sinistral, transtensional strains were localized along the outboard portions of this deeply buried edge to produce the Mesozoic Basins and minor fault domains in the overlying sheeted basement rocks. More recent to present-day WSW-directed ridge push forces reactivated this zone in a dextral sense. The result is shortening of the Haystack-Kitt Peak baseline, possible distortion of survey lines in the New York area, possible production of some of the topographic lineaments, and a concentration of seismic activity along the weakened and previously disturbed, deeply buried edge. In the interior, a second Eocene basin is being reactivated by the Mississippi River-Louisiana line with cross linkage along the Champlain-Adirondack region. At locations where the localized tecopnic crop is impounded by ridge racks, cross-linked to the surface by younger plans, these are denominated by large-scale overprinting Piedmont sheet, elastic strains are concentrated and released along the deeply buried eastern edge of cratonic North America.

WEBSITE

FIGURE 1

ABSTRACTS WITH PROGRAMS, 1989

76
Recently, we have sampled five sites from both limbs of the Jacksonwald syncline (dips ~40°) in the lacustrine latest Triassic Upper Passaic Formation. Two components of remagnetization with demagnetization directions for similar to that observed in the earlier are present. The high temperature component was acquired before significant folding and exhibits both normal and reversed polarities. We believe this component to be syndepositional. The direction and intensity of the remagnetization component are fixed at 57°N, 92°E, A95 = 8° which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.

We interpret the unmagnetized component as a remagnetization. It fails a fold test indicating that folding was largely accomplished by the time the remagnetization was acquired. The age of the remagnetization is unequivocally problematic. The A95 remagnetization direction produces a pole at 80°N, 85°E, A95 = 14°, discordant with most accepted Jurassic reference poles and displaced northwesterly from those poles. The remagnetization pole, although presently constrained by only 5 sites, is more similar to the Devonian reef builders (stromatoporoids) than it was of their own reef rugosan succession in these reefs. The importance and abundance was more a function of the unusual lack of true faunally distinct high energy and low energy locations. This evidence of faunally distinct high energy and low energy positions at Plattsburgh, Plattsburgh, New York 12901.

The Developmental patterns of the reefs exposed in the Albany are a result of a syndepositional change. The tilt corrected high temperature direction corresponds to a pole within the basinal wackestone formation. The tilt corrected high temperature direction corresponds to a pole rather than tilt-corrected, which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.

The tilt corrected high temperature direction corresponds to a pole rather than tilt-corrected, which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.

The tilt corrected high temperature direction corresponds to a pole rather than tilt-corrected, which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.

The tilt corrected high temperature direction corresponds to a pole rather than tilt-corrected, which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.

The tilt corrected high temperature direction corresponds to a pole rather than tilt-corrected, which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.

The tilt corrected high temperature direction corresponds to a pole rather than tilt-corrected, which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.

The tilt corrected high temperature direction corresponds to a pole rather than tilt-corrected, which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.

The tilt corrected high temperature direction corresponds to a pole rather than tilt-corrected, which agrees well with Late Triassic North American reference poles and is therefore consistent with syndepositional acquisition.