
CHAPTER 1
On Vectors and Tensors, Expressed in

Cartesian Coordinates

It’s not enough, to characterize a vector as “something that has magnitude and direction.”
First, we’ll look at something with magnitude and direction, that is not a vector.
Second, we’ll look at a similar example of something that is a vector, and we’ll explore

some of its properties.
Then we’ll give a formal definition of a cartesian vector — that is, a vector whose

components we choose to analyse in cartesian coordinates. The definition can easily be
generalized to cartesian tensors.

Finally on this subject, we’ll explore some basic properties of cartesian tensors, showing
how they extend the properties of vectors. As examples, we’ll use the strain tensor, the stress
tensor, and (briefly) the inertia tensor.

Figure 1.1 shows the outcome of a couple of rotations, applied first in one sequence,
then in the other sequence.

We see that if we add the second rotation to the first rotation, the result is different from
adding the first rotation to the second rotation.

So, finite rotations do not commute. They each have magnitude (the angle through
which the object is rotated), and direction (the axis of rotation). But

First rotation + Second rotation �= Second rotation + First rotation.

However, infinitesimal rotations, and angular velocity, truly are vectors. To make this
point, we can use intuitive ideas about displacement (which is a vector). Later, we’ll come
back to the formal definition of a vector.

What is angular velocity? We define ωω as rotation about an axis (defined by unit vector l,
say) with angular rate d�

dt , where � is the angle through which the line P Q (see Figure 1.2)
moves with respect to some reference position (the position of P Q at the reference time).
So

ωω = d�

dt
l,

and � = finite angle = �(t).

1

working pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR 2004/9/8 21:28



2 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

"First rotation"      = rotate 90  about a vertical axis

"Second rotation" = rotate 90  about a horizontal axis into the page

Start First rotation Second rotation

Second rotation First rotationStart

o

o

FIGURE 1.1
A block is shown after various rotations. Applying the first rotation and then the second, gives a
different result from applying the second rotation and then the first.

To prove that angular velocity ωω is a vector, we begin by noting that the infinitesimal
rotation in time dt is ωωdt = ld�. During the time interval dt (think of this as δt , then allow
δt → 0), the displacement of P has amplitude Q P times d�. This amplitude is r sin θd�,
and the direction is perpendicular to r and l, i.e.

displacement = (ωω × r)dt.

Displacements add vectorially. Consider two simultaneous angular velocities ωω1 and
ωω2. Then the total displacement (of particle P in time dt) is

(ωω1 × r)dt + (ωω2 × r)dt = (ωω1 + ωω2) × rdt

for all r. We can interpret the right-hand side as a statement that the total angular velocity
is ωω1 + ωω2. If we reversed the order, then the angular velocity would be the same sum,
ωω2 + ωω1, associated with the same displacement, so ωω2 + ωω1 = ωω1 + ωω2.

So: sometimes entities with magnitude and direction obey the basic commutative rule
that A2 + A1 = A1 + A2, and sometimes they do not.

What then is a vector? It is an entity that in practice is studied quantitatively in terms
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A rigid object is rotating
about an axis through the
the fixed point O.

FIGURE 1.2
P is a point fixed in a rigid body that rotates with angular velocity ωω about an axis through O . The
point Q lies at the foot of the perpendicular from P onto the rotation axis.
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FIGURE 1.3
Here is shown a vector V together with an original cartesian coordinate system having axes Ox1x2x3

(abbreviated to O1, O2, O3). Also shown is another cartesian coordinate system with the same
origin, having axes Ox ′

1x ′
2x ′

3. Each system is a set of mutually orthogonal axes.

of its components. In cartesians a vector V is expressed in terms of its components by

V = V1x̂1 + V2x̂2 + V3x̂3 (1.1)

where x̂i is the unit vector in the direction of the i-axis. An alternative way of writing
equation (1.1) is V = (V1, V2, V3), and sometimes just the symbol Vi . Then V1 = V · x̂1 and
in general Vi = V · x̂i . Thus, when writing just Vi , we often leave understood (a) the fact
that we are considering all three components (i = 1, 2, or 3); and (b) the fact that these
particular components are associated with a particular set of cartesian coordinates.

What then is the significance of working with a different set of cartesian coordinate
axes? We shall have a different set of components of a given vector, V. See Figure 1.3
for an illustration of two different cartesian coordinate systems. What then are the new
components of V?
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4 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

We now have

V = V ′
1x̂′

1 + V ′
2x̂′

2 + V ′
3x̂′

3

where x̂′
1 is a unit vector in the new x ′

j – direction. So the new components are V ′
j . Another

way to write the last equation is V = (V ′
1, V ′

2, V ′
3), which is another expression of the same

vector V, this time in terms of its components in the new coordinate system.
Then (a third way to state the same idea),

V ′
j = V · x̂′

j . (1.2)

We can relate the new components to the old components, by substituting from (1.1)
into (1.2), so that

V ′
j = (V1x̂1 + V2x̂2 + V1x̂3) · x̂′

j =
3∑

i=1

li j Vi

where

li j = x̂i · x̂′
j .

Since li j is the dot product ot two unit vectors, it is equal to the cosine of the angle
between x̂i and x̂′

j ; that is, the cosine of the angle between the original xi–axis and the new
x ′

j–axis.
The li j are often called direction cosines. In general, l j i �= li j : they are not symmetric,

because l j i is the cosine of the angle between the x j-axis and the x ′
i-axis, and in general

this angle is independent of the angle between xi- and x ′
j-axes. But we don’t have to be

concerned about the order of the axes, in the sense that cos(−θ) = cos θ so that li j is also
the cosine of the angle between the x ′

j–axis and the xi–axis.
At last we are in a position to make an important definition. We say that V is a cartesian

vector if its components V ′
j in a new cartesian system are obtained from its components Vi

in the previously specified system by the rule

V ′
j =

3∑
i=1

li j Vi . (1.3)

This definition indicates that the vector V has meaning, independent of any cartesian
coordinate system. When we express V in terms of its components, then they will be different
in different coordinate systems; and those components transform according to the rule (1.3).
This rule is the defining property of a cartesian vector.

It is time now to introduce the Einstein summation convention — which is simple to
state, but whose utility can be appreciated only with practice. According to this convention,
we don’t bother to write the summation for equations such as (1.3) which have a pair of
repeated indices. Thus, with this convention, (1.3) is written

V ′
j = li j Vi (1.4)
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ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES 5

and the presence of the “
∑3

i=1” is flagged by the once-repeated subscript i . Even though
we don’t bother to write it, we must not forget that this unstated summation is still required
over such repeated subscripts.

[Looking ahead, we shall find that the rule (1.4) can be generalized for entities called
second-order cartesian tensors, symbolized by A, with cartesian coordinates that differ in
the new and original systems. The defining property of such a tensor is that its components
in different coordinate systems obey the relationship

A′
jl = Aikli j lkl.]

As an example of the summation convention, we can write the scalar product of two
vectors a and b as

a · b = aibi .

The required summation over i in the above equation, is (according to the summation
convention) signalled by the repeated subscript. Note that the repeated subscript could be
any symbol. For example we could replace i by p, and write aibi = apbp. Because it doesn’t
matter what symbol we use for the repeated subscript in the summation convention, i or p
here is called a dummy subscript. Any symbol could be used (as long as it is repeated).

The Einstein summation convention is widely used together with symbols δi j and εi jk

defined as follows:

δi j = 0 for i �= j, and δi j = 1 for i = j; (1.5)

and

εi jk = 0 if any of i, j, k are equal, otherwise

ε123 = ε312 = ε231 = −ε213 = −ε321 = −ε132 = 1.
(1.6)

Note that εi jk is unchanged in value if we make an even permutation of subscripts (such as
123 → 312), and changes sign for an odd permutation (such as 123 → 213).

The most important properties of the symbols in (1.5) and (1.6) are then

δi ja j = ai, εi jka jbk = (a × b)i, (1.7)

for any vectors a and b; and the symbols are linked by the property

εi jkεlmn =
∣∣∣∣∣∣
δil δ jl δkl

δim δ jm δkm

δin δ jn δkn

∣∣∣∣∣∣ (1.8)

from which it follows that

εi jkεilm = δ jlδkm − δ jmδkl. (1.9)
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6 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

To prove (1.8), note that if any pair of (i, j, k) or any pair of (l, m, n) are equal, then the
left-hand side and right-hand side are both zero. (A determinant with a pair of equal rows or
a pair of equal columns is zero.) If (i, j, k) = (l, m, n) = (1, 2, 3), then the left-hand side
and right-hand side are both 1 because ε123ε123 = 1 and

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1. (1.10)

Any other example of (1.8) where the left-hand side is not zero, will require that the
subscripts (i, j, k) be an even or an odd permutation of (1, 2, 3), and similarly for the
subscripts (k, l, m), giving a value (for the left-hand side) equal either to 1 or to −1. But
the same type of permutation of (i, j, k) or (l, m, n) (whether even or odd) will also apply
to columns or to rows of (1.10), giving either 1 (for a net even permutation) or −1 (for a
net odd permutation), and again the left-hand side of (1.8) equals the right-hand side.

Because of the first of the relations given in (1.7), δi j is sometimes called the substitution
symbol or substitution tensor. In recognition of its originator it also called the Kronecker
delta. εi jk is usually called the alternating tensor.

(1.9) follows from (1.8), recognizing that we need to allow for the summation over i .
Thus

εi jkεilm =
∣∣∣∣∣∣
δi i δ j i δki

δil δ jl δkl

δim δ jm δkm

∣∣∣∣∣∣
= δi i(δ jlδkm − δ jmδkl) − δ j i(δilδkm − δimδkl) + δki(δilδ jm − δimδ jl),

but here δi i is not equal to 1 (which is what most people who are unfamiliar with the
summation convention might think at first). Rather, δi i = ∑3

i=1 δi i = δ11 + δ22 + δ33 = 3.

Using this result, and the “substitution” property of the Kronecker delta function (the first
of the relations in (1.7)), we find

εi jkεilm = 3(δ jlδkm − δ jmδkl) − (δ jlδkm − δ jmδkl) + (δklδ jm − δkmδ jl),

which simplifies to (1.9) after combining equal terms. As we should expect, the subscript
i does not appear in the right-hand side.

1.1 Tensors

Tensors generalize many of the concepts described above for vectors. In this Section we
shall look at tensors of stress and strain, showing in each case how they relate a pair of
vectors. We shall develop

(i) the physical ideas behind a particular tensor (for example, stress or strain);

(ii) the notation (for example, for the cartesian components of a tensor);

(iii) a way to think conceptually of a tensor, that avoids dependence on any particular
choice of coordinate system; and
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1.1 Tensors 7

δ

S

S
n

F T= δ

Sδ

is an internal surface,  inside a medium within which stresses are acting.

is a part of the surface   .

S

Sδ S

x

x is the point at the center of Sδ .

FIGURE 1.4
The definition of traction T acting at a point across the internal surface S with normal n (a unit
vector). The choice of sign is such that traction is a pulling force. Pushing is in the opposite direction,
so for a fluid medium, the pressure would be −n · T.

(iv) the formal definition of a tensor (analogous to the definition of a vector based on (1.3)
or (1.4)).

To analyze the internal forces acting mutually between adjacent particles within a
continuum, we use the concepts of traction and stress tensor. Traction is a vector, being the
force acting per unit area across an internal surface within the continuum, and quantifies
the contact force (per unit area) with which particles on one side of the surface act upon
particles on the other side. For a given point of the internal surface, traction is defined (see
Fig. 1.4) by considering the infinitesimal force δF acting across an infinitesimal area δS of
the surface, and taking the limit of δF/δS as δS → 0. With a unit normal n to the surface
S, the convention is adopted that δF has the direction of force due to material on the side to
which n points and acting upon material on the side from which n is pointing; the resulting
traction is denoted as T(n). If δF acts in the direction shown in Fig. 1.4, traction is a pulling
force, opposite to a pushing force such as pressure. Thus, in a fluid, the (scalar) pressure is
−n · T(n). For a solid, shearing forces can act across internal surfaces, and so T need not be
parallel to n. Furthermore, the magnitude and direction of traction depend on the orientation
of the surface element δS across which contact forces are taken (whereas pressure at a point
in a fluid is the same in all directions). To appreciate this orientation-dependence of traction
at a point, consider a point P, as shown in Figure 1.5, on the exterior surface of a house.
For an element of area on the surface of the wall at P , the traction T(n1) is zero (neglecting
atmospheric pressure and winds); but for a horizontal element of area within the wall at P ,
the traction T(n2) may be large (and negative).

Because T can vary from place to place, as well as with orientation of the underlying
element of area needed to define traction, T is separately a function of x and n. So we write
T = T(x, n).

At a given position x, the stress tensor is a device that tells us how T depends upon n.
But before we investigate this dependence, we first see what happens if n changes sign.
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8 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

P

n 2

1n

FIGURE 1.5
T(n1) �= T(n2). The traction vector in general is different for different orientations of the area across
with the traction is acting.

n

– n

T( – n)

T(n)

FIGURE 1.6
A disk with parallel faces. The normals to opposite faces have the same direction but opposite sign.

By considering a small disk-shaped volume (Figure 1.6) whose opposite faces have
opposite normals n and −n, we must have a balance of forces

T(−n) = −T(n) (1.11)

otherwise the disk would have infinite acceleration, in the limit as its volume shrinks down
to zero. (There is negligible effect from the edges as they are so much smaller than the flat
faces.)

In a similar fashion we can examine the balance of forces on a small tetrahedron that
has three of its four faces within the planes of a cartesian coordinate system, as shown in
Figure 1.7. The oblique (fourth) face of the tetrahedron has normal n (a unit vector), and
by projecting area ABC onto each of the coordinate planes, we find the following relation
between areas:
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3
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1O A

BC

n

T(n)

– x2
ˆT(       )– x2

ˆ

FIGURE 1.7
The small tetrahedron O ABC has three of its faces in the coordinate planes, with outward normals
−x̂ j( j = 1, 2, 3) (only one of which is shown here, j = 2), and the fourth face has normal n.

(O BC, OC A, O AB) = ABC (n1, n2, n3). (1.12)

There are four forces acting on the tetrahedron, one for each face. Thus, face O BC
has the outward normal given by the unit vector −x̂1 = (−1, 0, 0). This face is pulled by
the traction T(−x̂1), and hence by the force T(−x̂1) times area O BC (remember, traction
is force per unit area). The balance of forces then requires that

T(n) ABC + T(−x̂1) O BC + T(−x̂2) OC A + T(−x̂3) O AB = 0. (1.13)

(If the right-hand side were not zero, we would get infinite acceleration in the limit as the
tetrahedron shrinks down to the point O .) Using the two equations (1.11)–(1.13), it follows
that

T(n) = T(x̂1)n1 + T(x̂2)n2 + T(x̂3)n3

= T(x̂ j)n j (using the summation convention).
(1.14)

If we now define

τkl = Tl(x̂k), (1.15)

then

Ti(n) = τ j in j . (1.16)

If we can show that τ j i = τi j , then

Ti = τi jni . (1.17)
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10 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

This equation gives a simple rule by which the components of the traction vector, Ti , are
given as a linear combination of the components of the normal vector n j . The nine symbols
τi j are the cartesian components of a tensor, namely, the stress tensor. First, we’ll show
that indeed τ j i = τi j . Second, we’ll show that the symbols τi j specify a surface which is
independent of our particular choice of coordinate axes.

1.1.1 SYMMETRY OF THE STRESS TENSOR

To see why the τi j are symmetric, we can look in some detail at a particular example, namely
τ21 and τ12. They quantify components of the tractions T (force per unit area) acting on the
faces of a small cube with sides of length δx1, δx2, δx3 as shown in Figure 1.8.

The force acting on the top face of the cube is traction × area, which is T(x̂2) δx1 δx2.
And on the opposite face the force is T(−̂x2) δx1 δx2. From these two faces, what is the
strength of the resulting couple that tends to make the cube rotate about the x3 axis? The x2

and x3 components of T have no relevance here (they are associated with the tendency to
rotate about different axes) — only the x1 component of T, which is τ21. Figure 1.8b shown
the resulting couple, and it is τ21 δx1 δx2 δx3 in the negative x3 direction.

When we look at the tractions acting on the right and left faces, as shown in Figure 1.8c,
the couple that results (see Fig. 1.8d) is τ12 δx1 δx2 δx3 in the positive x3 direction. No other
couple is acting in the x3 direction, so the two couples we have obtained must be equal and
opposite, otherwise the cube would spin up with increasing angular velocity. It follows that
τ21 = τ12.

By similar arguments requiring no net couple about the x1 or x2 directions, we find
τ32 = τ23 and τ31 = τ13. So in general, τ j i = τi j and we have proven the symmetry required
to obtain (1.17) from (1.16).

1.1.2 NORMAL STRESS AND SHEAR STRESS

Figure 1.9 shows two components of a traction vector T, one in the normal direction, and
the other in the direction parallel to the surface across which T acts. The normal stress, σn,
is given by

σn = component of traction in the normal direction

= T · n

= Tjn j

= τi jnin j .

(1.18)

Note that normal stress, as defined here, is a scalar. But it is associated with a particular
direction, and the vector σnn is often used for the normal stress (as shown in Figure 1.9).

The shear stress is the component of T in the plane of the surface across which traction
is acting, so it may be evaluated by subtracting the normal stress σnn from T itself:

shear stress = T − (T · n) n. (1.19)
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T(x  )2

T(– x  )ˆ
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δx2
δx1

δx3
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τ

area =  
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δx3δx1

δx2

– x1
ˆ

3
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T(– x  )ˆ
1

δx2
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21
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12

(a) (b)

(c) (d)

FIGURE 1.8
A small cube is shown, with an analysis of the couple tending to make the cube spin about the Ox3

axis. Thus, in (a) is shown the tractions acting on the top and bottom faces. In (b) is shown the couple
associated with these tractions which will tend to make the cube rotate about the axis into the plane
of the page — the couple consists of a pair of forces τ21δx1 δx3 separated by a distance δx2. In (c)
is shown the tractions acting on the right and left faces, and in (d) the associated couple tending to
make the cube rotate about an axis out of the plane of the page.
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12 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

T(n)

(T(n).n) n normal stress = 

shear stress = T – (T(n).n) n 

FIGURE 1.9
The traction T is shown resolved into its normal and shear components.

n

O

P

normal to Σ at P

Σ

FIGURE 1.10
� is a “quadric surface” centered on the coordinate origin O . P is the point on � at the place where a
line drawn from the origin in the direction of n (a unit vector) meets the quadric surface. The normal
to � at P is shown, and in general it will be in a direction different from the direction of n.

It is unfortunate that the word “stress” is used for scalar quantities as in (1.18), for vector
quantities as in (1.19), and for tensor quantities as in (1.15).

In a fluid with no viscosity, the scalar normal stress is equal to pressure (but with
opposite sign, in our convention where traction is positive if it is pulling). And in such a
fluid, the shear stresses are all zero.

1.1.3 A QUADRIC SURFACE ASSOCIATED WITH THE STRESS TENSOR

The surface � given by the equation

τi j xi x j = constant (1.20)

has properties that are independent of the coordinate system used to define components xi

and τi j .
� is a three-dimensional surface, either a spheroid or a hyperboloid (which may have

one or two separate surfaces). Because (1.20) has no linear terms (terms in xi only), � is a
surface which is symmetric about the origin O , as shown in Figure 1.10. (If x is a point on
the surface �, then so is the point −x.)

If P is at position x, then
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1.1 Tensors 13

BOX 1.1
On finding the direction of a normal to a surface

If � is the surface composed of points x which satisfy the equation

F(x) = c

for some constant c, then consider a point x + δx which also lies on �.
Then F(x + δx) = c, so

F(x + δx) − F(x) = 0.

But

F(x + δx) = F(x) + δxi
∂ F

∂xi
(Taylor series expansion)

= F(x) + δx · ∇F.

Therefore,

δx · ∇F = 0

for all directions δx such that x and x + δx lie in the surface �. Since δx is tangent to � at
the point x, and δx · ∇F = 0 for all such tangents, this last equantion shows that ∇F has
the defining property of the normal to � at x (it is perpendicular to all the tangents at x).

We conclude that the normal to the surface F(x) = c is parallel to ∇F .

vector OP = x = OP n (1.21)

and the length OP is related to the normal stress. This follows, because

constant = τi j xi x j

= τi jOP niOP n j

= OP2 τi jnin j

= OP2 σn from (1.18).

Hence,

σn ∝ 1

OP2 . (1.22)

This is a geometrical property of �, which depends only the shape of the quadric
surface, not its absolute size.

Another such geometrical property is associated with the normal to � at P . We can
use Box 1.1 to see that this normal is in the direction whose i-th component is
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14 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

∂

∂xi
(τklxkxl) = τkl

∂xk

∂xi
xl + τklxk

∂xl

∂xi
(chain rule)

= τklδikxl + τklxkδil (the partial derivatives are Kronecker delta functions)

= τil xl + τki xk (using the substitution property (1.7))

= 2τi j x j (using symmetry of the stress tensor, and changing dummy subscripts)

= 2OP τi jn j (from (1.21))

= 2OP Ti (from (1.17)).

It follows that

the normal to � at P is parallel to the traction vector, T. (1.23)

The results (1.22) and (1.23) are the two key geometrical features of the quadric surface
representing the underlying tensor ττ , and they are independent of any coordinate system.
Going back to Figures 1.4 and 1.9, the quadric surface shown in Figure 1.10 is a geometrical
device for obtaining the direction of the traction vector, and the way in which normal stress
varies as the unit normal n varies (specifying the orientation of an area element across which
the traction acts).

We can for example see geometrically that there are three special directions n, for
which the traction T(x) is parallel to n and hence (for these n directions) the shear stress
vanishes. To obtain the same result algebraically, we note that these special values of n are
such that Ti ∝ ni and so, using (1.17),

τi jn j = λni . (1.24)

As discussed in Box 1.2, this last equation has solutions (for n), but only if λ takes on one
of three special values (eigenvalues); and the three resulting values of n (one for each λ

value) are mutually orthogonal.

1.1.4 FORMAL DEFINITION OF A SECOND ORDER CARTESIAN TENSOR

If two cartesian coordinate systems Ox1x2x3 and Ox ′
1x ′

2x ′
3 are related to each other as

shown in Figure 1.3, with direction cosines defined by li j = x̂i · x̂ j , then the entity A is a
second order cartesian tensor if its components Aik in the Ox1x2x3 system and A′

jl in the
Ox ′

1x ′
2x ′

3 system are related to each other by

A′
jl = Aikli j lkl. (1.25)

It is left as an exercise (in Problem 1.1) to obtain the reverse transformation, and to
show that the associated quadric surface Ai j xi x j = c is given also by A′

i j x
′
i x

′
j = c.

The tensor A is isotropic if its components are the same in the original and the
transformed coordinate systems. It follows geometrically that the quadric surface of such
a tensor is simply a sphere, and that Ai j = A′

i j = constant × δi j . The stress tensor in an
inviscid fluid is isotropic (Problem 1.4 asks you to prove this).
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1.1 Tensors 15

BOX 1.2
On solutions of

A · x = λx

where A is a symmetric real matrix

Here we briefly review the main properties of the set of linear equations

Ai j x j = λxi (where A ji = Ai j; i = 1, . . . , n; and j = 1, . . . , n). (1)

These are n equations in n unknowns. In the present chapter, usually n = 3.
Equation (1) is fundamentally different from the standard linear problem A · x = b, or

Ai j xi = bi , (2)

which has a straightforward solution provided det A �= 0, for then the inverse matrix exists
and x = A−1 · b. Note that for equation (1) there is no restriction on the absolute size of x:
if x is a solution of (1), then so is cx for any constant c. But if x is a solution of (2), then in
general cx will not be a solution.

Equation (1) has the trivial solution x = 0, but we are interested in non-trivial solutions,
for which at least one component of x is non-zero. It follows that equation (1) represents
a set of n scalar relations between n − 1 variables, for example x j/x1 ( j = 2, . . . , n). If
x1 = 0 then we can instead divide (1) by some other component of x.

We can use the Kronecker delta function to write (1) as

(Ai j − λδi j)x j = 0, or as (A − λI) · x = 0, (1, again)

where I is the identity matrix, Ii j = δi j , with 1 at every entry on the diagonal and 0
everywhere else.

If det (A − λI) �= 0, then the inverse (A − λI)−1 exists and the only solution of (1) is
x = (A − λI)−1 · 0, giving x = 0. It follows that the only way we can obtain non-trivial
solutions of (1), is to require that

det (A − λI) = 0. (3)

Equation (3) is an n-th order polynomial in λ, and in general it has n solutions,
λ(α) (α = 1, . . . , n), called eigenvalues of the matrix A. For each eigenvalue, we have
an associated eigenvector x(α) satisfying

A · x(α) = λ(α)x(α) (not summed over α). (4)

These eigenvectors (there are n of them, since α = 1, . . . , n) are the vector solutions of (1),
so they have the special property that A · x(α) is in the same direction as the vector x(α) itself.
Equation (1) imposes no contraint on the absolute size of solutions such as x(α), and we are
free to normalize these solutions if we wish. A common choice is to make x(α) · x(α) = 1.

The final important property of the eigenvectors, is that any two eigenvectors corre-
sponding to two different eigenvalues must be orthogonal. To prove this, we consider two
eigenvalues λ(α) and λ(β) with corresponding eigenvectors x(α) and x(β), and λ(α) �= λ(β).
Then

Ai j x
(α)
j = λ(α)x(α)

i and Ai j x
(β)
j = λ(β)x(β)

i . (5)
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16 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

BOX 1.2 (continued)

We can multiply both sides of the first of equations (5) by x (β)
i and sum over i , and multiply

both sides of the second of equations (5) by x (α)
i and sum over i , giving

Ai j x
(α)
j x (β)

i = λ(α)x (α)
i x (β)

i = λ(α)x(α) · x(β) (6a)

and

Ai j x
(β)
j x (α)

i = λ(β)x (α)
i x (β)

i = λ(β)x(α) · x(β). (6b)

Note here that we are using the Einstein summation convention in the usual way for repeated
subscripts, but we are not using it for repeated superscripts α and β. [The summation
convention does not work naturally with such superscripts, because one side of equations
such as (4) or (6a) has repeated superscripts, and the other side has the superscript in just
one place.]

Because A is a symmetric matrix, Ai j x
(β)
j x (α)

i = A ji x
(β)
j x (α)

i . But we can use any symbol
for repeated subscripts, and in particular we can exchange the symbols i and j in this last
expression, so that Ai j x

(β)
j x (α)

i = A ji x
(β)
j x (α)

i = Ai j x
(β)
j x (α)

i = Ai j x
(α)
i x (β)

j . Hence, the left-
hand side of (6a) equals the left-hand side of (6b). Subtracting (6b) from (6a), we see that

(λ(α) − λ(β)) x(α) · x(β) = 0.

But the first of these factors is not zero, since we took the eigenvalues to be different
(λ(α) �= λ(β)). It follows that the second factor must be zero, x(α) · x(β) = 0, and hence that
the eigenvectors corresponding to different eigenvalues are orthogonal.

The best way to become familiar with the eigenvalue/eigenvector properties described
above, is to work through the details of a few examples (such as Problem 1.2).

The above formal definition of a tensor is rarely useful directly, as a way to demonstrate
that an entity (suspected of being a tensor) is in fact a tensor. For this purpose, we usually
rely instead upon the so-called quotient rule, which states that if the relationship Tik Ak = Bi

is true is all coordinate systems, where Ak and Bi are the components of vectors A and B,
then the Tik are components of a second order cartesian tensor provided the components of
A can all be varied separately. The statement that “the relationship Tik Ak = Bi is true is all
coordinate systems” means that T ′

jk A′
l = B ′

j as well as Tik Ak = Bi .
To show that the quotient rule means the formal definition is satisfied, note that

T ′
jk A′

l = B ′
j

= Bili j since B is a vector

= Tik Akli j using Tik Ak = Bi

= Tik A′
llklli j from the reverse transform Ak = A′

llkl — see Problem 1.1.

Hence
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O

P

Q

P

Q

0

0

x

u(x)

u(x + δx)

δx

FIGURE 1.11
A line element δx is shown with ends at P0 and Q0, and also after the neighborhood of P0 has
undergone deformation. The new position of the line element is from P to Q. P0 is at x, Q0 is at
x + δx, P is at x + u and Q is at x + δx + u(x + δx).

(T ′
jl − Tikli j lkl)A′

l = 0. (1.26)

This is a set of three scalar equations ( j = 1, 2, or 3). But since they are also true
as the components A′

l are varied independently, it follow that the coefficients of the
A′

l(l = 1, 2, or 3) must all vanish. So T ′
jl = Tikli j lkl , and T satisfies the formal definition of

a tensor (compare with (1.25)).
The entity we have been calling the stress tensor, ττ , satisfies the quotient rule (see

equation (1.17), in which the components of ττ relate the traction vector and n). It is for this
reason that indeed we are justified in referring to ττ as a second order cartesian tensor.

1.2 The strain tensor

Two different methods are widely used to describe the motions and the mechanics of motion
in a continuum. These are the Lagrangian description, which emphasizes the study of a
particular particle that is specified by its original position at some reference time, and the
Eulerian description, which emphasizes the study of whatever particle happens to occupy
a particular spatial location. Note that a seismogram is the record of motion of a particular
part of the Earth (namely, the particles to which the seismometer was attached during
installation), so it is directly a record of Lagrangian motion. A pressure gauge attached to
the sea floor also provides a Lagrangian record, as does a neutrally buoyant gauge that is
free to move in the water. But a gauge that is fixed to the sea floor and measuring properties
(such as velocity, temperature, opacity) of the water flowing by, provides an Eulerian record.

We use the term displacement, regarded as a function of space and time, and written as
u = u(x, t), to denote the vector distance of a particle at time t from the position x that it
occupies at some reference time t0, often taken as t = 0. Since x does not change with time,
it follows that the particle velocity is ∂u/∂t and that the particle acceleration is ∂2u/∂t2.

To analyze the distortion of a medium, whether it be solid or fluid, elastic or inelastic,
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18 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

we use the strain tensor. If a particle initially at position x is moved to position x + u, then
the relation u = u(x) is used to describe the displacement field. To examine the distortion
of the part of the medium that was initially in the vicinity of x, we need to know the new
position of the particle that was initially at x + δx, where δx is a small line-element. This
new position (see Figure 1.11) is x + δx + u(x + δx). Any distortion is liable to change
the relative position of the ends of the line-element δx. If this change is δu, then δx + δu is
the new vector line-element, and by writing down the difference between its end points we
obtain

δx + δu = x + δx + u(x + δx) − (x + u(x)).

Since |δx| is arbitrarily small, we can expand u(x + δx) as u + (δx · ∇)u plus negligible
terms of order |δx|2. It follows that δu is related to gradients of u and to the original line-
element δx via

δu = (δx · ∇)u, or δui = ∂ui

∂x j
δx j . (1.27)

However, we do not need all of the nine independent components of ∂ui
∂x j

to specify true
distortion in the vicinity of x, since part of the motion is due merely to an infinitesimal
rigid-body rotation of the neighborhood of x. We shall write

δui = ∂ui

∂x j
δx j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
δx j + 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
δx j

and use the result given in Problem 1.8 to interpret the last term of the above equation.
Introducing the notation ui, j for ∂ui

∂x j
, we then see that (1.27) can be rewritten as

δui = 1
2 (ui, j + u j,i)δx j + 1

2 (curl u × δx)i, (1.28)

and the rigid-body rotation is of amount 1
2 curl u. The interpretation of the last term in

(1.28) as a rigid-body rotation is valid if
∣∣ui, j

∣∣ � 1. If displacement gradients were not
“infinitesimal” in the sense of this inequality, then we would instead have to analyze the
contribution to δu from a finite rotation—a much more difficult matter, since finite rotations
do not commute and cannot be expressed as vectors.

In terms of the infinitesimal strain tensor, defined to have components

ei j ≡ 1
2 (ui, j + u j,i), (1.29)

the effect of true distortion on any line-element δx is to change the relative position of its end
points by a displacement whose i-th component is ei jδx j . By the quotient rule discussed in
Section 1.1.4, it follows that e is indeed a second order cartesian tensor. Rotation does not
affect the length of the element, and the new length is
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1.2 The strain tensor 19

|δx + δu| = √
δx · δx + 2δu · δx (neglecting δu · δu)

= √
δxiδxi + 2ei jδxiδx j (from (1.28), and using (curl u × δx) · δx = 0)

= |δx| (1 + ei jνiν j) (to first order, if
∣∣ ei j

∣∣ � 1),

where νν is the unit vector δx/ |δx|. It follows that the extensional strain of a line-element
originally in the νν direction, which we define to be

e(νν) = change in length

original length
= PQ − P0Q0

P0Q0
,

is given by

e(νν) = ei jνiν j . (1.30)

Strain is a dimensionless quantity. The diurnal solid Earth tide leads to strains of about
10−7. Strains of about 10−11 due to seismic surface waves from distant small earthquakes
can routinely be measured with modern instruments.

1.2.1 THE STRAIN QUADRIC

We can define the surface ei j xi x j = constant. If it is referred to the axes of symmetry as
coordinate axes, this quadric surface becomes E1x2

1 + E2x2
2 + E3x2

3 = constant and the
strain tensor components become

e =

 E1 0 0

0 E2 0
0 0 E3


 .

The Ei(i = 1, 2, or 3), called principal strains, are eigenvalues of the matrix

e =

 e11 e12 313

e12 e22 323

e13 e23 333




(this matrix is different for different cartesian coordinate systems, but its eigenvalues are the
same). Figure 1.12 shows an example of the strain quadric, in the case that the Ei do not all
have the same sign. In this case, � is a hyperboloid. The figure caption describes the two key
geometrical properties of �, analogous to the results shown previously for the stress quadric
(see (1.22) and (1.23)). The first property, e(νν) ∝ OP−2, follows from taking x = OPνν and
substituting for the components of x in ei j xi x j = constant. The second property, concerning
the direction of the displacement due to distortion, follows from showing that the direction
of the normal at P is parallel to ∇(ei j xi x j), which has i-th component 2ei j x j = 2OPei jν j .
In terms of the line-element δx, this i-th component is proportional to ei jδx j , and indeed
this is in the displacement direction due to the distortion (see comments following (1.29)).

The physical interpretation of the axes of symmetry of �, is that these are the
three special (mutually orthogonal) directions in which an original line-element is merely
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20 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

principal axis #1

principal axis #2

O P

Σ

νν

FIGURE 1.12
A hyperboloid is shown here, as an example of a strain quadric �. The third principal axis is
perpendicular to the first two (out of the page). For a line-element in the νν direction, extensional
strain is inversely proportional to OP2. The displacement of the end of the line-element, due to
distortion, is in the direction of the normal at P .

shortened or lengthened by the deformation. For these special directions, line-elements are
not subject to any shearing motions. The only rotation, is that which applies to the whole
neighborhood of the line-element as a rigid body rotation (distinct from deformation).

1.3 Some simple examples of stress and strain

Examples are

(i) Compacting sediments, which shrink in the vertical direction but stay the same in the
horizontal direction. Think of them as being in a large tank (see Figure 1.13). If x1 and
x2 are horizontal directions with x3 vertical, then the strain tensor has components

e =

 0 0 0

0 0 0
0 0 e33


 .

Compression at depth, from the weight of those above, leads to e33 < 0.
But although the strain tensor has only one non-zero component, the stress tensor

has non-zero values of τ11, τ22, τ33. If the sediments lack strength, then the stress will
essentially be the same as if the material were composed of a fluid (lacking any ability
to resist shearing forces). In this case, the stress at depth x3 is due solely to pressure
generated by the overburden. There are no shearing forces, and

ττ = −

 P 0 0

0 P 0
0 0 P


 where P =

∫ x3

0
ρg dx3.
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1.3 Some simple examples of stress and strain 21

x3

FIGURE 1.13
Sediments, compressed vertically.

(ii) A wire that is stretched in the x1−direction will shrink in the perpendicular directions
x2 and x3. The strain tensor is

e =

 e11 0 0

0 e22 0
0 0 e33


 , with e11 > 0 and e22 = e33 < 0.

The stress tensor has only one non-zero component:

ττ =

 τ11 0 0

0 0 0
0 0 0


 .

(iii) We use the term pure shear to describe the type of deformation shown in Figure 1.14,
in which a small rectangle is subjected to the stress field

ττ =

 0 τ12 0

τ12 0 0
0 0 0


 .

In this deformation, the point B has moved to the right from its original position, by

an amount
∂u1

∂x2
δx2, and the point A has moved up an amount

∂u2

∂x1
δx1. In the case

of pure shear, there is no rigid body rotation. So curl u = 0 which means here that
∂u1

∂x2
= ∂u2

∂x1
. The line element OB0 has been rotated over to the right (clockwise)

by an angle given by
∂u1

∂x2
δx2 ÷ δx2 = ∂u1

∂x2
. The line element O A0 has been rotated

anticlockwise by the angle
∂u2

∂x1
δx1 ÷ δx1 = ∂u2

∂x1
= ∂u1

∂x2
since there is no rigid body

rotation, and the strain tensor components are

e =

 0 e12 0

e21 0 0
0 0 0


 .

Always, e ji = ei j . And for pure shear, e12 = e21 = ∂u1

∂x2
= ∂u2

∂x1
.

The reduction in the original π/2 angle at O (Figure 1.14) is 2e12. The ratio
between stress and this angle reduction,
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O A

B

x

xδx

δx

0

0 1

2

1

2

O

A

B

x

x1

2
original shape deformed shape (pure shear)

FIGURE 1.14
A small rectangular prism is sheared with no change in area. The shearing stresses τ12 and τ21(= τ12)

are the same as those shown in Figure 1.8b and 1.8d.

O

x

xδx

δx

1

2

1

2

O

x

x1

2

simple shear pure shear as shown above,
plus a clockwise rotation of the
whole block through an angle e

=

12

angle = 2 e12
angle =  e12

angle =  e12

FIGURE 1.15
A simple shear is shown on the left, with u1 ∝ x2, so that an original rectangle in the Ox1x2-plane is
now sheared with motion only in the x1-direction. This motion is equivalent to a pure shear followed
by a clockwise rigid-body rotation. The angle reduction at the origin is 2e12 in both cases. Rigidity is
the ratio between shear stress and the angle reduction. For a viscous material, the material continues
to deform as long as the shear stress is applied, and viscosity is defined as the ratio between shear
stress and the rate of angle reduction.

µ = τ12

2e12
, (1.31)

is known as the rigidity.

(iv) Consider a deformation in which the displacement is u = (u1, 0, 0) and u1 depends
on x only via the x2-component. An example is shown in Figure 1.15, and this
situation is called a simple shear. It can be regarded as a pure shear described by

e12 = e21 = 1

2

∂u1

∂x2
, plus a rigid rotation of amount 1

2 curl u =
(

0, 0, −1

2

∂u1

∂x2

)
.

The definition of rigidity is easier to understand with a simple shearing defor-

mation. It is the shearing stress τ21 divided by the displacement gradient
∂u1

∂x2
(equal

to the angle reduction as shown in Figure 1.15).
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Steel

Rubber

force (tension, stress)

extension
  (strain)

strain weakening

strain hardening

onset of yielding

FIGURE 1.16
For some solid materials, strain grows in proportion to stress at low stress, but the linearity is lost and
strain either increases more slowly with increasing stress (for example, rubber), or increases more
quickly (for example, steel). At high enough stress, the material breaks. This is a schematic diagram:
some solids break at extensional strains as small as 10−3, and some forms of rubber maintain linearity
even for strains of order 1.

All of the above examples in this subsection are elastic examples. Stress and strain go to
zero together, if τi j = ci jklekl , and there is no time-dependence.

Real materials can be quite different, exhibiting viscous behavior, or strain hardening,
or a tendency to yield at high values of applied stress (see Figure 1.16). We take up this
subject next, with emphasis on solids.

1.4 Relations between stress and strain

A medium is said to be elastic if it possesses a natural state (in which strains and stresses
are zero) to which it will revert when applied forces are removed. Under the influence of
applied loads, stress and strain will change together, and the relation between them, called
the constitutive relation, is an important characteristic of the medium. Over 300 years
ago, Robert Hooke summarized the relationship today known as Hooke’s Law between
the extension of a spring, and the force acting to cause the extension. He concluded
experimentally that force ∝ extension. The constant of proportionality here is often called
a modulus, M (say), and then

force = M × extension.

(Hooke’s Law appeared originally as an anagram, ceiiinosssttuv, of the Latin phrase ut
tensio, sic vis — meaning “as the extension, so the force.” Some scientific personalities are
very strange.)

The modern generalization of Hooke’s law is that each component of the stress tensor
is a linear combination of all components of the strain tensor, i.e., that there exist constants
ci jkl such that

τi j = ci jpqepq. (1.32)

A material that obeys the constitutive relation (1.32) is said to be linearly elastic. The
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24 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

quantities ci jkl are components of a fourth-order tensor, and have the symmetries

c jipq = ci jpq (due to τ j i = τi j) (1.33)

and

ci jqp = ci jpq (due to eqp = epq). (1.34)

It is also true from a thermodynamic argument that

cpqi j = ci jpq, (1.35)

for a material in which the energy of deformation (associated with tensors ττ and e) does
not depend on the time history of how the deformation was acquired.

The ci jkl are independent of strain, which is why they are sometimes called “elastic
constants,” although they are varying functions of position in the Earth. In general, the
symmetries (1.33), (1.34), and (1.35) reduce the number of independent components in
ci jkl from 81 to 21. There is considerable simplification in the case of an isotropic medium,
since c must be isotropic. It can be shown that the most general isotropic fourth-order tensor,
having the symmetries of c, has the form

ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk). (1.36)

This involves only two independent constants, λ and µ, known as the Lamé moduli.
Substituting from (1.36) into (1.32), we see that the stress–strain relation becomes

τi j = λδi j ekk + 2µei j (1.37)

in isotropic elastic media.
If we consider only shearing stresses and shearing strains, using (1.37) with i �= j ,

then τi j = 2µei j and µ here is just the rigidity we introduced earlier, in (1.31). For many
materials, the Lamé moduli λ and µ (sometimes called Lamé constants) are approximately
equal. They can be used to generate a number of other constants that characterize the
properties of material which are subjected to particular types of strain and stress, for example
the stretched wire discussed as item (ii) of Section 1.3. For that example, (1.37) gives

τ11 = λ(e11 + e22 + e33) + 2µe11

0 = λ(e11 + e22 + e33) + 2µe22

0 = λ(e11 + e22 + e33) + 2µe33.

(1.38)

By comparing the second and third of these equations, we see that e22 = e33; and then from
these same two equations it follows that λe11 + 2(λ + µ)e22 = 0. Poisson’s ratio is defined
as

ν = shrinking strain

stretching strain
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in this example of simple stretching, so

ν = −e22

e11
= λ

2(λ + µ)
∼ 1

4
(1.39)

if λ and µ are approximately equal (which is the case for many common materials).
Another important class of materials is that for which shearing stresses lead to flow.

Such materials are not elastic. We introduce the deviatoric stress as the difference between
τi j and the average of the principal stresses, which is 1

3τkk and which we can symbolize by
−P . (In an inviscid or perfect fluid, P with this definition is simply the scalar pressure.) The
viscosity of a material that can flow, such as syrup (with low viscosity) or the Earth’s mantle
(with high viscosity, and significant flow occurring only over many millions of years), is
the constant of proportionality between the deviatoric stress and twice the strain rate. Thus,
the viscosity ν is given by

τi j + Pδi j = 2νėi j . (1.40)

A factor 2 appears here, for the same reason that a factor 2 appears in the definition of
rigidity (see (1.31)): both rigidity and viscosity are better appreciated for simple shearing
motions, than for pure shearing. For a viscous material, simple shearing due to application
of τ21 as shown in Figure 1.15 results in angle reduction of an original rectangle at the rate
∂ u̇1

∂x2
= 2ė12. Viscosity is shear stress divided by the spatial gradient of particle velocity.

Suggestions for Further Reading

Menke, William, and Dallas Abbott. Geophysical Theory, pp 41–50 for basic properties of
tensors, pp 237–252 for properties of strain and stress tensors. New York: Columbia
University Press, 1990.

Problems

1.1 Consider the two sets of cartesian axes shown in Figure 1.3, with li j as the direction
cosine of the angle between Oxi and Ox ′

j . Thus, the unit vector x′
1 expressed in

Ox1x2x3 coordinates has the components (l11, l21, l31).

a) Show in general that li j lik = δ jk and also that li j lk j = δik.
b) Hence show that

(
l−1

)
i j = l j i .

c) We know from (1.4) that a vector V having components Vi in the Ox1x2x3

system has components in the Ox ′
1x ′

2x ′
3 system given by V ′

j = li j Vi . Show that
the original components are given in terms of the transformed components by

Vk = lk j V
′
j .

d) For two vectors a and b with components defined in both of the two coordinate
systems, show that aibi = a′

jb
′
j .
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26 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

e) We know from Section 1.1.4 that components of A in the two coordinate systems
are related by A′

jl = Aikli j lkl . Show that A′
jll pjlql = Apq and hence that the

reverse transformation can be written as Aik = A′
jlli j lkl .

f) The quadric surface associated with A is Ai j xi x j = c in the Ox1x2x3 system.
Show that this same surface is A′

i j x
′
i x

′
j = c in the Ox ′

1x ′
2x ′

3 system.

1.2 Find the eigenvalues and eigenvectors of the following matrices:

A =
(

3 −1
−1 3

)
, A =

(
5 2
2 5

)
, A =

(
0.11 0.48
0.48 0.39

)
,

and

A =
(

144p + 25q −60(p − q)

−60(p − q) 25p + 144q

)

(normalize the eigenvectors, so that x(α) · x(α) = 1).

1.3 Consider a stress tensor ττ whose components in a particular cartesian coordinate
system are

ττ =

 3 −1 0

−1 3 0
0 0 3


 .

a) What are the principal stresses σ1, σ2, σ3 in this coordinate system (order
them so that σ1 < σ2 < σ3)? And what are the corresponding three mutually
orthogonal unit vector directions νν1, νν2, νν3?

b) Evaluate the system of direction cosines

 l11 l12 l13

l21 l22 l23

l31 l32 l33




where li j is the cosine of the angle between x̂i and νν j (this matrix is not
symmetric).

c) Show that in the present example the matrix of li j values has the property de-
scribed in Problem 1.1ab, namely that pre-multiplication or post-multiplication
of l by its transpose gives the identity matrix, and hence that

(
l−1

)
i j = l j i .

d) Show in this example that when the principal axes are taken as coordinates, the
components of ττ become

ττ =

 σ1 0 0

0 σ2 0
0 0 σ3


 .

[Note then that if the principal axes are taken as the coordinates O X1X2X3, the
equation of the stress quadric is simply σ1X2

1 + σ2X2
2 + σ3X2

3 = constant.]

1.4 Suppose that at a point inside a fluid with volume V the stress field has the property
that the normal stress across any surface through the point is a constant, −P

working pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR 2004/9/8 21:28



Problems 27

(independent of the orientation of the surface). Show then that the corresponding
stress tensor at a point in a fluid is isotropic, and has components τi j = −Pδi j .

1.5 Show that

ekk = ul,l = ∇ · u = increase in volume

original volume

for a small volume element of material that is deformed. [Hint: to prove the
result, consider a small cube with faces parallel to the principal axes of strain
(the symmetry axes of the strain tensor). Alternatively, use the physical definition
of divergence (flux out of a volume, per unit volume). The result itself is the reason
that ekk and ∇ · u are sometimes referred to as “volumetric strain.”]

1.6 The bulk modulus κ of an isotropic material is defined as

κ = −P

volumetric strain

when the material is compressed by an all-round pressure P .

a) Show that κ = λ + 2
3µ where λ and µ are the Lamé moduli.

b) κ is sometimes given other names, such the compressibility or the incompress-
ibility. Which of these two names makes more sense?

1.7 Use the alternating tensor εi jk discussed in (1.6) and (1.7) to show for vectors a, b,

and c, that

(a × b) × c = (a · c)b − (b · c)a.

Using (∇2u)i = ∇2(ui), show also that

∇2u = ∇(∇ · u) − ∇ × (∇ × u).

[This last result, obtained here by using cartesian components, is essentially a
definition of ∇2u, that can be applied to non-cartesian components.]

1.8 Using ui, j to denote
∂ui

∂u j
, show that εi jkε jkmum,lδxk = (ui, j − u j,i)δx j and hence

that (ui, j − u j,i)δx j = (curl u × δx)i .

1.9 Show that Poisson’s ratio (ν) is 1
2 for a material that is incompressible.

1.10 Young’s modulus (E) is defined as the ratio of stretching stress to stretching strain
in the example (ii) of Section 1.3 (see also (1.39)). Show that

E = µ(3λ + 2µ)

λ + µ
.

1.11 For an isotropic elastic material, the stress is given in terms of strains by (1.37).
Show that strain is then given in terms of the stresses by

2µei j = − λ

3λ + 2µ
τkkδi j + τi j .
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