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Small tetrapods from the
Upper Triassic of the Richmond basin
(Newark Supergroup), Virginia

HANS-DIETER SUES, PAUL E. OLSEN, AND
PETER A. KROEHLER

Introduction

During the Triassic period, profound changes took
place in the composition of continental biotas (Cox,
1967; Benton, 1986; Olsen and Sues, 1986). Late
Permian communities of continental tetrapods were
dominated by nonmammalian synapsids. During the
Triassic, these assemblages gave way to communities
that were dominated by archosaurian reptiles, espe-
cially dinosaurs, but also included other important
elements of later continental biotas, such as lepidosaurs,
mammaliaform synapsids, and turtles. Despite the
obvious importance of this faunal transition, the pattern
of change among Triassic continental tetrapods has
yet to be fully documented. Much of the currently
available fossil record has been recovered from strati-
graphically poorly constrained strata of Middle and
Late Triassic age in the southern continents, especially
in Argentina, Brazil, and Tanzania (Romer, 1966; Cox,
1973). These assemblages appear to differ from the
classic Late Triassic tetrapod assemblages from Europe
and the American Southwest in their taxonomic com-
position, which is puzzling in view of the fact that the
Triassic was the only period in tetrapod history during
which a single landmass existed for the entire length
of the period (Cox, 1973; Parrish, Parrish, and Ziegler,
1986).

The early Mesozoic Newark Supergroup comprises
the remnants of the sedimentary and igneous fill of an
extensive series of partially fault-bounded basins that
formed in continental crust along the eastern margin
of North America in response to extensional forces
during the initial phase of the breakup of Laurasia
(Olsen, Schlische, and Gore, 1989). Its sedimentary
rocks, ranging in age from the Middle Triassic to Early
Jurassic, have traditionally been regarded as virtually
devoid of tetrapod bones, although tracks and track-
ways representing a considerable variety of tetrapods

are locally very abundant. Starting in the 1950s,
renewed collecting efforts, first by Donald Baird (for-
merly of Princeton University) and subsequently by
Paul Olsen and his associates, have resulted in the
discovery of several stratigraphically well constrained
tetrapod-bearing localities in strata of the Newark
Supergroup (Olsen, 1988; Olsen et al., 1989).

We report here on an early Late Triassic tetrapod
assemblage from the Tomahawk Creek Member of the
Turkey Branch Formation in the Richmond basin of
east-central Virginia. It is quite unlike any other
known from North America and raises a number of
important questions regarding early Mesozoic bio-
geography and faunal change. A brief report on the
Tomahawk assemblage has already been published
(Sues and Olsen, 1990). This chapter presents a
preliminary review of the small tetrapods and discusses
the general significance of the Tomahawk tetrapod
assemblage.

Geological setting

The Richmond basin (Figure 8.1) is located in east-
central Virginia close to the eastern edge of the
Piedmont, some 19 km west of Richmond. It is sur-
rounded by igneous and metamorphic rocks of the
Piedmont Province and is bounded on the western side
by a series of normal faults. As exposed today, the basin
is 53 km long and about 15 km wide at its widest point,
covering an area of only 273 km? (Cornet and Olsen,
1990). Its small size, compared with many other
basins of the Newark Supergroup, however, is deceptive,
because close similarities in facies development suggest
that it was once continuous with the Taylorsville
basin, which lies just 11 km to the north (Ressetar and
Taylor, 1988; Cornet and Olsen, 1990). A large
portion of the latter basin underlies the Atlantic
Coastal Plain to the northeast, where it is probably
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Figure 8.1. (A) Distribution of the principal rift basins of the Newark Supergroup in eastern North America. (B) Geological

map of the Richmond basin. (Modified from Olsen et al., 1989.)

continuous with the recently discovered Queen Anne
basin of the Delmarva Peninsula in Maryland (Hansen,
1988) and possibly a basin in southern New Jersey
(Sheridan, Olsson, and Miller, 1991). The resulting
structure would represent one of the largest rifts of the
Newark Supergroup, one with a very distinctive strati-
graphic sequence and sedimentary fill.

The Richmond basin occupies the southwestern side
of an elongated rift valley region and may preserve
only a portion of the original rift valley south of the
Taylorsville and Queen Anne basins. Despite a long
history of intermittent study of the geological structure
of the basin, dating back to the pioneering work of Lyell
(1847), it is still rather poorly understood because
suitable exposures and outcrops are scarce. Extensive
drilling for oil and gas and seismic-reflection work in
the 1980s have clarified some aspects of the strati-
graphic sequence and structure of the basin (Cornet,
1989; Cornet and Olsen, 1990). The Richmond basin
contains some of the stratigraphically oldest sedi-
mentary rocks of the Newark Supergroup currently

recognized south of Nova Scotia (Olsen et al., 1989).
Based on palynological data, the ages of its strata may
range from late Ladinian to early Carnian (Ediger,
1986) or, more likely, from early to middle Carnian
(Cornet, 1989; Cornet, in Olsen et al., 1989). A few
dikes of Jurassic diabase intrude both the rocks in the
Richmond basin and the surrounding Piedmont. The
Carnian sedimentary sequence rests unconformably
upon igneous and metamorphic basement. The
Richmond and Taylorsville basins contain gray and
black sedimentary rocks of lacustrine to paludal origin,
rather than the red and brown playa and fluvial
sedimentary rocks characteristic of other Newark Super-
group basins (Olsen et al., 1989). The Richmond basin
contains relatively extensive coals and highly biotur-
bated shallow-water lacustrine and fluvial sequences,
which suggest persistently humid conditions (Cornet
and Olsen, 1990). Cornet and Olsen divide the main
basin sequence into three formations (from oldest
to youngest): Tuckahoe Formation, Turkey Branch
Formation, and Otterdale Sandstone.
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Figure 8.2. Stratigraphic section of the Turkey Branch
Formation at the Tomahawk Locality and in its immediate
surroundings. Asterisk denotes tetrapod-bearing mudstone
horizon.

Grammer (1818) first reported the occurrence of
fossil fishes in pits and mine shafts in the famous Coal
Measures of the Richmond basin. In 1845, Charles
Lyell visited the Blackheath mines, situated south of
the James River and northeast of the town of Midlothian
in Chesterfield County, and obtained a specimen of the
distinctive redfieldiid ‘holostean’ Dictyopyge macrura,
which he subsequently illustrated in his description of
the coal field in the Richmond basin (Lyell, 1847).
Dictyopyge is endemic to the Richmond, Taylorsville,
and smaller associated basins and occurs in large num-
bers throughout much of the stratigraphic sequence
(Schaeffer and McDonald, 1978). The fish specimens
generally are incomplete and disarticulated and com-
monly are associated with conchostracans, ostracods,
plant remains, coprolites, and occasional gastropods
and reptilian teeth.

Olsen discovered the vertebrate-bearing Tomahawk
Locality in July 1981, during geological reconnais-
sance in the Richmond basin. The first geological map
of the Richmond basin by Shaler and Woodworth
(1899) shows a dip symbol at this location, indicating
that an outcrop already existed there at the time of
their survey. The site (USNM locality 39981) is located
along the northeastern bank of the old course of Old
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Hundred Road (VA 652), 0.1 mile (0.16 km) east of
the eastern branch of Tomahawk Creek, near Mid-
lothian, Chesterfield County. We refer to the site as the
Tomahawk Locality because of its proximity to Little
Tomahawk Creek on the old Tomahawk Plantation.
The tetrapod bones occur in a 15-20-cm-thick stratum
of massive calcareous mudstone, together with small
(1-10 mm) carbonate nodules, poorly preserved root
traces, and countless fish scales and bones (Figure 8.2).
At least two irregular layers of fissile, more silty
mudstone extend within the massive mudstone and
contain vast quantities of fish scales and bones along
with isolated tetrapod bones and teeth. The fossili-
ferous strata form part of the middle Tomahawk Creek
Member of the Turkey Branch Formation (B. Cornet,
pers. commun.), an extensive sequence of sedimentary
rocks of shallow-water lacustrine origin. The poorly
exposed stratigraphic sequence in the area of the
excavation consists of laminated dark gray claystone
with conchostracans, that grades upward into massive
mudstone and nodular limestone. The Turkey Branch
Formation is unconformably overlain by the coarse-
grained sandstones of the possibly late Carnian
Otterdale Formation, which appears to represent a
braided-stream deposit and thus far has yielded only
petrified wood.

Most tetrapod remains occur as dissociated bones
(or fragments of bones) and teeth. For this reason, we
have generally adopted a conservative approach in
taxonomic identification of the material now at hand.
In a few instances, skulls and partial skeletons are
disarticulated, but the component elements still remain
in close association. The superbly preserved bones and
teeth show relatively few signs of crushing and distortion.

Most of the associated fish material can be assigned
to the ubiquitous Dictyopyge. A few isolated teeth
document the presence of small hybodont sharks
referable to Lissodus (A. K. Johansson, pers. commun.).
The only invertebrates preserved in the tetrapod-
bearing mudstone are as yet unidentified gastropods,
which are documented by shell fragments and rare
complete specimens in steinkern preservation. Macro-
scopic plant remains comprise a single poorly preserved
fern pinnule (B. Cornet, pers. commun.), poorly pre-
served root traces, and carbonized wood scraps.

Field collection and preparation

The locality was initially quarried by means of hand
tools. As the area of excavation was expanded, a
backhoe was used on several occasions to remove
several meters of overlying clay and weathered rock,
but care was taken not to uncover the actual fossili-
ferous horizon during that phase of site preparation.
The bones and teeth can be readily separated from
the enclosing mudstone matrix using needles ground
from rods of tungsten carbide and mounted in pin
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vises. The fossils usually are stained black and display
even minute structural details. Many teeth have light
gray or bluish enamel and black dentine. Most of the
small bones and teeth are penetrated by minute
fractures, and often they rapidly disintegrate as the
enclosing mudstone dries. Application of cyanoacrylate
glues was used to retard disintegration during collect-
ing; the adhesives can be removed with acetone or by
careful peeling with a needle during preparation in the
laboratory.

Bulk samples of fossiliferous mudstone were dis-
integrated in hot water or treated using kerosene and
water. The resulting residue was screened, dried, and
manually sorted under a dissecting microscope. This
procedure yielded numerous skeletal remains of a
variety of small tetrapods, as well as abundant scales
referable to Dictyopyge.

Systematic paleontology

Synapsida
Cynodontia
“Traversodontidae”

Boreogomphodon jeffersoni Sues and Olsen, 1990

This small traversodont cynodont is by far the most
abundant identifiable tetrapod taxon at the Tomahawk
Locality. [We use only the informal term ‘‘traversodont’
because the family Traversodontidae Huene, 1936
probably constitutes a paraphyletic grouping (Hopson,
1984).] It is represented by three excellently preserved
partial skulls (including one with a natural endocast),
scattered remains of a fragmentary skeleton, a number
of isolated dentaries, maxillae, and premaxillae, and
many isolated teeth. In addition, a few isolated cyno-
dont limb-bones (humerus, femur) may prove referable
to this taxon.

B. jeffersoni most closely resembles Traversodon stah-
leckeri Huene, 1936 from the Carnian Santa Maria For-
mation of southern Brazil and Luangwa drysdalli Brink,
1963 from the Anisian Ntawere Formation of Zambia
(Kemp, 1980) in the structure of its upper postcanine
teeth. The upper postcanines have buccolingually
expanded crowns, with three principal cusps posteriorly
and a large anterior basin (Figure 8.3). Only a single
accessory cusp is developed anterior to the buccal
principal cusp. A posterior cingulum is present. The
enamel typically shows coarse vertical wrinkling. The
lower postcanine teeth differ from those of Luangwa,
Traversodon, and most other known traversodont taxa
in the presence of three, rather than two, anterior
cusps. This character state is shared only by Arctotra-
versodon from the Wolfville Formation (middle to upper
Carnian) of Nova Scotia and an undescribed traver-

Figure 8.3. Left maxilla of Boreogomphodon jeffersoni Sues
and Olsen, 1990, USNM 437632 (holotype), in occlusal
view. Specimen coated with ammonium chloride. Divisions
of scale bar each equal 1 mm. Abbreviations: ¢, canine
alveolus; s, sectorial tooth and alveolus for sectorial tooth.

sodont from the Lettenkeuper (Ladinian) of southern
Germany (Sues, Hopson, and Shubin, 1992).

The buccal surface of the maxilla bears a pronounced
longitudinal ridge that overhangs the tooth row buc-
cally. The dentary has a large posterior mental foramen.
These features, in conjunction with the inset lower and
upper rows of postcanine teeth, provide suggestive
evidence for a flexible cheek and a buccal oral vestibule,
as inferred for other traversodont cynodonts (Hopson,
1984).

Most of the jaws referable to Boreogomphodon found
to date represent juvenile individuals. This assessment
is based on the small overall size of the specimens, the
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Figure 8.4. Isolated postcanine tooth of Microconodon
tenuirostris Osborn, 1886, USNM 448600, in buccal
(A) and occlusal (B) views. Scale bar equals 400 pum.

low number (four or five) of postcanine teeth, the
proportional shortness of the snout, and the propor-
tional depth of the dentary (Hopson, 1984). It is
further borne out by the presence of multicuspid
“sectorial”’ teeth in the two posterior alveoli of several
maxillae (Figure 8.3). Such teeth have previously been
recorded only in juvenile specimens of other gompho-
dont cynodonts, such as Diademodon (Hopson, 1971)
and Massetognathus (J. A. Hopson, pers. commun.).

Cynodontia incertae sedis

Microconodon tenuirostris Osborn, 1886

Three dentaries and several isolated postcanine teeth
document the presence of this very mammal-like
cynodont, which previously was known only from a
right dentary from the upper Carnian Cumnock For-
mation of North Carolina (Osborn, 1886; Simpson,
1926). The teeth are also very similar to the isolated
teeth of Pseudotriconodon from the middle Norian
Steinmergel-Gruppe of Luxembourg (Hahn, Lepage,
and Wouters, 1984; Sigogneau-Russell and Hahn,
Chapter 10).

The postcanine teeth typically bear three pointed
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cusps that are anteroposteriorly aligned behind one
another (Figure 8.4). The tall principal cusp is antero-
posteriorly long and has sharp anterior and posterior
cutting edges. It is symmetrically flanked by much
smaller cusps anteriorly and posteriorly, Cingula are
absent. The root of an isolated upper(?) postcanine
tooth shows a pronounced anteroposterior constriction.
The dentary has a long, low tooth-bearing ramus and
lacks a distinct angular process. Its robust symphyseal
region holds alveoli for one canine and three slightly
procumbent incisors. In the smallest known dentary
from the Tomahawk Locality, the postcanine dentition
comprises simple anterior and more posterior tricuspid
teeth; furthermore, no diastema is present. In the
largest dentary found to date, the anterior postcanines
have been lost, and a prominent diastema separates
the canine and the exclusively tricuspid postcanines.

To date, we have found no differences to justify
taxonomic distinction between the material from the
Tomahawk Locality and the holotype of Microconodon
tenuirostris Osborn, 1886 (Academy of Natural Sciences,
Philadelphia, no. 10248). The phylogenetic relation-
ships of Microconodon are beyond the scope of this
chapter and will be discussed elsewhere.

Diapsida

Archosauria

Crurotarsi

To date, only phytosaurs (Parasuchia) and a new
suchian archosaur with diagnostic dorsal dermal armor,
Euscolosuchus olseni Sues, 1992, have been confidently
identified.

Although phytosaurs are rather large reptiles, their
isolated tooth crowns, representing a wide spectrum of
sizes, are very common in both the quarried and
screen-washed material and hence merit inclusion in
this review. Long, slender, and conical tooth crowns,
with a round cross-section and smooth cutting edges,
probably represent teeth from the anterior end of the
snout, whereas the more robust and labiolingually
compressed crowns with finely serrated cutting edges
presumably are from the posterior regions of the jaws,
much as in other phytosaurs. Many of the presumed
anterior teeth occasionally show very pronounced
vertical fluting of the enamel and closely resemble
certain isolated phytosaurian tooth crowns from the
Upper Triassic of Pennsylvania illustrated by Huene
(1921). The material is of little diagnostic value.
Traditionally, the mostly very fragmentary skeletal
remains of phytosaurs from the Upper Triassic of
eastern North America have all been referred to
Rutiodon Emmons, 1856, but in most cases the avail-
able evidence neither supports nor contradicts this
assumption.
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Figure 8.5. Uatchitodon kroehleri Sues, 1991, USNM
448624, nearly complete tooth in side view. Scale bar
equals 1 mm.

?Archosauriformes incertae sedis

Uatchitodon kroehleri Sues, 1991

This taxon, of uncertain, possibly archosauriform,
affinities, is known only from its highly distinctive
teeth, which represent the earliest instance of a pre-
sumed oral venom-delivery system in reptiles recorded
to date (Sues, 1991). The labiolingually strongly com-
pressed, recurved, bladelike tooth crowns bear deeply
infolded, enamel-lined median grooves on both their
labial and lingual surfaces (Figure 8.5). Judging from
the close structural similarity to the venom grooves on
the teeth of extant poisonous snakes and lizards of the
genus Heloderma, it seems likely that these features
functioned in venom conduction. The grooves become
narrow and shallow toward the tip of the tooth and
disappear before reaching it. The anterior and posterior
cutting edges of the crowns are serrated on all but two
of the teeth recovered to date, with typically six or
seven denticles per millimeter (Figure 8.6A). Inspection
at higher magnification shows that the sharp cutting
edge of each individual denticle is denticulated as well
(Figure 8.6B). The tooth crowns of Uatchitodon kroeh-
leri have an average height of about 10 mm, but
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several fragments indicate the presence of larger teeth.
The root indicates thecodont tooth implantation.

Diapsida

Lepidosauria

A new sphenodontian lepidosaur is represented by
isolated maxillae with teeth (Figure 8.7A,B). The
acrodont teeth have bluntly conical crowns that bear
prominent radial ridges on the enamel. An enlarged
anterior tooth is followed by three or four smaller teeth.
The sphenodontian from the Tomahawk Locality
appears to provide the stratigraphically oldest record
of this group known to date.

A number of lizardlike jaws and jaw fragments show
pleurodont tooth implantation (Figure 8.7C). The
teeth are columnar and slightly recurved. Lingually,
they are separated from the subdental ridge by a
sulcus. These specimens may indicate the presence of
an unidentified lepidosaur. Although of great interest
as a potential early Late Triassic record of Squamata
(see Rieppel, Chapter 2), the currently available material
is too fragmentary to permit definite taxonomic identi-
fication.

Parareptilia sensu Gauthier et al., 1988

Procolophonia

Two distinctive new taxa are each documented by a
jaw fragment with diagnostic teeth. One is clearly
referable to the Procolophonidae, and the other may
be related to certain advanced taxa of that group. This
material has been described and compared in detail
elsewhere (Sues and Olsen, 1993).

Importance of the Tomahawk tetrapod
assemblage

The preliminary faunal inventory presented here under-
scores the unusual importance of the Tomahawk
tetrapod assemblage for the study of the early Mesozoic
history of continental biotas. First, it represents a very
diverse assemblage of continental vertebrates of early
Late Triassic age from North America and contains a
number of previously unknown taxa. Second, the
Tomahawk tetrapod assemblage is unlike other known
North American assemblages (from the Chinle and
Dockum formations in the American Southwest and
the rest of the Newark Supergroup) in the numeri-
cal predominance of traversodont cynodonts, which
indicates close faunal ties to the Gondwanan realm
(Argentina, Brazil, and Tanzania) (Romer, 1966; Cox,
1973). The slightly younger tetrapod assemblages
from very similar strata of the Pekin and Cumnock
formations of North Carolina (Olsen et al., 1989)
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include taxa known from the Chinle and Dockum
formations of the American Southwest and demon-
strate that the distinctive faunal composition of the
Tomahawk assemblage probably is not related to differ-
ences in depositional environments. The Tomahawk
tetrapod assemblage shares the presence of phytosaurs
with other Laurasian assemblages, but it apparently
lacks metoposaurid temnospondyl amphibians, which
otherwise were widely distributed throughout Europe
(Fraas, 1889), North America (Colbert and Imbrie,
1956; Hunt, 1989), Morocco (Dutuit, 1976), and
India (Roy-Chowdhury, 1965) during the Late Triassic.

The Tomahawk tetrapod assemblage is demon-
strably slightly older than other well-documented
Laurasian assemblages, and Sues and Olsen (1990)
have previously suggested that the traditionally re-
cognized differences between Carnian tetrapod assem-

Figure 8.6. Uatchitodon kroehleri
Sues, 1991. (A) Tooth fragment
in posterior view, showing
denticles along cutting edge
(carina). Scale bar equals 1 mm.
(B) Closeup of denticles delineated
by rectangular box in A. Scale bar
equals 200 pm.

blages from Laurasia and Gondwana reflect differences
in stratigraphic age, rather than geographic separa-
tion. The apparent faunal provinciality might thus
reflect poor stratigraphic sampling of the transition
from the Middle to the Late Triassic in Laurasia. Floral
provinciality during the early part of the Late Triassic,
however, is well established, with Laurasian plant
assemblages dominated by cycadophytes and conifers
and Gondwanan macrofloras dominated by the seed-
fern Dicroidium and palynofloras of the Ipswich-Onslow
type (Cornet and Olsen, 1985). This floral provinciality
does not correspond geographically and temporally in
a simple way to the distribution of continental tetra-
pods. In India, typical Laurasian tetrapod assemblages
with abundant phytosaurs and metoposaurs (Roy
Chowdhury, 1965; Chatterjee and Roy-Chowdhury,
1974) occur in association with Dicroidium-dominated
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Figure 8.7. Maxilla fragment of undescribed sphenodontian
in occlusal view (A) and side view (B). Scale bar equals

2 mm. (C) Dentary fragment of indeterminate lepidosaur in
lingual view. Scale bar equals 400 pm.

assemblages of plant macrofossils and with Ipswich-
Onslow-type palynofloras (Kumaran and Maheswari,
1980). The tetrapod material from the Richmond
basin described here is associated with diverse, typically
Laurasian florules (Fontaine, 1883; Cornet and Olsen,
1990) although B. Cornet (pers. commun.) has recent-
ly identified two new plant taxa with Gondwanan
affinities.

Romer (1966) informally distinguished three suc-
cessive stages in the historical development of conti-
nental Triassic tetrapod assemblages worldwide. He
did not attempt to fit these stages into a chronostrati-
graphic framework, but they broadly correlate with
the Triassic standard sequence (Shubin and Sues,
1991). The Early Triassic A-type assemblages are
composed predominantly of nonmammalian therap-
sids and are best known from the Beaufort Group
(Karoo Supergroup) of South Africa. B-type assem-
blages are characterized by the abundance of tra-
versodont cynodonts and, in most (but not all) cases,
rhynchosaurian reptiles and are well documented from
the Middle and Late Triassic of Argentina, Brazil, and
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Tanzania. The Late Triassic (and Early Jurassic) (Olsen
and Sues, 1986) C-type assemblages are dominated by
a great diversity of archosaurian reptiles, especially
dinosaurs. Together with tetrapod material (mostly
still undescribed), including both rhynchosaurs and
traversodont cynodonts, from the Wolfville Formation
of Nova Scotia (Baird and Take, 1959; Baird, in Carroll
etal., 1972; Baird and Olsen, 1983; Sues et al., 1992),
the Tomahawk assemblage clearly establishes both
the existence of B-type communities in the Northern
Hemisphere and their persistence into the Late Triassic.
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