
2.1 Formulation 13

elasticity  is  conceptually  simpler  to  develop with the Lagrangian description, and this
is the framework we shall almost always adopt. Note that a seismogram is the record of
motion of a particular part of the Earth (namely, the particles to which the seismometer was
attached during installation), so it is directly a record of Lagrangian motion.

We shall work in this chapter with a Cartesian coordinate system (x1, x2, x3), and all
tensors here are Cartesian tensors. We use the term displacement, regarded as a function
of space and time, and written as u = u(x, t), to denote the vector distance of a particle at
time t from the position x that it occupies at some reference time t0, often taken as t = 0.
Since x does not change with time, it follows that the particle velocity is ∂u/∂t and that the
particle acceleration is ∂2u/∂t2.

To analyze the distortion of a medium, whether it be solid or fluid, elastic or inelastic,
we use the strain tensor. If a particle initially at position x is moved to position x + u, then
the relation u = u(x) is used to describe the displacement field. To examine the distortion
of the part of the medium that was initially in the vicinity of x, we need to know the new
position of the particle that was initially at x + δx. This new position is x + δx + u(x + δx).

Any distortion is liable to change the relative position of the ends of the line-element δx.
If this change is δu, then δx + δu is the new vector line-element, and by writing down the
difference between its end points we obtain

δx + δu = x + δx + u(x + δx) − (x + u(x)).

Since |δx| is arbitrarily small, we can expand u(x + δx) as u + (δx · ∇)u plus negligible
terms of order |δx|2. It follows that δu is related to gradients of u and to the original line-
element δx via

δu = (δx · ∇)u, or δui = ∂ui

∂x j
δx j . (2.1)

However, we do not need all of the nine independent components of the tensor ui, j to
specify true distortion in the vicinity of x, since part of the motion is due merely to an
infinitesimal rigid-body rotation of the neighborhood of x. This can be seen from the identity
(ui, j − u j,i)δx j = εi jkε jlmum,lδxk (see Box 2.2 and Problem 2.2), so that equation (2.1)
can be rewritten as

δui = 1
2 (ui, j + u j,i)δx j + 1

2 (curl u × δx)i, (2.2)

and the rigid-body rotation is of amount 1
2 curl u. The interpretation of the last term in (2.2) as

a rigid-body rotation is valid if
∣
∣
∣ui, j

∣
∣
∣ 	 1. If displacement gradients were not “infinitesimal”

in the sense of this inequality, then we should instead have to analyze the contribution to δu
from a finite rotation—a much more difficult matter, since finite rotations do not commute
and cannot be expressed as vectors.

In terms of the infinitesimal strain tensor, defined to have components

ei j ≡ 1
2 (ui, j + u j,i), (2.3)
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2.5 Representation Theorems 29

contributions due to the traction T(u, n) and to the displacement u itself on S. However,
the way in which each of these three contributions is weighted is unsatisfactory, since each
involves a Green function with source at x and observation point at ξξξ . (Note that the last
term in (2.41) involves differentiation with respect to ξξξ l .) We want x to be the observation
point, so that the total displacement obtained there can be regarded as the sum (integral)
of contributing displacements at x due to each volume element and surface element. The
reciprocal theorem for G must be invoked, but this will require extra conditions on Green’s
function itself, since the equation Gin(ξξξ, t − τ ; x, 0) = Gni(x, t − τ ; ξξξ, 0) (see (2.39)) was
proved only if G satisfies homogeneous boundary conditions on S, whereas (2.41) is valid
for any Green function set up by an impulsive force in the n-direction at ξξξ = x and τ = t .

We shall examine two different cases. Suppose, first, that Green’s function is determined
with S as a rigid boundary. We write Grigid for this function and Grigid

in (ξξξ, t − τ ; x, 0) = 0
for ξξξ in S. Then (2.41) becomes

un(x, t) =
∫ ∞

−∞
dτ

∫ ∫ ∫

V
fi(ξξξ, τ )Grigid

ni (x, t − τ ; ξξξ, 0) dV

−
∫ ∞

−∞
dτ

∫ ∫

S
ui(ξξξ, τ )ci jkln j

∂

∂ξl
Grigid

nk (x, t − τ ; ξξξ, 0) d S.

(2.42)

Alternatively, we can use Gfree as Green’s function, so that the traction
ci jkln j(∂/∂ξl)G

free
kn (ξξξ, t − τ ; x, 0) is zero for ξξξ in S, finding

un(x, t) =
∫ ∞

−∞
dτ

∫ ∫ ∫

V
fi(ξξξ, τ )Gfree

in (x, t − τ ; ξξξ, 0) dV

+
∫ ∞

−∞
dτ

∫ ∫

S
Gfree

ni (x, t − τ ; ξξξ, 0)Ti(u(ξξξ, τ ), n) d S.

(2.43)

Equations (2.41)–(2.43) are all different forms of the representation theorem and each
has its special uses. Taken together, they seem to imply a contradiction to the question of
whether u(x, t) depends upon displacement on S (see (2.42)) or traction (see (2.43)) or both
(see (2.41)). But since traction and displacement cannot be specified independently on the
surface of an elastic medium, there is no contradiction. In (2.41), the Green function is not
completely defined.

The surface on which values of traction (or displacement) are explicitly required has
been taken, in this chapter, as external to the volume V . It is often useful instead to take
this surface to include two adjacent internal surfaces, being the opposite faces of a buried
fault. Specialized forms of the representation theorem can then be developed, which enable
one to analyze the earthquakes set up by activity on a buried fault. This subject is central to
earthquake source theory, taken up in Chapter 3 and developed much further in Chapters 10
and 11.

So far, we have considered only Cartesian coordinate systems. In practice, the seismol-
ogist is often required to use non-Cartesian coordinates that allow the physical relationship
between components of displacement, stress, and strain to be simplified for the geometry
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70 Chapter 4 / ELASTIC WAVES FROM A POINT DISLOCATION SOURCE

At first sight, it is somewhat surprising that our spatially concentrated body force
(proportional to δ(x)) has potentials (4.17) that are nonzero outside the source region. This
often happens in elasticity, and it brings out the artificiality of the potential method.

The second step in finding displacements is to solve wave equations for the Lamé
potentials φ and ψψψ . From (4.5), (4.13), and (4.17), we get

φ̈ = − X0(t)

4πρ

∂

∂x1

1

|x| + α2∇2φ (4.18)

and

ψ̈ψψ = X0(t)

4πρ

(

0,
∂

∂x3

1

|x| , − ∂

∂x2

1

|x|
)

+ β2∇2ψψψ. (4.19)

The solution of (4.18) follows by comparison with (4.5) and (4.6), so that here

φ(x, t) = − 1

(4πα)2ρ

∫ ∫ ∫

V

X0

(

t − |x − ξξξ |
α

)

|x − ξξξ |
∂

∂ξ1

1

|ξξξ |dV (ξξξ). (4.20)

Fortunately, this integral can be simplified by integrating over the volume V via the
system of concentric spherical shells centered on x. If ατ is the radius of a typical shell S,
so that |x − ξξξ | = ατ and the shell thickness is α dτ , then

φ(x, t) = − 1

(4πα)2ρ

∫ ∞

0

X0(t − τ)

τ

(∫ ∫

S

∂

∂ξ1

1

|ξξξ |d S

)

dτ.

In Box 4.3, it is shown that the integral over S is a simple explicit function of x and τ , and
it follows that

φ(x, t) = − 1

4πρ

(
∂

∂x1

1

|x|
) ∫ |x|/α

0
τ X0(t − τ) dτ. (4.21)

Similarly, for the vector Lamé potential, one finds

ψψψ(x, t) = 1

4πρ

(

0,
∂

∂x3

1

|x| , − ∂

∂x2

1

|x|
) ∫ |x|/β

0
τ X0(t − τ) dτ. (4.22)

The third and final step in obtaining the displacement due to body force X0(t) applied in
the x1-direction at the origin is to form ∇φ + ∇ × ψψψ from (4.21) and (4.22). Using r = |x|,
this gives

ui(x, t) = 1

4πρ

(

∂2

∂xi∂x1

1

r

)
∫ r/β

r/α
τ X0(t − τ) dτ

+ 1

4πρα2r

(
∂r

∂xi

∂r

∂x1

)

X0

(

t − r

α

)

+ 1

4πρβ2r

(

δi1 − ∂r

∂xi

∂r

∂x1

)

X0

(

t − r

β

)

.
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4.2 Solution for the Elastodynamic Green Function in a Homogeneous, Isotropic, Unbounded Medium 73

4.2.1 PROPERTIES OF THE FAR-FIELD P-WAVE

We introduce here the far-field P-wave, which for (4.23) has the displacement uP given by

u P
i (x, t) = 1

4πρα2
γiγ j

1

r
X0

(

t − r

α

)

. (4.24)

As in (4.23), this is for a point force X0(t) in the x j-direction at the origin. Along a given
direction γγγ from the source, it follows from (4.24) that this wave

(i) attenuates as r−1;
(ii) has a waveform that depends on the time–space combination t − r/α, and therefore

propagates with speed α (recall that α2 = (λ + 2µ)/ρ);

(iii) has a displacement waveform that is proportional to the applied force at retarded time;
and

(iv) has a direction of displacement at x that is parallel to the direction γγγ from the source.
This follows from the property u P

i ∝ γi (see (4.24)). The far-field P-wave is therefore
longitudinal (sometimes called radial) in that its direction of particle motion is the
same as the direction of propagation. If t = 0 is chosen as the time at which X0(t)
first becomes nonzero, then r/α is the arrival time of the P-wave at r .

4.2.2 PROPERTIES OF THE FAR-FIELD S-WAVE

The far-field S-wave in (4.23) has displacement uS given by

uS
i (x, t) = 1

4πρβ2
(δi j − γiγ j)

1

r
X0

(

t − r

β

)

. (4.25)

As in (4.23), this is for a point force X0(t) in the x j-direction at the origin. Recall that γγγ

is the unit vector directed from the source to the receiver. Along a given direction γγγ , this
wave

(i) attenuates as r−1;

(ii) propagates with speed β and has arrival time r/β at x;

(iii) has a displacement waveform that is proportional to the applied force at retarded time;
and

(iv) has a direction of displacement uS at x that is perpendicular to the direction γγγ from
the source. (From (4.25) it is easy to show that uS · γγγ = 0.) The far-field S-wave is
therefore a transverse wave, because its direction of particle motion is normal to the
direction of propagation.

Radiation patterns for uP and uS are given in Figure 4.2.

4.2.3 PROPERTIES OF THE NEAR-FIELD TERM

We define the near-field displacement uN in (4.23) by
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108 Chapter 4 / ELASTIC WAVES FROM A POINT DISLOCATION SOURCE

Since γγγ is a unit vector at the source, directed along the ray to x, the problem of
obtaining the radiation pattern of the P-wave is simply a matter of expressing γγγ · ννν and
γγγ · u̇ in terms of strike φs, dip δ, rake λ, take-off angle iξ , and source–receiver azimuth φ.
The radiation patterns for SV and SH are slightly more complicated because the separation
into SV and SH is not immediately apparent in (4.85). Clearly, this formula does indicate
that uS is a transverse motion, because uS · γγγ = 0. It follows that SV and SH motions,
which are (respectively) in the directions p̂ and φ̂φφ of Figure 4.10, are given by

uSV (x, t) = (uS · p̂) p̂ = [(γγγ · ννν)(u̇ · p̂) + (γγγ · u̇)(ννν · p̂)]µA p̂
4πρβ3r

(4.86)

and

uSH(x, t) = (uS · φ̂φφ) φ̂φφ = [(γγγ · ννν)(u̇ · φ̂φφ) + (γγγ · u̇)(ννν · φ̂φφ)]µA φ̂φφ

4πρβ3r
. (4.87)

To obtain all three radiation patterns in terms of (φs, δ, λ, iξ , φ), we introduce Cartesian
coordinate directions x̂, ŷ, ẑ at the epicenter. Our choice is x̂ = North, ŷ = East, and ẑ =
vertically downward, as shown in Figure 4.20. In terms of these three unit vectors,

slip u = u (cos λ cos φs + cos δ sin λ sin φs) x̂

+ u (cos λ sin φs − cos δ sin λ cos φs) ŷ

− u sin λ sin δ ẑ,

fault normal ννν = − sin δ sin φs x̂ + sin δ cos φs ŷ − cos δ ẑ,

P-wave direction l = γγγ = sin iξ cos φ x̂ + sin iξ sin φ ŷ + cos iξ ẑ,

SV -wave direction p̂ = cos iξ cos φ x̂ + cos iξ sin φ ŷ − sin iξ ẑ,

SH -wave direction φ̂φφ = − sin φ x̂ + cos φ ŷ.

(4.88)

Six different scalar products are needed in the radiation pattern formulas (4.84), (4.86),
(4.87), and these can readily be obtained from (4.88). In dimensionless form, the radiation
patterns F P , F SV , and F SH are given by

F P = 2(γγγ · ννν)(γγγ · u̇)/ u̇

= cos λ sin δ sin2 iξ sin 2(φ − φs) − cos λ cos δ sin 2iξ cos(φ − φs)

+ sin λ sin 2δ(cos2 iξ − sin2 iξ sin2(φ − φs))

+ sin λ cos 2δ sin 2iξ sin(φ − φs),

(4.89)
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5.2 Elementary Formulas for Reflection/Conversion/Transmission Coefficients 145

S̀ P̀ = − 2ρ1
cos j1

β1
Gpβ1/(α2D),

S̀ S̀ = 2ρ1
cos j1

β1
Eβ1/(β2D),

Ṕ Ṕ = 2ρ2
cos i2

α2
Fα2/(α1D),

Ṕ Ś = − 2ρ2
cos i2

α2
Gpα2/(β1D),

Ṕ P̀ = −
[(

b
cos i1

α1
− c

cos i2

α2

)

F +
(

a + d
cos i2

α2

cos j1
β1

)

Gp2
] /

D,

Ṕ S̀ = 2
cos i2

α2

(

ac + bd
cos i1

α1

cos j1
β1

)

pα2/(β2D),

Ś Ṕ = 2ρ2
cos j2

β2
H pβ2/(α1D),

Ś Ś = 2ρ2
cos j2

β2
Eβ2/(β1D),

Ś P̀ = 2
cos j2

β2

(

ac + bd
cos i1

α1

cos j1
β1

)

pβ2/(α2D),

Ś S̀ =
[(

b
cos j1

β1
− c

cos j2
β2

)

E +
(

a + d
cos i1

α1

cos j2
β2

)

H p2
] /

D. (5.40)

For two different solids that meet at a planar interface, but are not in welded contact,
then traction is still continuous but by implication sliding can take place. Chaisri and Krebes
(2000) consider displacement discontinuities on z = 0 such that

τzx1 = τzx2, ux2 − ux1 = cxτzx,

τzz1 = τzz2, uz2 − uz1 = czτzz,
(5.41)

where cx and cz are constants and subscripts 1 and 2 refer to the upper and lower media.
They obtained 16 coefficients of the same general form as (5.40). But in their more general
case (i.e., with cx and cz not equal to zero), there is an explicit dependence on frequency,
absent in (5.40).

5.2.5 ENERGY FLUX

For a steady-state plane wave incident on the boundary between two homogeneous half-
spaces, there is no possibility of trapping energy at the interface (otherwise amplitudes
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190 Chapter 6 / REFLECTION AND REFRACTION OF SPHERICAL WAVES; LAMB’S PROBLEM

apparent, together with minor contributions from a leaking mode (another type of interface
wave).

At the outset, we must emphasize that the best way to solve Lamb’s problem is via
Laplace transformation and the inversion methods of Cagniard. The discussion of integration
paths in the complex ray-parameter plane is then relatively simple; and the actual inversion
of the Laplace transform, to obtain pulse shapes in the time domain, is made trivial. A self-
contained description of these methods is given here in Sections 6.4 and 6.5. We introduce
this material, however, with a Fourier transform. In part, this is an acknowledgment to the
vast literature on the subject, including books by Ewing et al. (1957), Brekhovskikh (1960),
and Červený and Ravindra (1971), and many hundreds of papers. But the major reason for
developing Fourier-transform methods in connection with Lamb’s problem is to prepare
the ground for Chapter 9, which gives practical methods for calculating seismograms in
realistic structures. We shall find there that the reflectivity method for layered media and
powerful solution methods for problems of grazing incidence are based on numerical work
with the Fourier transform rather than analytic inversion of the Laplace transform.

6.1 Spherical Waves as a Superposition of Plane Waves and Conical Waves

Consider an inhomogeneous wave equation with source at the origin and time dependence
exp(−iωt):

∂2φ

∂t2
− c2∇2φ = 4πc2δ(x) exp(−iωt). (6.1)

The solution of this equation (in an infinite homogeneous space) is obtained from (4.4) as

φ(x, t) = 1

R
exp

[

iω

(
R

c
− t

)]

, (6.2)

where R =
√

x2 + y2 + z2.
Equation (6.1) can also be solved by recognizing the time dependence of φ(x, t) as

the steady oscillation exp(−iωt) and then using Fourier-transform methods to derive the
spatial dependence. From transformation of (6.1) we find that

φ(k, t) = [4πc2/(k2c2 − ω2)] exp(−iωt),

where k2 = k2
x + k2

y + k2
z . Then from (6.2) and the triple inverse transform of φ(k, t),

1

R
exp

[

iω

(
R

c
− t

)]

= exp(−iωt)

2π2

∫ ∫ ∫ ∞

−∞
exp(ik · x)

k2 − ω2

c2

dkx dky dkz. (6.3)

The left-hand side of (6.3) is a spherical wave propagating from the origin with speed c.
Its amplitude is a function only of radial distance and has no directional variation. The
right-hand side of (6.3) is a superposition of plane waves exp[i(k · x − ωt)] over the entire
range of kx, ky, kz, weighted by [2π2(k2 − ω2/c2)]−1. It therefore appears that we have
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192 Chapter 6 / REFLECTION AND REFRACTION OF SPHERICAL WAVES; LAMB’S PROBLEM

FIGURE 6.2
Paths of integration in the complex kz-plane for obtaining the Weyl integral. (a) The path when

z > 0. (b) z < 0.

The residue evaluation is now straightforward. For z > 0 the factor exp(ikzz) suppresses
the integrand in (6.3) if it is taken around a sufficiently large semicircle in the upper half-
plane (see Fig. 6.2a). Adding this semicircle to the integration path along the real axis,
we have a closed path going in the positive direction around a pole at kz = iγ in the first
quadrant, so that

φ = 2π i × residue = exp(−iωt)

2π

∫∫ ∞

−∞
exp(ikx x + iky y − γ z)

γ
dkx dky.

For z < 0, we add a sufficiently large semicircle in the lower half-plane (Fig. 6.2b) to obtain
a closed path in the negative (i.e., clockwise) direction, which picks up a pole at kz = −iγ
in the third quadrant:

φ = −2π i × residue = exp(−iωt)

2π

∫∫ ∞

−∞
exp(ikx x + iky y + γ z)

γ
dkx dky.

Combining these results for z > 0 and z < 0, we obtain the Weyl integral

1

R
exp

(

iω
R

c

)

= 1

2π

∫∫ ∞

−∞
exp(ikx x + iky y − γ |z|)

γ
dkx dky, (6.4)

where γ =
√

k2
x + k2

y − ω2/c2 and the sign of γ is chosen so that Re γ > 0. In the limiting
case of zero attenuation, this becomes Re γ ≥ 0.

In the above expression, the plane waves in the integrand do satisfy the wave equation
with velocity c, so that the spherical wave is indeed represented by a superposition of
such plane waves. Note that for some parts of the (kx, ky) integration, the plane waves are
inhomogeneous. This occurs for ω2/c2 < k2

x + k2
y, so that γ becomes positive real
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6.4 Cagniard–De Hoop Methods for Line Sources 217

FIGURE 6.12
Diagrams for interpretation of the generalized reflection for a point source in an elastic half-
space. (a) The source–receiver geometry and a reflected P-wave defining the reflection angle is.
(b) Branch cuts for ξ and η in the complex p-plane, together with a pole at p = 1/cR. (Note:
For attenuating media, the branch cuts and pole on the positive real axis move up into the first
quadrant.) (c) The steepest descents path � for the exponent in (6.33), this being the path such that
pr + ξ z + ξh = R0/α + positive imaginary quantity = R0/α + i X2. One may solve for p to find

R2
0 p = r(i X2 + R0/α) ±

√

X4 − 2i X2R0/α (z + h)

on �, crossing the real axis at p = ps = α−1 sin is and also at p = 1/(α sin is). (d) For small is, the
steepest descents path can be taken (going on to the sheet Im ξ < 0, Im η < 0 in the first quadrant, as
in Fig. 6.8). (e) For large is, the integration path (wholly on the top Riemann sheet) can be thought
of as a sum of two branch-cut integrals, �α and �β , plus a circuit �R picking up the residue from the
Rayleigh pole.

BOX 6.7
Outstanding features of Rayleigh waves from a buried point source

1. Attenuation behaves like r−1/2 with distance, as compared with body waves (∼ r−1)

and head waves (r−2), so that Rayleigh waves must dominate the ground motion
at sufficient range. Note that the ratio between horizontal and vertical motions in
the cylindrical Rayleigh wave (6.37) is just that found for a plane Rayleigh wave in
Problem 5.4b.

2. Phase delay is given by ωr/cR, and is independent of depth h, so that the travel time
curve is a straight line.

3. Amplitude is an exponentially decaying function of h and ω:

exp[−ω

√

c−2
R − α−2 h] ∼ exp[−

√
0.9 ωh/β].

For an S-wave source, this becomes

exp[−ω

√

c−2
R − β−2 h] ∼ exp[−

√
0.2 ωh/β].

4. Particle motion is retrograde elliptical (w has a phase shift of −π/2 with respect to
u, and hence a phase advance of +π/2; see Box 5.5), and the ellipticity is the same
as for the free Rayleigh waves described in Section 5.3.

5. From items 2 and 3 above, the slope of the phase spectrum is a function of range but
not of depth, and the shape of the amplitude spectrum is a function of depth but not
of range. Therefore, the amplitude and phase are independent of each other. This is a
common feature of what we generally call normal modes, to be investigated in more
detail for a layered medium in Chapter 7. This independence, of course, violates
causality (see Box 5.8), hence it is meaningless to speak of the “first motion” of
Rayleigh waves or individual normal modes.
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226 Chapter 6 / REFLECTION AND REFRACTION OF SPHERICAL WAVES; LAMB’S PROBLEM

that is,

p =







xt − |z + z0|
√

R2
0

β2
1

− t2

R2
0

t ≤ R0

β1
(6.57a)

xt + i |z + z0|
√

t2 − R2
0

β2
1

R2
0

t ≥ R0

β1
(6.57b)

where R0 = √

x2 + (z + z0)
2 is the distance between receiver and image source (see

Fig. 6.15b). It is interesting to compare this Cagniard path with the steepest descents path
of integration for (6.56). To find this latter path, we adopt the terminology of Box 6.3
with x = s, ζ = p, and f = −(px + η1|z + z0|). A saddle point p = ps must be such that
f ′(ps) = 0, i.e., x cos js = |z + z0| sin js, where ps = β−1

1 sin js, so that ps is just the
ray parameter for the reflected ray between source and receiver, having js as the angle of
incidence in the upper medium (Fig. 6.15a). Note that some close parallels with Section 6.2
are beginning to emerge (see (6.19)). In that section, we analyzed a P-wave problem, used
a Fourier transform, and considered a point source. Yet here we find essentially the same
saddle-point position. A difference now is that the steepest descents path is perpendicular to
the real p-axis; i.e., angle χ = π/2 (see Box 6.3), whereas previously we found χ = −π/4.
In fact, where the Cagniard path lies on the real axis (6.57a), it lies on a “ridge” of the
integrand, the ridge descending to a saddle point at ps = x/(R0β1) = β−1

1 sin js as t increases
to R0/β1. There the Cagniard path turns through π/2 and follows a “valley” of the integrand,
which is the ordinary steepest descents path for t increasing from R0/β1 (see (6.57b)).

If the receiver is in a position such that x/R0 < β1/β2, then the point of departure of the
Cagniard path from the real p-axis lies to the left of branch cuts emanating from p = 1/β1
and p = 1/β2. (The inequality implies that x is less than the critical distance at which head
waves begin to be observable.) No interference with the branch cuts can occur, and since

dp/dt = iη1

/
√

t2 − R2
0/β

2
1 on C (for t > R0/β1),

it follows that

vrefl(x, z, t) = A

2πρ1β
2
1

Re

{
µ1η1 − µ2η2

µ1η1 + µ2η2

}
H(t − R0/β1)
√

t2 − R2
0/β

2
1

. (6.58)

(There is no contribution for t < R0/β1, since then p(t) is real (see (6.57a)), and the integrand
(6.56) has zero imaginary part.) This algebraic formula (6.58) is exact, and is evaluated for
t > R0/β1 by first using (6.57b) to obtain a corresponding point on the Cagniard path, then

finding ηi =
√

β−2
i − p2 (i = 1, 2); and finally, substituting into (6.58). This is an example

of what we can naturally call a narrow-angle reflection.
If the receiver is beyond the critical distance, so that β1/β2 < x/R0 < 1 and we expect

a wide-angle reflection (see discussion of (6.23)), then the Cagniard path departs from
the real p-axis at a point p = ps between 1/β2 and 1/β1, as shown in Figure 6.15b. The
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deformation from the positive imaginary p-axis (6.56) to the Cagniard path proceeds just as
before, but now there can be a contribution from that part of the path which lies on the real
p-axis. This is the head-wave contribution, which arises in the evaluation of (6.56) along
the Cagniard path for real p-values between 1/β2 and β−1

1 sin js; then η2 is pure imaginary,
so that the integrand has a nonzero imaginary part. Corresponding values of time are found
from (6.57):

at p = 1/β2, t = th = x/β2 + |z + z0|
√

β−2
1 − β−2

2 ,

th being the arrival time at (x, z) of head waves from (0, z0);

at p = β−1
1 sin js, t = R0/β1,

the arrival time of the wide-angle reflection. Between times th and R0/β1, η2 is a negative
pure imaginary quantity. It follows that an exact formula for the generalized reflection is

vrefl(x, z, t) = A

2πρ1β
2
1

Im

{
µ1η1 − µ2η2

µ1η1 + µ2η2

}
H(t − th) − H(t − R0/β1)

√

R2
0/β

2
1 − t2

+ A

2πρ1β
2
1

Re

{
µ1η1 − µ2η2

µ1η1 + µ2η2

}
H(t − R0/β1)
√

t2 − R2
0/β

2
1

.

(6.59)

The last term here evaluates the shape of the wide-angle reflection at time t > R0/β1.
However, there is a phase shift, because associated waves in the lower medium are
inhomogeneous (p > 1/β2). As we showed in Box 5.6 and in Section 6.2, the pulse shape of
the wide-angle reflection is a linear sum of the incident pulse shape and its Hilbert transform.
The latter involves motions often called the head-wave term. In this sense, one can speak
of the wide-angle reflection as “emerging from the tail of the head wave.” Note, however,
that the attempt to separate the head-wave and reflection contributions will fail whenever
there is a breakdown of the approximate (asymptotic) theory for each contribution (e.g.,
(6.26), if the receiver is near the critical distance, so that L is very small). Although this is
a breakdown of terminology, (6.59) continues to give the exact total effect of “head wave”
plus “reflection” even when L is small.

The final problem we shall consider in this section on the exact impulse response for
two-dimensional problems is that of a line source of P–SV waves in a half-space taken as the
region z < 0, with a free surface at z = 0 so that a Rayleigh wave is generated. We closely
follow Chapman (1972), obtaining exact results that have many points of similarity with
Section 6.3 above. One new idea is introduced: the concept of a “leaking mode,” associated
with zeros of the Rayleigh function lying in the Riemann sheet {Re ξ < 0; Re η > 0}.

We shall consider P–SV motions with displacement only in the x- and z-directions.
Then, from an argument given in Section 5.1, it is sufficient to work with scalar potentials
φ and ψ related to displacement via

u = ∇φ + ∇ × (0, ψ, 0) = (∂φ/∂x − ∂ψ/∂z, 0, ∂φ/∂z + ∂ψ/∂x). (6.60)
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χ(x, s) = N0

2π2ρβ2

∫ ∞

0
dq Im

[
∫ i∞

0

exp(−s(pr + η|z|))
η

dp

]

, (6.82)

where η =
√

β−2 + q2 − p2. (To obtain (6.82) from (6.81), we also used half-ranges of
integration and properties of evenness in q; and evenness and oddness in w for the real and
imaginary parts of the integrand.)

Strong similarities are now apparent between the integrands of (6.48) and (6.82). Note
here that the horizontal variable is r , rather than x , and 1/β2 + q2 replaces 1/β2 in the
definition of η. Previously, we found that

Im

[
∫ i∞

0

exp(−s(px + η|z|))
η

dp

] (

with η =
√

β−2 − p2

)

is the Laplace transform of

H

(

t −
√

x2 + z2

β

)

√

t2 − x2 + z2

β2

,

and this enables us now to write (6.82) as

χ(x, s) = N0

2π2ρβ2

∫ ∞

0
dq

∫ ∞

0

H [t − R
√

β−2 + q2]
√

t2 − R2(β−2 + q2)
e−st dt. (6.83)

Here we are using R =
√

x2 + y2 + z2 = √
r2 + z2 as the three-dimensional distance

function. If we integrate with respect to q first, and then with respect to t , we find

χ(x, s) = N0

2π2ρβ2

∫ ∞

0
dt e−st






H

(

t − R

β

) ∫
√

t2/R2−1/β2

0

dq
√

t2 − R2(β−2 + q2)







(6.84)

(as explained in Fig. 6.20). But now from this integrand we can recognize the required
solution as

χ(x, t) = N0

2π2ρβ2
H

(

t − R

β

) ∫
√

t2/R2−1/β2

0

dq
√

t2 − R2(β−2 + q2)
. (6.85)

This is essentially the method of de Hoop (1960), and we list the following comments
on (6.85):

(i) The solution has the typical form for point-source problems, in that the exact solution
is a single finite integral.
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Then it is an elementary exercise in convolutions to show that

χ(x, t) = dψ

dt
∗ 1√

t
∗ 1

π
√

t
= ψ(t),

and in this sense we can actually get a useful algebraic expression for the seismogram,
given by (6.95).

The approximation (6.94) and the resulting convolution (6.96) are now very much a
part of modern seismology, as we shall find in Chapter 9 when looking at the effects of
multiple layering.

6.6 Summary of Main Results and Comparison between Different Methods

We have described two methods for solving problems of a spherical wave interacting
with a plane boundary. The first method (Sections 6.1–6.3) uses the Fourier transform
of time dependence, and leads to solutions for displacement, pressure, etc. as a function
of frequency. The second method (Sections 6.4–6.5) uses a Laplace transform, but (by
manipulations due to Cagniard, de Hoop, and others) leads to solutions directly in the time
domain. In this section we list some similarities and differences between the two methods
and briefly discuss their merits and disadvantages.

First, we list the similarities. Both the Fourier method and the Cagniard method
entail integrations in the complex ray-parameter plane: ray paths in the physical problem
correspond to saddle points in the integrand under consideration; head waves correspond
to branch cuts; interface waves (e.g., Rayleigh, Stoneley) correspond to poles; and leaking
modes (e.g., P) correspond to poles on Riemann sheets other than that on which the radiation
condition is satisfied.

Second, there are several superficial differences. (i) To obtain results in the time do-
main via the Fourier method, a numerical inverse transform is required. But, in practice,
the Cagniard solution must be convolved with a source function and with the instrument
response, and these operations are essentially equivalent to numerical Fourier transforma-
tions. (ii) We characterized the Cagniard methods as being exact, whereas early in the
development of the Fourier method, we made an approximation to certain Hankel func-
tions (see (6.16)–(6.18)). In practice, an equivalent approximation (6.94) is often made
in the Cagniard approach. (iii) Branch cuts in the Cagniard method were chosen to make
{Re ξ ≥ 0; Re η ≥ 0}, and it was found possible to keep the path of integration on this same
physical Riemann sheet, without crossing branch cuts. However, we developed the Fourier
theory with branch cuts fixed by {Im ξ ≥ 0; Im η ≥ 0}, in which case we found it neces-
sary to develop complicated paths of integration (e.g., Fig. 6.9) that had segments on non-
physical sheets. Many authors have taken this approach, and a correct discussion of the
effect of leaking modes can be highly involved. Fortunately, the choice of branch cuts is
quite flexible in the Fourier method, and a path of integration can in fact be chosen that does
lie close to the steepest descents path, yet also stays on the same Riemann sheet. The main
constraint, the radiation condition, requires that the integrand (e.g., (6.33)) tend to zero as
|z| → 0 only for values of p on the original path of integration. Thus, in (6.33), we really
require Im ξ ≥ 0 only for p-values on the real p-axis, and do not need to use branch cuts
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FIGURE 6.22 (continued)
Various branch cuts and integration paths in the complex p-plane, showing the flexibility of choice.
(a)–(d) are relevant to the problem solved in Section 6.2 of a point source of pressure in a medium
consisting of two fluid half-spaces. (a) Branch cuts are chosen so that Im ξ1 > 0, Im ξ2 > 0 for
the whole plane. � lies on the real axis, just above cuts in the third quadrant, and below cuts
in the first. Compare with Figure 6.4. (b) For the same problem, we have changed branch cuts to
Re ξ1 > 0, Re ξ2 > 0. The solution is unchanged, because � is unchanged and the value of an integrand
(e.g., (6.18)) at any point on � is unchanged from (a). (c) � is distorted from the position shown in (b)
to lie on a steepest descents path in a case where head waves are possible. The path around the cut is
now much simpler than that shown in Figure 6.9, although there is still a problem in that the steepest
descents path runs into the cuts at p = 1/(α1 sin is), hence � is subsequently drawn below the cut.
(d) For cuts like those shown here, there is no difficulty in keeping � everywhere on the steepest
descents path (except around the branch point at p = 1/α2). To see that these cuts are possible, note
that they can be moved from the position shown in (a) before � is distorted from the real axis. In
subsequent distortion of � to the path shown here, Im ξ1 and Im ξ2 do become negative in the first
quadrant to the left of the cuts shown. This is allowed because no singularities are present between this
part of � and a path (shown as a broken line) on which Im ξ1 and Im ξ2 are positive. (e) This shows the
p-plane for a solid half-space problem, e.g., for evaluating the generalized Ṕ P̀ reflection (see Fig. 6.12
for comparison). Branch cuts are drawn upward into the first quadrant, and a path � favorable for
computations is made up from straight-line segments and a semicircle around p = 1/cR. Branch cuts
of this type have properties similar to the lines of poles found in Chapter 9 in generating theoretical
seismograms when the Earth’s spherical geometry is taken into account.
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Problems

6.1 When head waves can occur in the solution (6.93), arriving at time th, show that
(6.94) is equivalent to requiring

r

β2
� t − th.
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BOX 7.2 (continued)

Let us now use these values of c and U to analyse the seismogram at a particular distance
x = 500 km, assuming it is given by

f (500, t) = 1

2π

∫ ∞

−∞
exp [i(k500 − ωt)] dω. (1)

This assumes a unit amplitude spectrum, and all frequencies leave the source at x = 0 with
the same zero initial phase.

art/ri07bf02c.eps

The phase of (1) at seven different times, giving examples where ωs has 0, 1, or 2 values.

Figure C shows the phase of (1), plotted as a function of ω at 20 s increments from
t = 80 to 200 s. It can be seen that the phase at times t = 80 and 200 s does not have
stationary values—that is, there is no solution of d(kx − ωt)/dω = 0 for (x, t) = (500, 80)

or (500, 200). For t = 100, 120, and 160 s there is only one stationary value, a solution ωs
of equation (7.14). And for t = 180 s, there are two solutions ωs.
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7.3 Generalize the idea expressed in the previous question by relating both f(zl) and
f(zl−1) to wl and then showing that

f(zl) = Fl(zl)F
−1
l (zl−1)f(zl−1).

Hence show that the propagator from z0 to zk is

P(zk, z0) =
[

Fk(zk)F
−1
k (zk−1)

] [

Fk−1(zk−1)F
−1
k−1(zk−2)

]

· · ·
[

F1(z1)F
−1
1 (z0)

]

.

(Note: These results are still true if the medium consists of a stack of inhomoge-
neous layers, provided Fl(z) is a matrix whose columns are linearly independent
solutions of ∂f/∂z = A(z)f in the lth layer.)

7.4 In Sections 5.4 and 7.2, we showed that Fw can be thought of as a sum of all
the possible wave types that solve ∂f/∂z = Af; that each of the columns of F is
separately a basic solution of ∂f/∂z = Af; and that w is a vector of constants that
give the weight of each basic solution present in the sum Fw. Consider the first
column of F in (7.55) when k > ω/α, and show that the corresponding wave in
the sum Fw of (7.54) is an inhomogeneous P-wave with displacement amplitude

P̀e−γ z
√

α2k2/ω2 − sin2(kx − ωt).

7.5 Show by redefining the origin that one way to construct Gnp(0, 0, h; x, y, z; ω)

is by making the switches (r → r; φ → φ + π; z → h; h → z) in formulas for
Gnp(x, y, z; 0, 0, h; ω). Use this approach to verify that the reciprocity

Gnp(0, 0, h; x, y, z; ω) = G pn(x, y, z; 0, 0, h; ω)

is satisfied for surface-wave components (7.146) and (7.147).

7.6 Show that the change in phase velocity of Love waves at fixed wavenumber, which
will result from a perturbation (δρ, δµ) in the structure, is

(
δc

c

)

k
=

∫ ∞

0

[

k2l2
1 +

(
dl1

dz

)2
]

δµ dz −
∫ ∞

0
ω2l2

1 δρ dz

2ω2

∫ ∞

0
ρl2

1 dz
.

7.7 Show that the Rayleigh-wave eigenfunction for a half-space with Poisson’s ratio
0.25 is given by

r1 = e−0.8475kz − 0.5773 e−0.3933kz,

r2 = 0.8475 e−0.8475kz − 1.4679 e−0.3933kz,

and that the energy integral I1 is equal to 0.6205ρ/k (k is the horizontal wavenum-
ber and ρ is the density). Then, using (7.150), obtain an explicit formula for
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BOX 8.1 (continued)

stopping at either x or 1 (times a constant) as the last term. The first few Legendre
polynomials are

P0(x) = 1, P1(x) = x, P2 = 1
2 (3x2 − 1),

P3(x) = 1
2 (5x3 − 3x), P4(x) = 1

8 (35x4 − 30x2 + 3),

and, in general,

Pl(x) = 1

2ll!

dl

dxl
(x2 − 1)l,

which is known as Rodrigues’ formula.
The figure shows some examples of Legendre functions, plotted as (large scale, axially

symmetric) topography on a sphere. Pl(cos �) has l oscillations around the circumference.
Note from the figure (e.g., with l = 5, 10, 14) that these oscillations are not quite evenly
spaced: there is an increase in wavelength and amplitude for the peaks (or troughs) at � = 0
and � = π .

art/ri08bf01.eps

THE CASES m �= 0

We shall initially assume the integer m is positive. Then with x = cos � in (3), we find

d

dx

[

(1 − x2)
d�

dx

]

= m2�

1 − x2
− K�. (11)

We might attempt a power-series solution like (5). However, this approach becomes dif-
ficult because the formula for bi+2 turns out to involve not just bi (as it did before for �

(continued)
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integral such as
∫

i u∗(ξξξ) · f(ξξξ) dV (ξξξ), where f(ξξξ) is now the body force per unit volume.
We shall continue to assume that this body force acts as a step function in time. From (8.25)
we immediately obtain

u(x, t) =
∑

i

(∫

V
iu

∗(ξξξ) · f(ξξξ) dV

)

iu(x)
1 − exp[−(ωi t/2Qi)] cos ωi t

ω2
i

. (8.26)

Our use of i here denotes the i th normal mode of the whole Earth. That is, each i corresponds
to some value for the triplet of integers (l, m, n) that we found in Section 8.1 were necessary
for characterizing individual modes. The sum in (8.25) is thus an infinite sum, but, as shown
by Rayleigh in his classic text “The Theory of Sound” (reprinted 1945, paragraph 101), it
does converge because of the factor ω−2

i . The normal modes in (8.26) have been normalized
(cf. (8.18)) by

∫

V
ρ(ξξξ) ju

∗(ξξξ) · iu(ξξξ) dV = δi j, (8.27)

where ρ(ξξξ) is the density, and the volume integrals above are taken over the whole Earth.
We shall now find the vibration of a spherical Earth model due to a point source that

is specified by a moment tensor. Using a result that was previously given as an exercise
(Problem 3.6), the body force becomes

f p(ξξξ, t) = −Mpq(t)
∂

∂ξξξq
δ(ξξξ − xs). (8.28)

We shall assume that M acts as a step function in time at xs, so that the body force is also a
step function, and (8.26) is directly applicable. The i th excitation coefficient is now

∫

V
iu

∗(ξξξ) · f(ξξξ) dV = − Mpq

∫

V
iu

∗
p(ξξξ)

∂

∂ξq
δ(ξξξ − xs)dV (ξξξ)

= iu
∗
p,q(xs)Mpq = ie

∗
pq(xs)Mpq,

(8.29)

where iepq is the (pq) strain component in the i th normal mode. To obtain the last equality
in (8.29), we used the symmetry Mpq = Mqp. Putting (8.29) into (8.26), we finally obtain
the displacement for an arbitrary point source MH(t) acting at xs:

u(x, t) =
∑

i

[ie
∗
pq(xs)Mpq] iu(x)

1 − exp(−ωi t/2Qi) cos ωi t

ω2
i

. (8.30)

Thus, once the normal modes iu of the Earth are known, it is conceptually a simple matter
to calculate the response of the Earth to a point source with arbitrary moment tensor.

To find explicit forms for the normal modes, we must be more specific about the Earth
model. We shall consider here a nonrotating spherically symmetric Earth in which the
density ρ and Lamé parameters λ and µ depend only on the distance r from the center of
symmetry. The equations of motion (2.47)–(2.50) for this model can fruitfully be studied
by the motion-stress vector approach that we adopted in Chapter 7. In spherical polar
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coordinates, the appropriate ansatz for displacement in the mode (l, m, n) is

[nUl(r)Rm
l (�, φ) + nV l(r)Sm

l (�, φ) + nW l(r)Tm
l (�, φ)] exp(−inωl t). (8.31)

The associated traction working on spherical surfaces r = constant is

[n Rl(r)Rm
l (�, φ) + n Sl(r)Sm

l (�, φ) + nT l(r)Tm
l (�, φ)] exp(−inωl t) (8.32)

and we can write the equations for the radial function in the following separate forms:

d

dr













V

U

S

R













=











1
r −

√
l(l+1)

r
1
µ

0

λ
√

l(l+1)
r(λ+2µ)

− 2λ
r(λ+2µ)

0 1
λ+2µ

4l(l+1)µ(λ+µ)

r2(λ+2µ)
− ρω2 − 2µ

r2 − 2µ(3λ+2µ)
√

l(l+1)

r2(λ+2µ)
− 3

r −λ
√

l(l+1)
r(λ+2µ)

− 2µ(3λ+2µ)
√

l(l+1)

r2(λ+2µ)
−ρω2 + 4µ(3λ+2µ)

r2(λ+2µ)

√
l(l+1)

r − 4µ
r(λ+2µ)























V

U

S

R













(8.33)

and

d

dr






W

T




 =






1

r

1

µ

µ(l − 1)(l + 2)

r2
− ρω2 −3

r











W

T




 . (8.34)

(We have dropped subscripts l and n from the dependent variables and from ω. Note that
m does not enter the matrix equations.)

Thus the vibrations of a spherically symmetric Earth without rotation can be separated
into two type of modes. One is the spheroidal mode with horizontal wave functions Rm

l and
Sm

l and radial wavefunctions determined by (8.33). The other is the toroidal or torsional
mode with horizontal wavefunction Tm

l and radial wavefunctions determined by (8.34).
It is clear from a comparison of matrices in (8.33) and (7.28) that the spheroidal modes
include Rayleigh waves. Comparing (8.34) and (7.24), we see that the toroidal modes
include Love waves. Such comparisons require that the horizontal wave number k of surface
waves be identified with

√
l(l + 1)/r for free oscillations. We shall present a more detailed

comparison of surface waves and free oscillations in the next section.
To find the normal modes, we must solve the eigenvalue–eigenvector problems (8.33)

and (8.34) under the boundary conditions that the solutions are regular at r = 0 and the
tractions vanish at the Earth’s surface (r = r⊕). The numerical method and the Rayleigh–
Ritz method described in Chapter 7 can be adapted to solve these problems. One method
of handling the condition at r = 0 (Takeuchi and Saito, 1972) is to assume that the Earth is
uniform in r < r1 and solve the differential equations in powers of r . The power series are
then evaluated at r = r1, and numerical integration is initiated from these values and taken
upward. For each integer l, there are eigenvalues nωl(n = 0, 1, 2, . . .) that make the stress
wavefunctions (Rl, Sl, Tl) all zero at r = r⊕, and for each nωl there is an eigenfunction
for the motion-stress vector. Again we note a degeneracy, in that eigenfrequency and radial
eigenfunction are independent of m.
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TABLE 8.1
Strain components for a spheroidal mode.

m = 0 m = ±1 m = ±2

err b0
dU

dr
0 0

e��

b0

r
[U − 1

2

√

l(l + 1)V ] 0
b0

√
(l + 2)(l − 1)

4

V

r
eφφ e�� 0 −e��

2er� 0
−b0m

2

[√
l(l + 1)

r
U + dV

dr
− V

r

]

0

2erφ 0 2ier� 0

2e�φ 0 0 ime��

TABLE 8.2
Strain components for a toroidal mode.

m = 0 m = ±1 m = ±2

err 0 0 0

e�� 0 0
imb0

8

√

(l + 2)(l − 1)
W

r
eφφ 0 0 −e��

2er� 0
−ib0

2

[
dW

dr
− W

r

]

0

2erφ 0
b0m

2

[
dW

dr
− W

r

]

0

2e�φ 0 0
−b0

√
(l + 2)(l − 1)

2

W

r

The asterisk in (8.38) following Ṁpq indicates convolution, and (8.38) indicates that
the point source is naturally characterized by its moment-rate tensor, Ṁ(t).

In this section we have followed the simple and straightforward steps due to Gilbert
(1971) and Gilbert and Dziewonski (1975) in deriving the formula for excitation of free
oscillations. Earlier, Saito (1967) solved the same problem using a method similar to the
one we described for surface-wave excitation in Chapter 7, and he obtained a formula
equivalent to (8.30). Figure 8.4 shows a comparison between observed and calculated
spectral peaks at several WWSSN stations for a large deep earthquake in Colombia. The
continuous lines indicate the observed radial displacement spectrum, and the vertical bars
show the theoretical amplitudes of free oscillations calculated by Mendiguren (1973a) using
Saito’s formula and a focal mechanism determined from the observed P-wave first-motion
pattern. Saito’s results were used by Mendiguren (1973b) in devising a stacking technique
for high-resolution identification of spectral peaks, as described in Box 8.2.
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9.1 Cagniard’s Method for a Medium with Many Plane Layers: Analysis of a Generalized Ray 389

strip in ri09f01

FIGURE 9.1
(a) Notation for the density (ρ)

and two wave speeds (α, β) in
a stack of homogeneous layers.
The boundary between layers n
and n + 1 is at depth zn, and
the thickness of the nth layer
is Thn = zn − zn−1. (b) Ray in-
terpretation for the two main
contributions to the generalized
P-wave reflection associated
with the nth boundary; source
and receiver are in layer 1. We
have assumed αn+1 > αn, so that
a head wave (involving hori-
zontal propagation at the top of
the (n + 1)th layer) can exist,
together with a wide-angle re-
flection, as shown. Because this
generalized reflection is associ-
ated with only one interface, it
is known as a primary reflection.
No mode conversions (from P to
SV ) are shown. In practice, for
a P-wave source, it is often true
that the total P-wave response at
the receiver is given quite accu-
rately by summing such primary
reflections, one for each inter-
face (i.e., by ignoring multiple
internal reflections and conver-
sions from P to SV and back
to P).

where K0 is a modified Bessel function and

PRODUCT(p) = (P̀ P̀)1 · (P̀ P̀)2 · · · · · (P̀ P̀)n−1 · (P̀ Ṕ)n

· (Ṕ Ṕ)n−1 · · · · · (Ṕ Ṕ)2 · (Ṕ Ṕ)1,

(9.3)

SUM(p) = (Th1 − d1)ξ1 + Th2ξ2 + · · · + Thnξn

+ Thnξn + · · · + Th2ξ2 + (Th1 − d2)ξ1.
(9.4)

Here, ξi =
√

α−2
i − p2 with branch cuts chosen by Re ξi ≥ 0, and (P̀ P̀)n−1 (etc.) is

a transmission coefficient for the (n − 1)th boundary. The product in (9.3), involving
plane-wave transmission and reflection coefficients, is easily written down with an eye
on Figure 9.1b, following the generalized ray across interfaces. (Although our physical
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FIGURE 9.14
The behavior of T , �, and τ as functions of p for a velocity decrease with depth. (a) A low-velocity
zone (within which dα/dr > α/r and there are no turning points) is shown shaded, and a shadow
within which no rays are received is observed at the surface. (b) The travel-time curve. The upper
boundary of the low-velocity zone is the turning point for the ray emerging at point E . Point F has
the same ray parameter, but lies on a ray going through the low-velocity zone itself. As ray parameter
decreases slightly from its value at F , distance � decreases until a caustic is reached at �1. (c) The
values of � = �(p). These show that the further boundary of the shadow is in fact a caustic. (d) Upper
and lower boundaries of the low-velocity zone are turning points for rays that differ infinitesimally in
their ray parameter. The turning-point radius is therefore a discontinuous function of p. This is also
a discontinuity in τ(p) = T − p� and in the gradient dτ/dp = −�(p).
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so we can rewrite (9.46):

Z(p) = 1

π

∫ 1/c0

p

X (q) dq
√

q2 − p2
+ I (p). (9.47)

The first term of the right-hand side of the above equation is nothing but the Herglotz–
Wiechert formula, and is determined uniquely from the observed travel-time data. The
contribution I (p) from the low-velocity layers can be obtained as

I (p) =
k∑

i=1

2

π

∫ z̄i

zi

dz
∫ 1/c(z)

pi

q dq
√

[

1/c(z)
]2 − q2

√

q2 − p2

=
k∑

i=1

2

π

∫ z̄i

zi

tan−1

√
√
√
√

[

1/c(z)
]2 − p2

i

p2
i − p2

dz for pk > p > pk+1.

(9.48)

The above equations (9.47) and (9.48), obtained by Gerver and Markushevitch (1966),
represent the extension of the Herglotz–Wiechert formula to include low-velocity layers.

For p > p1, I (p) = 0. Therefore, the Herglotz–Wiechert term gives the solution Z(p),
which gives the velocity–depth function uniquely for z < z1.

For p < p1, the Herglotz–Wiechert term is determined from the observed travel-time
data. However, through the second term I (p), an arbitrary velocity–depth function v(z)
may be assigned to the low-velocity layer subject to some constraints described below.
Except for the upper boundary of the first low-velocity layer, the boundary depths zk, z̄k
are also unknown.

The first constraint from observations, on c(z), zk, and z̄k, is given by the discontinuity
in τ(p):

�τk = 2
∫ z̄k

zk

√
[

1/c(z)
]2 − p2

k dz. (9.49)

The second is, by definition, that the calculated Z(p) should not increase with p. The third
is that Z(pk + 0) and Z(pk − 0) must agree, respectively, with the depths of the lower
and upper boundaries, zk and z̄k, of the kth layer. As shown in Figure 9.27, Gerver and
Markushevitch gave a “giraffe-like” area in which the plots of all possible solutions c(z)
must lie for the case of two low-velocity layers. The upper bound for c(z) corresponds to
the Herglotz–Wiechert term. Figure 9.27 also shows the existence of an upper bound for
the thickness of the LVZ given earlier by (9.40).

The special methods we have described in this section, for inverting travel-time data, are
closely associated with the special properties of the Abel integral equation. These methods
are unusual in that a method of construction is known for obtaining the inverse. More
general methods of inversion, applied to travel times, are described by Johnson and Gilbert
(1972).
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BOX 9.5 (continued)

Note that B contains the horizontal derivatives present in the Laplacian operator, so that
BY m

l = −l(l + 1)Y m
l for any surface harmonic Y m

l . The inverse B−1 of B has been discussed
by Backus (1958): if g = g(r, �, φ) can be expressed as a sum g = ∑∞

l=1

∑l
m=−l gm

l (r)Y m
l ,

then we invert B f = g to obtain f = B−1g = − ∑∞
l=1

∑l
m=−l[l(l + 1)]−1gm

l Y m
l .

SV-POTENTIAL
For spheroidal motion, curlru = 0, and then Sr = 0 and ∇ · S = 0 both follow from (2).
Thus ∂(sin �S�)/∂� + ∂Sφ/∂φ = 0, which is a condition that there exists a function V
such that S� = (1/ sin �) ∂V/∂φ, Sφ = −∂V/∂�. Hence

S = ∇ × (r V, 0, 0) for SV waves. (5)

To construct V , we form curlrS and note that −r curlrS = BV , an operator we have already
found how to invert. Richards (1974) shows that

∇2V + ρω2

µ
V = terms of order

|u|
ω2

. (6)

SH-POTENTIAL
For toroidal motion, ur = 0 and ∇ · u = 0. We can therefore follow the same stages as
discussed above for S, introducing a potential H0 via H0 = −B−1(r curlru). To get the
canonical form of the wave equation for SH -potential, it is convenient to work with
H = µ1/2H0. Then

u = µ−1/2∇ × (r H, 0, 0) for SH -waves,

and

∇2H + ρω2

µ
H = terms of order

|u|
ω

. (7)

Equations (9.50a) and (9.50b) are obtained by ignoring small terms in (3)–(7). (All these
terms are zero in homogeneous media.)

Following Seckler and Keller (1959) and Friedman (1951), we introduce three particular
solutions of the homogeneous equation related to (9.55). Let fl(r) be that solution for (r, l)
which is regular at the central point r = 0. For very large values of r , the wave equation
becomes roughly d2a/dr2 = −ω2a/α2. By analogy with the solutions e±iωr/α when α is
constant, we expect that two independent solutions of our wave equation can be chosen,
one with a phase that increases with r , and another with a phase that decreases. We label
these solutions g(1)

l (r) and g(2)
l (r), respectively. In association with the factor exp(−iωt),

g(1) is an outgoing wave and g(2) is ingoing. Apart from a normalization, the three solutions
are completely defined and we may take

a(r, l) =
{

c1g(1)
l (r) rs ≤ r

c2 fl(r) for 0 ≤ r ≤ rs.
(9.56)
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strip in ri10f01

FIGURE 10.1
The origin of coordinates
is taken on a finite fault
surface.

If this error is equal to or greater than a quarter wavelength, λ/4, a serious error will be
introduced in the result of integration. Therefore, the approximation by equation (10.11) is
justified only for

1

2r0

[

|ξξξ |2 − (ξξξ · γγγ )2
]

� λ

4

or, conservatively,

L2 � 1
2λr0, (10.12)

where L is the maximum of |ξξξ | on 	. This is the same as the condition to be satisfied for
the region of Fraunhofer diffraction in optics. For comparison, note that the condition we
assumed in Chapter 4, in which the whole fault was regarded as a point source, amounted
to L � λ, which is a much more restrictive condition on the applicable frequency range
than (10.12). Under condition (10.12), we can rewrite the displacement waveform given in
equation (10.7) as


(x, t) = 
(γγγ , t) =
∫ ∫

	

�u̇

[

ξξξ, t − r0 − (ξξξ · γγγ )

c

]

d	. (10.13)

Note that the far-field pulse shape depends more directly on γγγ than on x, since it is position
on the focal sphere which governs this pulse shape, and many positions x have the same
value of γγγ .

Taking the Fourier transform of the above equation with respect to t , we get


(x, ω) = 
(γγγ , ω) =
∫ ∫

	

�u̇(ξξξ, ω) exp

{

iω
[

r0 − (ξξξ · γγγ )
]

c

}

d	

= exp

(
iωr0

c

) ∫ ∫

	

�u̇(ξξξ, ω) exp

[−iω(ξξξ · γγγ )

c

]

d	

(10.14)
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across a smaller but still significant magnitude range, for events all from the same region,
have in some cases reported a different result, namely that stress drop appears to increase
monotonically with increasing moment for events below a critical size, becoming constant
for events larger than critical (e.g., Shi et al., 1998). Heaton (1990) pointed out numerous
earthquakes with fault length much greater than width, for which the rise time was likely
to be independent of fault length, resulting in a different scaling law.

An extensive study of source parameters of major earthquakes in and near Japan was
made by Kanamori and his colleagues using the Haskell model. The result, as summarized by
Kanamori (1973), showed that the amount of slip and the extent of the fault area obtained
by the seismic method are in good agreement with those obtained by a static method,
using geodetic measurements for earthquakes caused by “brittle elastic” rebound. On the
other hand, for earthquakes attributed to “visco-elastic” rebound, the slip and fault area
were found to be significantly greater by the static method than by the seismic method,
indicating that the seismic event does not totally represent tectonic processes associated
with an earthquake. The completion of the Global Positioning Satellite system in the 1990s
permits subcentimeter determination of absolute locations of points nearly anywhere on
Earth, and Heki et al. (1997) made such a measurement of ground displacements at 16
stations in the vicinity of a magnitude 7.8 subduction zone earthquake that occurred on 1994
December 28, off the Sanriku coast of northeastern Japan. During the ensuing 12 months,
the displacement of 15 of these sites grew to exceed the displacement that had occurred at the
time of the earthquake at these same sites. These authors and DeMets (1997) interpreted the
observations as evidence for afterslip, somewhere on the fault plane that ruptured in the main
shock, rather than as an effect of viscosity in a lower layer. The motion between tectonic
plates is apparently accommodated by a continuum of processes, including slow-rupture
earthquakes, aseismic creep, and afterslip, as well as by more conventional earthquakes.

10.1.6 NUCLEATION, SPREADING, AND STOPPING OF RUPTURE

The unidirectional propagation of rupture in Haskell’s source model is an oversimplification
of faulting when we look closer at the nucleation of the rupture process. To make the model
more realistic, it is desirable to allow rupture to initiate at a point (rather than simultaneously
everywhere along a line segment) and then spread out radially (rather than propagate in a
single direction), until it covers an arbitrary two-dimensional surface on the fault plane.
Far-field waveforms from this type of source model, using a uniform rupture velocity, were
first studied by Savage (1966) using equation (10.13).

As shown in Figure 10.6, we shall place the fault in the plane x3 = 0 and assume that
rupture propagates from the origin in all directions with uniform velocity v and stops at the
perimeter of the fault plane �. Initially the rupture front is a circle described by ρ = vt ,
but the final fault will have a perimeter given by ρ = ρb(φ

′), where (ρ, φ′) are cylindrical
coordinates in the fault plane.

Savage (1966) assumed the displacement discontinuity was a step function in time with
final value 	U (ρ, φ′). In our notation and using Heaviside step functions, the model can
be expressed as

	u(ξξξ, t) = 	U (ρ, φ′)H(t − ρ/v)[1 − H(ρ − ρb)]. (10.23)

paul



504 Chapter 10 / THE SEISMIC SOURCE: KINEMATICS

strip in ri10f06
FIGURE 10.6
The rupture starts from the origin
and spreads in the x1x2-plane with
a constant velocity v. Initially, the
rupture front is a circle ρ = vt , but the
final fault plane has a perimeter given
by ρ = ρb(φ

′). P is the observation
point, and an element d� of the fault
is shown at (ρ, φ′).

Putting this into (10.13), we find

	(x, t) =
∫ ∫

�


u̇

(

ξξξ, t − r0 − (ξξξ · γγγ )

c

)

d�(ξξξ)

=
∫ ∫

δ

(

t − r0

c
+ ρ sin θ cos(φ − φ′)

c
− ρ

v

)


U (ρ, φ′)

× [1 − H(ρ − ρb)]ρ dρ dφ′,

(10.24)

where we used the spherical coordinates shown in Figure 10.6 for expressing (ξξξ · γγγ ). Since
∫

f (x) δ(ax − b) dx = f (b/a)/a, the integration with respect to ρ gives

∫

δ

(

t − r0

c
− ρqc

v

)


U (ρ, φ′)[1 − H(ρ − ρb)]ρ dρ

=
(

t − r0

c

)


U






t − r0

c
qc/v

, φ′






v2

q2
c

for 0 <

t − r0

c
qc/v

< ρb

= 0 for ρb <

t − r0

c
qc/v

,

where qc = 1 − (v/c) sin θ cos(φ − φ′) is assumed positive everywhere; in other words,
v < c and the rupture is subsonic. [If v > c, waves would arrive before r0/c in the directions
(θ, φ) for which qc is negative, because 
U [(t − r0/c)/(qc/v), φ′] will be nonvanishing
for t < r0/c.]
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10.3 Equation (10.41) amounts to a dynamic boundary condition for tractions on
the fault plane. Where do we take this condition into account in setting up a
representation of the solution, such as (10.39)? Verify that this representation of
the radiated field does indeed have continuity of shear stress across the fault (use
results of Problem 10.2).

10.4 The opening of a crack may be represented by a displacement discontinuity [u] that
is parallel to ννν, the fault normal. Obtain the equivalent body force in an isotropic
elastic body, and find the far-field body waves (P and S) in an infinite homogeneous
medium (cf. equation (10.6)).

10.5 Show that the source spectrum for a faulting episode, derived from the far-field
displacement as discussed in Section 10.1.4 in the limit of low frequencies, is flat
at the origin (ω = 0). (This result is true, whether the spectrum has a maximum at
the origin, or whether there is overshoot.)

10.6 Under the assumptions of shear faulting on a plane, and slip everywhere in the
same direction, we have seen that the far-field pulse shape is given by (10.13)
provided fault length L , wavelength λ, and source–receiver distance r0 satisfy the
constraint L2 � 1

2λr0. Far-field pulse shapes for P-waves and S-waves radiate out
to every direction on the focal sphere. Suppose that the pulse shape �(t) is radiated
as a P-wave in some direction γγγ P .

a) Show that it is always possible to find a direction γγγ S in which this same pulse
shape �(t) is radiated as an S-wave (though the arrival time will be different,
and note that we are neglecting the effects of different attenuation between P-
and S-waves).

b) Show that the relationship between γγγ P and γγγ S is similar to Snell’s law (5.20)
governing the angles i and j of P- and S-waves coupled at a plane interface.

c) Given an S-wave pulse shape observed in direction γγγ S, show that it is not
always possible to find a direction in which this same pulse shape is observed
as a P-wave.

10.7 The “finiteness factor” X−1 sin X that appears in equations (10.20)–(10.22) is very
simple, because (i) the rupture is unilateral (i.e., it proceeds from one end of the
fault to the other); (ii) it has constant rupture velocity; (iii) the fault width W is
very small; and (iv) the slip function at each point of the fault plane is the same,
apart from a delay due to the time taken for rupture to initiate.

a) Suppose that we drop assumptions (i), (ii), and (iii), but retain (iv). Show that
the far-field pulse shape is then given by

�(x, ω) = �0(x, ω)F(γ, ω),

where �0(x, ω) is the pulse shape radiated by a point shear dislocation of
strength A × 
u(ω), and the finiteness factor in this more general case is

F(γγγ , ω) = 1

A

∫ ∫

�

exp iω

[

τ(ξξξ) − ξξξ · γγγ

c

]

d�.
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FIGURE 11.1
Approximating an arbi-
trary slip function �w(x ′)
by a superposition of step
functions.

For the in-plane problem, a similar relation is found between the shear stress τxy on
the fault plane and slip velocity �ẇ. Applying the same superposition to equation (10.65),
we get

τxy(x ′) = −2µβ2

πv3

[
√

1 − v2/α2 − (1 − v2/2β2)2

√

1 − v2/β2

]
∫ 0

−∞
�u̇

ξ − x ′ dξ. (11.4)

In both (11.3) and (11.4), we see that the shear stress on the fault plane is a constant times
the Hilbert transform of slip velocity.

A function and its Hilbert transform are very closely related. From Box 5.6, we see that
if g(x) is the Hilbert transform of a function f (x), then these two function share a common
amplitude spectral density, and their spectral phases differ by π/2.

Thus the shear stress and the slip velocity on the plane y = 0 must share a common
amplitude spectral density apart from a constant factor, with a phase difference of π/2.
Furthermore, the slip velocity must be zero outside the crack (because no slip occurs there
yet), and the shear stress must be zero inside the crack (assuming no frictional stress for
simplicity). In other words, we want to find a pair of functions f (x) and g(x) that satisfy

f (x) = 0 if x > 0, g(x) = 0 if x < 0, and g(x) = 1

π

∫ ∞

−∞
f (ξ)

ξ − x
dξ.

(11.5)

From tables of Hilbert transforms, we find that the following choices of f (x) and g(x)

satisfy these three conditions:

f (x) = H(−x)√−x
and g(x) = −H(x)√

x
.

It is easy to show that they satisfy the integral in equation (11.5) by extending ξ to a complex
plane and making a branch cut along the negative real axis (Fig. 11.2). The integral along
AO will be equal to the one along O B because of the opposite signs of

√−ξ on the two
paths. For x > 0, the residue evaluation of ξ = x gives g(x) = 1/

√
x , and for x < 0 the

integral vanishes because the pole is outside the contour.
Thus we find for our mechanics problem that the boundary conditions for a moving

crack are satisfied by a square-root singularity in stress ahead of the crack tip, and another
square-root singularity in slip velocity behind the crack tip. The square-root singularity in
stress is well known for a static crack.
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strip in ri11f08

FIGURE 11.8
There is a pole at quv near the Cagniard path for
evaluating (11.31). [From Richards, 1976a.]

out to be a second-order pole, denoted by quv, and is due to the moving nature of the
source. It is necessary to pick up residues in converting to the Cagniard path, giving
the form

uP(x, s) = 1

s2

∫ ∞

0
dw

∫ ∞

0
dt F(q(t), w, φ)e−st dq

dt

+
∫ ∞

0
dw R(quv, w, φ, s)e−st(quv, w, θ),

(11.32)

From the first term on the right-hand side here, one can invert to the time domain in
the usual fashion (i.e., by reversing the order of integration and recognizing the result
as a forward Laplace transform), obtaining a single integral over w. The second term
on the right-hand side of (11.32) is already in the form suitable for recognition as the
Laplace transform of a function of time. This term therefore results in an algebraic
closed-form expression. This overall method, an algebraic expression resulting from
an integral of residues, was first developed by Gakenheimer and Miklowitz (1969)
for solving Lamb’s problem with a moving source.

As usual for Cagniard inversion of three-dimensional problems (see Section 6.5), the
complete seismogram can be calculated only numerically, an integration being necessary
for each point in the time series. Figure 11.9 shows theoretical record sections for x1- and
x3-components of acceleration near a left-lateral strike-slip fault. The coordinates for the
four stations are (1, 1.5, 0.5), (4, 1.5, 0.5), (7, 1.5, 0.5), and (10, 1.5, 0.5). The density of
the medium is 2.7 gm/cm3, the P-wave velocity is 5.2 km/s, and the S-wave velocity is
3 km/s. The rupture speed in the x1-direction is 90% of the Rayleigh-wave velocity, and that
in the x2-direction is 90% of the S-wave velocity. We see, in this case, small P-waves, sharp
step-like S-waves arriving from the nucleation point, and large acceleration associated with
the passage of the crack tip. The amplitude of waves from the nucleation point decreases
with distance, whereas the acceleration associated with passage of the crack tip increases
because the stress-intensity factor increases with increasing crack length.

The corresponding displacement records are shown in Figure 11.10. As discussed
in Section 11.1.1, the transverse component shows a step-like waveform rather than a
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FIGURE 11.12
Grid-point assignment for each
of nine stress/particle-velocity
components.

where λ, µ are the Lamé constants and ρ is the density. We have to solve these equations
subject to the following boundary conditions on z = 0:

�r z = −�φz = −p0 for r < min(vt, rc),

u̇ = v̇ = 0 for r > min(vt, rc), and

�zz = 0 for all r.

The slip components �u1 and �u2 in the original coordinates can be written in terms
of u and v at z = 0:

�u1 = 2u cos2 φ − 2v sin2 φ, �u2 = (u + v) sin 2φ.

In the case of self-similar cracks studied in the preceding section, �u2 vanishes. In the
present case �u2 does not necessarily vanish but is found to be practically negligible; i.e.,
u ∼ −v, so that

�u1 = 2u = −2v. (11.38)

Interestingly, �u1 is independent of φ.
Madariaga (1976) solved the above problem by the finite-difference method using a

so-called staggered grid in which the velocities are defined at discrete times k �t and the
stresses at times (k + 1

2 )�t , for integer values of k, where �t is the time-grid interval. The
spatial grid-point assignment for each of the nine stress-particle velocity components is
shown in Figure 11.12.

Figure 11.13 shows the slip function �u(r, t) = u(r, +0, t) − u(r, −0, t) at several
points on the crack. The rupture starts at t = 0 and expands with velocity 0.9β, where β

is the shear velocity. The slip is measured with p0rc/µ as the unit. The time t and radial
distance r ′ are normalized to rc/α and rc, respectively, where α is the P-velocity. The
slip function in time is shown at the center (r = 0) and at four other points at intervals of
0.2 rc. At each position for which the slip history is shown, an arrow indicates the time of
arrival of P-waves, originating from the perimeter of the crack at the instant the rupture
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re-leveled to maintain the bubble position. Using this feedback as the output signal,
Harrison was able to measure the M2 tide to about 0.5% after 3 months of observation.
However, short-base tiltmeters are inherently susceptible to very local site effects, which
are hard to quantify. If nearby rock units are heterogeneous, then an applied overall strain
can cause local tilting, which partly explains why closely spaced short-baseline tiltmeters
do not always give the same signal.

12.2 Frequency and Dynamic Range of Seismic Signals and Noise

Most of the signals studied in seismology are transient, i.e., they have in practice a finite
duration, such as seismograms from explosions and earthquakes. For such a transient signal
f (t), the Fourier transform f (ω) exists with the definition

f (ω) =
∫ ∞

−∞
f (t)eiωt dt, and f (t) =

∫ ∞

−∞
f (ω)e−iωt dω

2π
, (12.21)

in which t is the time and ω is the angular frequency. We shall define the amplitude spectral
density as the absolute value of f (ω), and the phase-delay spectrum φ(ω), by

f (ω) = | f (ω)|eiφ(ω). (12.22)

Our reason for calling φ the phase delay is given in Box 5.5. Since f (t) is real,

f ∗(ω) = f (−ω), | f (ω)| = | f (−ω)|, and φ(ω) = −φ(−ω), (12.23)

where the asterisk indicates the complex conjugate.
The unit of | f (ω)| is the unit of f (t) divided by the unit of frequency (ω/2π). For

example, if f (t) represents the ground displacement in cm, then the unit of | f (ω)| is cm
per Hz—which explains why | f (ω)| is called the amplitude spectral density (though the
abbreviation “amplitude spectrum” is common). The most commonly used units of φ(ω)

are the radian or the circle (i.e., 2π radians).
There are three other distinct types of signal for which the ordinary Fourier transform

does not exist. One is the superposition of sinusoidal oscillations with frequencies ωn, such
as the tidal Earth-strain caused by the gravitational attraction of the Sun and the Moon. For
this, we define amplitude An and phase delay φn in the following manner:

f (t) =
∑

n

An exp(−iωnt + iφn), (12.24)

where An has the same physical dimension as f (t).
Another type of signal we shall consider is the stationary stochastic process, such

as ambient seismic ground noise caused by the atmosphere, the oceans, some volcanic
processes, industrial activities, and traffic. These signals cannot be expressed either by
(12.21) or by (12.24). We first introduce the autocorrelation function P(τ ), defined as

P(τ ) = 〈 f (t) f (t + τ)〉, (12.25)
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12.3 Detection of Signal 625

This gives a ground acceleration equivalent to the Brownian motion of the pendulum. Using
Q−1 = 2ε/ωs, where 2π/ωs = Ts is the undamped pendulum period, (12.39) is rewritten as

〈α2(t)〉
	 f

= 8πkT

M QTs
. (12.40)

Thus the instrumental acceleration-noise power-density is inversely proportional to the
product of mass, instrument Q, and pendulum period.

For comparison with the ground-noise spectra given in Figure 12.12, it is interesting to
note that the Low Noise Model ground-noise spectrum is approximately flat in acceleration
for frequencies in the range 0.002 to 0.03 Hz, and also for frequencies greater than about
1.5 Hz. In order to estimate the instrument parameters required for the thermal noise to
be kept below the ground noise, we can therefore fit (12.40) to the observed LNM ground
noise spectra, shown in Figure 12.12b, at long periods and short periods separately. From
the figure, we would want

8πkT

M QTs
< 10−17(m/s)2/Hz at frequencies below 0.03 Hz,

< 10−19(m/s)2/Hz at frequencies above 1.5 Hz.

Putting kT ∼ 4 × 10−14 erg, we therefore find that the requirement for thermal noise
to be below the ground noise is given approximately by

M QTs > 1 kg-s for long periods (12.41)

and

M QTs > 0.01 kg-s for short periods. (12.42)

The traditional long-period seismograph has about a 10-kg mass and a period of 15–30 s,
easily satisfying (12.41) with near-critical damping (Q = 1

2 ). One of the first instruments to
satisfy the long-period requirement (12.41) with much smaller mass was an accelerometer
described by Block and Moore (1970). This instrument had M about 10 grams and a
relatively short period of 1 s, and it achieved low thermal noise by making the pendulum Q
high (200) and using capacitive sensing and electrostatic feedback—techniques we discuss
further in Section 12.3.6.

Many simple short-period seismometers still in common use have pendulum periods of
0.1 to 1 s. The mass required to overcome the thermal noise is then only 10 to 100 grams. The
pendulum mass traditionally used in the short-period sensor of the Worldwide Standardized
Seismographic System is much larger. The sensing device of these instruments (a moving
coil in a magnet gap) requires a larger pendulum mass for greater signal power, as shown
in the next section.

12.3.2 ELECTROMAGNETIC VELOCITY SENSOR

The motion of a pendulum relative to the seismometer frame was for decades measured
most commonly in seismology by the electromagnetic velocity sensor shown schematically
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