in western Utah. and 
two localities along the Colorado River near Moab in eastern 
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TABLE Al. Characteristic Magnetization Directions 
From the Chinle Formation 

Site n/N k Dec, Inc, Stk/Dip 
degrees degrees 

TCHA 
TCHB 
TCHD 
TCHE 
TCHI* 
TCHJ* 
TCHK 
TCHL 
TCI-IM 
TCHN 
TCHO 

Mean 9/15 24 003.6 12.3 (a95 = 10.7') 

Pole position: Lat = 57.5ON Lon = 63.3OE 
(K = 50, A95 = 7.3O) 

Column heads are n/N, number of samples or sites used for 
calculation/number collected; k, estimate of Fisher precision 
parameter; Dec, declination and Inc. inclination of 
magnetization direction after bedding tilt correction; Stk/Dip, 
bedding strikebedding dip with quadrant direction. Lat is 
latitude and Lon is longitude of paleomagnetic pole position 
based on nine site mean virtual geomagnetic poles; K is 
estimate of Fisher precision parameter; and A95 is radius of 
cone of 95% confidence about pole. 

*These sites were excluded (see text). 

Church Rock member or its stratigraphic equivalent at localities 
11,111, and IV, but the five sites at locality I were taken in the 
Monitor Butte and Moss Back members (Figure Alb). All 
experimental work was conducted in a magnetically shielded 
room using procedures and equipment described by Witte et al. 
[1991]. Sample magnetization directions were determined by 
principal component analysis [Kirschvink, 19801 and averaged 
using Fisher [I9531 statistics. Although some medium grain 
size sandstones were sampled, red mudstone samples yielded the 
most interpretable demagnetization results. 

Complete stepwise thermal demagnetization to 680Â° of all 
samples typically revealed two components of magnetization, 
similar to demagnetization behaviour described by Bazard and 
Butler [I9911 for the Owl Rock member. There is often a 
northerly and steeply down magnetization, with unblocking 
temperatures to about 500Â°C that most likely represents a 
recent overprint (Figure Alc). Eleven sites of the original 15 
produced at least three samples with a well-defined high 
unblocking temperature component, evidently carried by 
hematite, with either shallow and northerly or shallow and 
southerly directions (Figure Aid). The 11 sites have a mean 
direction after tilt correction of DeclinationAnclination = 
2.3O/12.8O, k=26, a95=9.2'. Excluding two of these 11 sites 
which are from the lower part of the Chinle (Monitor Butte and 
Moss Back members), we calculate a mean direction for the 
upper part of the Chinle at Declination/Inclination = 3.6O/12.3O, 
k=24, a95=10.7' (Table Al)  and note that the five normal 
polarity and four reversed polarity site means pass a reversal test 
(class C [McFadden and McElhinny, 19901). The pole position 
based on these nine sites (57.5ON 63.3OE A95=7.3O) is not 
significantly different from the pole (59.0Â° 67.0Â° A95=2S0) 
calculated by Bazard and Butler [I9911 from Reeve's [I9751 data 
for the Church Rock member. 

Utah (Figure Ala). The Chinle Formation in this region is a Acknowledgments. We thank the journal reviewers for 
shallow lacustrine and fluvial unit with considerable lateral constructive comments. This research was supported by the 
variability and correspondingly varied stratigraphic nomen- National Science Foundation, Division of Earth Sciences 
clature [Stewart et al., 19721. Our sampling concentrated on (grants EAR87-21142 and EAR89-16726) and is Lamont- 
the upper portions of the formation, with 10 sites in the Doherty Geological Observatory contribution 49%. 
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