CHAPTER 1

On Vectors and Tensors, Expressed in
Cartesian Coordinates

It's not enough, to characterize a vector as “something that has magnitude and direction.”
First, we'll look at something with magnitude and direction, that is not a vector.
Second, we'll look at asimilar example of something that isavector, and we' Il explore

some of its properties.

Then we'll give a formal definition of a cartesian vector — that is, a vector whose
components we choose to analyse in cartesian coordinates. The definition can easily be
generalized to cartesian tensors.

Finally onthissubject, we' |l exploresomebasic propertiesof cartesiantensors, showing
how they extend the properties of vectors. Asexamples, we' |l usethe strain tensor, the stress
tensor, and (briefly) the inertia tensor.

Figure 1.1 shows the outcome of a couple of rotations, applied first in one sequence,
then in the other sequence.
We seethat if we add the second rotation to thefirst rotation, the result isdifferent from
adding the first rotation to the second rotation.
So, finite rotations do not commute. They each have magnitude (the angle through
which the object is rotated), and direction (the axis of rotation). But
First rotation + Second rotation # Second rotation + First rotation.

However, infinitesimal rotations, and angular velocity, truly are vectors. To make this
point, we can use intuitive ideas about displacement (which is avector). Later, we'll come
back to the formal definition of a vector.

What isangular vel ocity? We define w asrotation about an axis (defined by unit vector |,
say) with angular rate ‘(’j—?, where Q isthe angle through which theline PQ (see Figure 1.2)
moves with respect to some reference position (the position of PQ at the reference time).
So

dQe

and Q = finiteangle = Q(t).
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2 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

Start First rotation Second rotation

\.

Start Second rotation First rotation

DN

"First rotation” = rotate 90° about avertical axis

"Second rotation” = rotate 90” about a horizontal axisinto the page

FIGURE 1.1
A block is shown after various rotations. Applying the first rotation and then the second, gives a
different result from applying the second rotation and then the first.

To prove that angular velocity  is a vector, we begin by noting that the infinitesimal
rotationintimedt iswdt = 1dQ2. During thetimeinterval dt (think of thisas §t, then allow
st — 0), the displacement of P has amplitude QP timesdS2. Thisamplitudeisr sin6d<,
and the direction is perpendicular tor and |, i.e.

displacement = (w x r)dt.

Displacements add vectorially. Consider two simultaneous angular velocities w1 and
2. Then the total displacement (of particle P intimedt) is

(w1 x N)dt + (w2 x dt = (w1 + w2) x rdt

for al r. We can interpret the right-hand side as a statement that the total angular velocity
is w1 + w2. If we reversed the order, then the angular velocity would be the same sum,
w2 + w1, associated with the same displacement, sO w? + w1 = w1 + wo.

So: sometimes entities with magnitude and direction obey the basic commutative rule
that A, + A1 = A1 + Ay, and sometimes they do not.

What then is avector? It is an entity that in practice is studied quantitatively in terms

Mrking pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR  2004/9/8 21:28



ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

Y

A rigid object isrotating
about an axis through the
the fixed point O.

FIGURE 1.2
P isapoaint fixed in arigid body that rotates with angular velocity @ about an axis through O. The
point Q lies at the foot of the perpendicular from P onto the rotation axis.

AS

>
o) 1

FIGURE 1.3

Hereis shown avector V together with an original cartesian coordinate system having axes Ox1x2X3
(ebbreviated to O1, 02, 03). Also shown is another cartesian coordinate system with the same
origin, having axes Ox/ x,x5. Each system is a set of mutually orthogonal axes.

of its components. In cartesians avector V is expressed in terms of its components by
V = ViX1 + VoXo + V33 (1D

where X; is the unit vector in the direction of the i-axis. An alternative way of writing
equation (1.1) isV = (V1, V>, V3), and sometimesjust the symbol V;. Then V1 =V - X1 and
in genera V; =V - X;. Thus, when writing just Vi, we often leave understood (a) the fact
that we are considering all three components (i = 1, 2, or 3); and (b) the fact that these
particular components are associated with a particular set of cartesian coordinates.

What then is the significance of working with a different set of cartesian coordinate
axes? We shall have a different set of components of a given vector, V. See Figure 1.3
for an illustration of two different cartesian coordinate systems. What then are the new
components of V?
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4 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

We now have
V = V{7 + V%, + V%5

whereX; isaunit vector in the new X; —direction. So the new components are V;. Another
way to write the last equationisV = (V{, V,, V), which is another expression of the same
vector V, thistimein terms of its components in the new coordinate system.
Then (athird way to state the same idea),
Vj’ =V. §</J . (1.2

We can relate the new components to the old components, by substituting from (1.1)
into (1.2), so that

Vi = (Vafa + Ve + Vaa) - & = D I Vi

where

Since ljj is the dot product ot two unit vectors, it is equal to the cosine of the angle
between &; and R’J ; that is, the cosine of the angle between the original xj—axis and the new
xj —axis.

Theljj are often called direction cosines. In general, | # ljj: they are not symmetric,
because | j; is the cosine of the angle between the xj-axis and the x/-axis, and in general
this angle is independent of the angle between x;- and xj -axes. But we don’t have to be
concerned about the order of the axes, in the sense that cos(—6) = cosé so that |j; isalso
the cosine of the angle between the x} —axis and the xj—axis.

Atlast wearein aposition to make an important definition. We say that V isacartesian
vector if its components Vj’ in anew cartesian system are obtained from its components V
in the previously specified system by therule

3
Vj/=Z|iiVi- (1.3
i=1

This definition indicates that the vector V has meaning, independent of any cartesian
coordinate system. WhenweexpressV intermsof itscomponents, then they will bedifferent
in different coordinate systems; and those componentstransform according to therule (1.3).
Thisruleisthe defining property of a cartesian vector.

It is time now to introduce the Einstein summation convention — which is simple to
state, but whose utility can be appreciated only with practice. According to this convention,
we don’t bother to write the summation for equations such as (1.3) which have a pair of
repeated indices. Thus, with this convention, (1.3) iswritten

V]-/ =1ijVi (1.4
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ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

and the presence of the “ Zf’:l” is flagged by the once-repeated subscript i. Even though
we don’'t bother to write it, we must not forget that this unstated summation is still required
over such repeated subscripts.

[Looking ahead, we shall find that the rule (1.4) can be generalized for entities called
second-order cartesian tensors, symbolized by A, with cartesian coordinates that differ in
the new and original systems. The defining property of such atensor isthat its components
in different coordinate systems obey the relationship

Al = Aidijlia ]

As an example of the summation convention, we can write the scalar product of two
vectorsa and b as

a-b=ah.

The required summation over i in the above equation, is (according to the summation
convention) signalled by the repeated subscript. Note that the repeated subscript could be
any symbol. For examplewe could replacei by p, andwritea;bj = apby. Becauseit doesn’t
matter what symbol we use for the repeated subscript in the summation convention, i or p
hereis called adummy subscript. Any symbol could be used (aslong asit is repeated).

The Einstein summation convention is widely used together with symbols §;; and «;jk
defined as follows:

8”:0 for |75J, and 8”:1 fOI‘|:J7 (15)

and
gijk=0 ifanyofi, j, k areequal, otherwise
(1.6)
£123 = €312 = €231 = —€213 = —&321 = —&132 = 1.

Note that «;jk is unchanged in value if we make an even permutation of subscripts (such as
123 — 312), and changes sign for an odd permutation (such as 123 — 213).
The most important properties of the symbolsin (1.5) and (1.6) are then
Sijaj=a,  &ijkdjb=(@x b, 7

for any vectors a and b; and the symbols are linked by the property

it i1 S
gikélmn = |8im 8jm Skm (1.8)
din (Sjn Skn
from which it follows that
&ijk€ilm = 8}18km — 8jmdKi- (19
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6 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

To prove(1.8), notethat if any pair of (i, j, k) or any pair of (I, m, n) areequal, thenthe
left-hand side and right-hand side are both zero. (A determinant with apair of equal rowsor
apair of equal columnsis zero.) If (i, j, k) = (I, m, n) = (1, 2, 3), then the left-hand side
and right-hand side are both 1 because e123¢123 = 1 and

100
01 0/=L1 (1.10)
0 1

1
0
Any other example of (1.8) where the left-hand side is not zero, will require that the
subscripts (i, j, k) be an even or an odd permutation of (1, 2, 3), and similarly for the
subscripts (k, I, m), giving a value (for the left-hand side) equal either to 1 or to —1. But
the same type of permutation of (i, j, k) or (I, m, n) (whether even or odd) will also apply
to columns or to rows of (1.10), giving either 1 (for a net even permutation) or —1 (for a
net odd permutation), and again the left-hand side of (1.8) equals the right-hand side.

Becauseof thefirst of therelationsgivenin (1.7), 5;j issometimescalled the substitution
symbol or substitution tensor. In recognition of its originator it also called the Kronecker
delta. ¢jk is usualy called the alternating tensor.

(1.9) follows from (1.8), recognizing that we need to alow for the summation over i.

Thus
i Sji ki
gijk€ilm= | &1 8ji Ok
dim 5jm Skm

= 8;i (8j16km — Jjmdk) — 3ji (8i18km — Simdki) + ki (§i18jm — dimdj1),

but here §;; is not equal to 1 (which is what most people who are unfamiliar with the
summation convention might think at first). Rather, §j; = Zf’:l 8ii =811+ 822 + 833 =3.
Using thisresult, and the “ substitution” property of the Kronecker delta function (the first
of therelationsin (1.7)), wefind

gijk&ilm = 3(8j10km — 8jmdki) — (8j18km — jmdki) + (Bkidjm — Skmdj1),

which simplifies to (1.9) after combining equal terms. As we should expect, the subscript
i does not appear in the right-hand side.

1.1 Tensors

Tensors generalize many of the concepts described above for vectors. In this Section we
shall look at tensors of stress and strain, showing in each case how they relate a pair of
vectors. We shall develop

(i) thephysical ideas behind a particular tensor (for example, stress or strain);

(if)  the notation (for example, for the cartesian components of atensor);

(iii) away to think conceptually of a tensor, that avoids dependence on any particular
choice of coordinate system; and
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1.1 Tensors

S isaninterna surface, inside a medium within which stresses are acting.
dSisapart of thesurface S x isthe point at the center of 3S.

FIGURE 1.4

The definition of traction T acting at a point across the internal surface S with normal n (a unit
vector). The choice of signissuch that traction isapulling force. Pushing isin the opposite direction,
so for afluid medium, the pressurewouldbe —n - T.

(iv) theformal definition of atensor (ana ogousto the definition of avector based on (1.3)
or (1.4)).

To analyze the internal forces acting mutually between adjacent particles within a
continuum, we use the concepts of traction and stresstensor . Traction isavector, being the
force acting per unit area across an internal surface within the continuum, and quantifies
the contact force (per unit area) with which particles on one side of the surface act upon
particles on the other side. For agiven point of the internal surface, traction is defined (see
Fig. 1.4) by considering theinfinitesimal force §F acting across an infinitesimal area s S of
the surface, and taking the limit of 6F/8S as §S— 0. With a unit normal n to the surface
S, the convention is adopted that §F hasthe direction of force due to material on the sideto
which n points and acting upon material on the side from which n is pointing; the resulting
tractionisdenoted as T (n). If 8F actsin thedirection shownin Fig. 1.4, tractionisapulling
force, opposite to a pushing force such as pressure. Thus, in afluid, the (scalar) pressureis
—n - T(n). For asolid, shearing forces can act acrossinternal surfaces, and so T need not be
parallel to n. Furthermore, the magnitude and direction of traction depend on the orientation
of the surface element § S across which contact forces are taken (whereas pressure at a point
inafluidisthe samein all directions). To appreciate this orientation-dependence of traction
at a point, consider a point P, as shown in Figure 1.5, on the exterior surface of a house.
For an element of areaon the surface of thewall at P, thetraction T (nq) iszero (neglecting
atmospheric pressure and winds); but for ahorizontal element of areawithin thewall at P,
the traction T (n2) may be large (and negative).

Because T can vary from place to place, as well as with orientation of the underlying
element of areaneeded to definetraction, T is separately afunction of x and n. So wewrite
T=T(,n).

At agiven position X, the stress tensor is a device that tells us how T depends upon n.
But before we investigate this dependence, we first see what happensif n changes sign.
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8 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

FIGURE 1.5
T(n1) # T(n2). Thetraction vector in general is different for different orientations of the area across
with the traction is acting.

T(n)

T(=n)

FIGURE 1.6
A disk with parallel faces. The normals to opposite faces have the same direction but opposite sign.

By considering a small disk-shaped volume (Figure 1.6) whose opposite faces have
opposite normals n and —n, we must have a balance of forces

T(—n)=-T(n) (1.11)

otherwise the disk would have infinite acceleration, in the limit as its volume shrinks down
to zero. (There is negligible effect from the edges as they are so much smaller than the flat
faces.)

In asimilar fashion we can examine the balance of forces on a small tetrahedron that
has three of its four faces within the planes of a cartesian coordinate system, as shown in
Figure 1.7. The oblique (fourth) face of the tetrahedron has normal n (a unit vector), and
by projecting area ABC onto each of the coordinate planes, we find the following relation
between areas:
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1.1 Tensors

T(n)

T ;(2) —X3

FIGURE 1.7
The small tetrahedron O ABC has three of its faces in the coordinate planes, with outward normals
—Xj(j =1, 2, 3) (only one of which is shown here, j = 2), and the fourth face has normal n.

(OBC, OCA, OAB) = ABC (ny, Ny, N3). (1.12)

There are four forces acting on the tetrahedron, one for each face. Thus, face OBC
has the outward normal given by the unit vector —X; = (-1, 0, 0). This face is pulled by
the traction T(—X1), and hence by the force T (—X1) times area OBC (remember, traction
isforce per unit area). The balance of forces then requires that

T(n) ABC + T(—%1) OBC + T(—%2) OCA+T(—%3) OAB=0.  (L13)

(If the right-hand side were not zero, we would get infinite acceleration in the limit as the
tetrahedron shrinks down to the point O.) Using the two equations (1.11)—(1.13), it follows

that
T(n) =T&)N1+ T (X2 + T(R3)n3
=T(&j)n;j (using the summation convention). (119
If we now define

i =TI (%), (1.15)

then
Ti(n) = 7jin;j. (1.16)

If we can show that zjj = 7j, then

T =5jni. (1.17)
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10 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

This equation gives a smple rule by which the components of the traction vector, T;, are
given asalinear combination of the components of the normal vector nj. The nine symbols
7jj are the cartesian components of a tensor, namely, the stress tensor. First, we'll show
that indeed tj; = 7ij. Second, we'll show that the symbols zjj specify a surface which is
independent of our particular choice of coordinate axes.

1.1.1 SYMMETRY OF THE STRESS TENSOR

Toseewhy thej; aresymmetric, we can look in somedetail at aparticular example, namely
121 and 112. They quantify components of thetractions T (force per unit area) acting on the
faces of asmall cube with sides of length §x3, §x2, X3 as shown in Figure 1.8.

Theforce acting on the top face of the cube istraction x area, whichis T (X2) §X1 §x2.
And on the opposite face the force is T(<x») §X1 8x». From these two faces, what is the
strength of the resulting couple that tends to make the cube rotate about the x3 axis? The x»
and x3 components of T have no relevance here (they are associated with the tendency to
rotate about different axes) — only the x; component of T, whichis 1. Figure 1.8b shown
the resulting couple, and it is 721 §X1 8X2 §X3 in the negative x3 direction.

Whenwelook at thetractionsacting on theright and | eft faces, as shownin Figure 1.8c,
the couplethat results (see Fig. 1.8d) is t12 8X1 8X2 §X3 in the positive x3 direction. No other
coupleisacting in the x3 direction, so the two couples we have obtained must be equal and
opposite, otherwise the cube would spin up with increasing angular velocity. It follows that
T21 = T12.

By similar arguments requiring no net couple about the x; or x, directions, we find
T3 = T3 @Nd 131 = T13. SO ingenera, tji = tjj and we have proven the symmetry required
to obtain (1.17) from (1.16).

1.1.2 NORMAL STRESS AND SHEAR STRESS

Figure 1.9 shows two components of atraction vector T, one in the normal direction, and
the other in the direction parallel to the surface acrosswhich T acts. The normal stress, o,
isgiven by

on = component of traction in the normal direction
=Tn (1.18)
=Tjn;
=1jninj.

Note that normal stress, as defined here, is a scalar. But it is associated with a particular

direction, and the vector onn is often used for the normal stress (as shown in Figure 1.9).
The shear stressisthe component of T in the plane of the surface acrosswhich traction

isacting, so it may be evaluated by subtracting the normal stress opn from T itself:

shear stress=T — (T -n) n. (1.19)
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FIGURE 1.8

1.1 Tensors
(b)
area= &x; dx3
T
%

distance = dx,

—

1
C) c

12

distance = &x,

area= Ox,0X4

A small cubeis shown, with an analysis of the couple tending to make the cube spin about the Ox3
axis. Thus, in (@) is shown the tractions acting on the top and bottom faces. In (b) is shown the couple
associated with these tractions which will tend to make the cube rotate about the axis into the plane
of the page — the couple consists of a pair of forces t216x1 §x3 separated by a distance §x,. In (c)
is shown the tractions acting on the right and left faces, and in (d) the associated couple tending to
make the cube rotate about an axis out of the plane of the page.
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12 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

A T(n)
|
normal stress= (T(n).n)n |
|
|
shear stress=T — (T(n).n) n

FIGURE 1.9
Thetraction T is shown resolved into its normal and shear components.

norma to X at P

FIGURE 1.10

¥ isa“quadric surface” centered on the coordinate origin O. P isthe point on X at the place wherea
line drawn from the origin in the direction of n (aunit vector) meets the quadric surface. The normal
to X at P isshown, and in general it will bein adirection different from the direction of n.

It is unfortunate that the word “stress’ is used for scalar quantities asin (1.18), for vector
quantities asin (1.19), and for tensor quantitiesasin (1.15).

In a fluid with no viscosity, the scalar normal stress is equal to pressure (but with
opposite sign, in our convention where traction is positive if it is pulling). And in such a
fluid, the shear stresses are all zero.

1.1.3 A QUADRIC SURFACE ASSOCIATED WITH THE STRESS TENSOR

The surface T given by the equation
Tjj X Xj = constant (1.20)

has properties that are independent of the coordinate system used to define components X;
and tjj.

% isathree-dimensional surface, either a spheroid or a hyperboloid (which may have
one or two separate surfaces). Because (1.20) has no linear terms (termsin x; only), X isa
surface which is symmetric about the origin O, as shown in Figure 1.10. (If x isapoint on
the surface X, then so isthe point —x.)

If P isat position x, then
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Box 1.1
On finding the direction of a normal to a surface

If ¥ isthe surface composed of points x which satisfy the equation
F(x)=c

for some constant c, then consider apoint x + §x which also lieson X.
Then F(X + 8X) =c, sO

F(x+4+68x) — F(x) =0.

But
oF . .
F(X 4 8X) = F(X) + 8X; P (Taylor series expansion)
|
= F(x) +8x- VF.
Therefore,
8x-VF =0

for al directions §x such that x and x + §x liein the surface . Since §x istangent to X at

the point X, and §x - VF = 0 for al such tangents, this last equantion shows that VF has

the defining property of the normal to X at x (it is perpendicular to al the tangents at x).
We conclude that the normal to the surface F(x) = ciisparalel to VF.

vector OP=x=0Pn (1.21)

and the length OP is related to the normal stress. This follows, because
constant = ;X X;
= 17jjOP njOP n;
= OP? 4jjnin;
=O0P?0,  from(1.18).

Hence,
(1.22)

This is a geometrical property of X, which depends only the shape of the quadric
surface, not its absolute size.

Another such geometrical property is associated with the normal to X at P. We can
use Box 1.1 to see that this normal isin the direction whose i -th component is
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14 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES
9 (TkI Xk X)) aka + Tk X 0% (chain rule)
7 (TAXKX) = T X + Xk
X X X

= 14dikX + T Xkdil  (the partial derivatives are Kronecker delta functions)

= Tj|X| + Tki Xk (using the substitution property (1.7))

=27ijXj (using symmetry of the stress tensor, and changing dummy subscripts)
= 20P 1jjn; (from (1.22))

=20P T, (from (1.17)).

It follows that
thenormal to ¥ at P isparallel to the traction vector, T. (1.23)

Theresults (1.22) and (1.23) arethetwo key geometrical features of the quadric surface
representing the underlying tensor ¢, and they are independent of any coordinate system.
Going back to Figures 1.4 and 1.9, the quadric surface shownin Figure 1.10isageometrical
devicefor obtaining the direction of the traction vector, and the way in which normal stress
variesasthe unit normal n varies (specifying the orientation of an areaelement acrosswhich
the traction acts).

We can for example see geometrically that there are three specia directions n, for
which the traction T (x) is parallel to n and hence (for these n directions) the shear stress
vanishes. To obtain the same result algebraically, we note that these specia values of n are
such that T; o n; and so, using (1.17),

7jjnj = An;. (1.24)

Asdiscussed in Box 1.2, this last equation has solutions (for n), but only if A takes on one
of three special values (eigenvalues); and the three resulting values of n (one for each A
value) are mutually orthogonal.

1.1.4 FORMAL DEFINITION OF A SECOND ORDER CARTESIAN TENSOR

If two cartesian coordinate systems Oxixpx3 and Ox;xyxj5 are related to each other as
shown in Figure 1.3, with direction cosines defined by ljj = X; - Xj, then the entity A isa
second order cartesian tensor if its components Ajk in the Ox;Xox3 system and A’jI in the
OxX5xj5 System are related to each other by

A/jl = Aidijlu. (1.25)

It is left as an exercise (in Problem 1.1) to obtain the reverse transformation, and to
show that the associated quadric surface Ajjx;Xj = ¢ is given also by A{jx{x] =cC.

The tensor A is isotropic if its components are the same in the origina and the
transformed coordinate systems. It follows geometrically that the quadric surface of such
atensor is simply a sphere, and that Ajj = Al j = constant x §jj. The stress tensor in an

inviscid fluid isisotropic (Problem 1.4 asks you to prove this).
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1.1 Tensors
Box 1.2
On solutions of
A - X=AX
where A isa symmetric real matrix
Here we briefly review the main properties of the set of linear equations
AjjXj = AXi (where Ajj=Ajj;i=1,...,mand j=1,...,n). (N}

These are n equations in n unknowns. In the present chapter, usualy n = 3.
Equation (1) is fundamentally different from the standard linear problem A - x = b, or

Aijxi = b, 2

which has a straightforward solution provided det A £ 0, for then the inverse matrix exists
and x = A~1. b. Notethat for equation (1) there is no restriction on the absolute size of x:
if x isasolution of (1), then soiscx for any constant ¢. But if x isasolution of (2), thenin
general cx will not be a solution.

Equation (1) hasthetrivial solution x = 0, but we areinterested in non-trivial solutions,
for which at least one component of x is non-zero. It follows that equation (1) represents
aset of n scalar relations between n — 1 variables, for example xj/x1 (j =2,...,n). If
x1 = 0 then we can instead divide (1) by some other component of x.

We can use the Kronecker delta function to write (1) as

(Aij — Adijxj =0, or as (A=Al -x=0, (1, again)
where | is the identity matrix, ljj = djj, with 1 at every entry on the diagonal and O
everywhere else.

If det (A — Al) # 0, then the inverse (A — Al)~1 exists and the only solution of (1) is
x= (A —Al)~1.0, giving x = 0. It follows that the only way we can obtain non-trivial
solutions of (1), isto require that

det (A — A1) =0. €)

Equation (3) is an n-th order polynomial in A, and in genera it has n solutions,
2@ (@ =1,...,n), caled eigenvalues of the matrix A. For each eigenvalue, we have
an associated eigenvector x@ satisfying

A - x@ = @x@ (ot summed over ). @

These eigenvectors (therearen of them, sincea = 1, ..., n) arethe vector solutions of (1),
so they havethe special property that A - x® isin the same direction asthevector x(®) itself.
Equation (1) imposes no contraint on the absol ute size of solutions such asx@, and we are
free to normalize these solutions if we wish. A common choiceisto make x@ . x@ =1,

The final important property of the eigenvectors, is that any two eigenvectors corre-
sponding to two different eigenvalues must be orthogonal. To prove this, we consider two
eigenvalues A and 2®) with corresponding eigenvectors x@ and x®, and A@ £ A (®),
Then

A =2@xand AP = 2O, (5)
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16 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

BOX 1.2 (continued)

We can multiply both sides of the first of equations (5) by xi(ﬂ ) and sum over i, and multi ply
both sides of the second of equations (5) by xi("‘) and sum over i, giving

A OX ) = @x@x(B @@ h) (6a)

and

X P = OO 5 Oy B, (6b)

Note herethat we are using the Einstein summation conventionin theusual way for repeated
subscripts, but we are not using it for repeated superscripts « and 8. [The summation
convention does not work naturally with such superscripts, because one side of equations
such as (4) or (6a) has repeated superscripts, and the other side has the superscript in just
one place.]

Because A isasymmetric matrix, Ajjx fﬂ) x® = Aji xfﬁ)x(a) But we can use any symbol
for repeated subscripts, and in particular we can exchange the symbolsn and j inthislast
expression, sothat A;j x(ﬂ)x(“) Aji xw)x("‘) Aij x(ﬂ)x("‘) Aij x("‘) ) Hence, theleft-
hand side of (6a) equals the | eft- hand S|de of (6b). Subtractl ng (6b) from (6d), we see that

(A 3By x@ 5B _ .

But the first of these factors is not zero, since we took the eigenvalues to be different
(L@ £ 2.®)), It follows that the second factor must be zero, x@ - x® = 0, and hence that
the elgenvectors corresponding to different eigenvalues are orthogonal .
The best way to become familiar with the eigenval ue/eigenvector properties described
above, isto work through the details of afew examples (such as Problem 1.2).

Theaboveformal definition of atensor israrely useful directly, asaway to demonstrate
that an entity (suspected of being atensor) isin fact a tensor. For this purpose, we usually
rely instead upon the so-called quotient rule, which statesthat if therelationship Tix Ax = B;
istrueisal coordinate systems, where Ay and B; are the components of vectors A and B,
then the Tk are components of a second order cartesian tensor provided the components of
A can all be varied separately. The statement that “the relationship Tix Ax = Bj istrueisal
coordinate systems’ means that Tj/kA{ = Bj aswell as TikAx = B.

To show that the quotient rule means the formal definition is satisfied, note that

T\A =Bj
= Biljj since B is avector
= TikAclij using Tik Ak = B;

=TikAlulij fromthereversetransform A = Ally — see Problem 1.1.

Hence
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1.2 The strain tensor

u(x + dx) Q

/

u(x) P

X

&P
\ép

(0]

FIGURE 1.11

A line element §x is shown with ends at Py and Qo, and also after the neighborhood of Py has
undergone deformation. The new position of the line element isfrom P to Q. Ppisat X, Qpisat
X+ 8x, Pisatx+uand Qisat X + 8x + u(x + 8x).

(Tj/| — TiklijlkI)A( =0. (1.26)

This is a set of three scalar equations (j = 1, 2, or 3). But since they are also true
as the components A are varied independently, it follow that the coefficients of the
Al(I =1, 2, or 3) must al vanish. So TJ-’| = Tikljjlk, and T satisfiesthe formal definition of
atensor (compare with (1.25)).

The entity we have been calling the stress tensor, T, satisfies the quotient rule (see
equation (1.17), in which the components of t relate the traction vector and n). It isfor this
reason that indeed we are justified in referring to t as a second order cartesian tensor.

1.2 The strain tensor

Two different methods are widely used to describe the motions and the mechani cs of motion
in a continuum. These are the Lagrangian description, which emphasizes the study of a
particular particle that is specified by its original position at some reference time, and the
Eulerian description, which emphasizes the study of whatever particle happens to occupy
aparticular spatial location. Note that a seismogram is the record of motion of a particular
part of the Earth (namely, the particles to which the seismometer was attached during
installation), so it is directly arecord of Lagrangian motion. A pressure gauge attached to
the sea floor also provides a Lagrangian record, as does a neutrally buoyant gauge that is
freeto movein the water. But agauge that isfixed to the seafloor and measuring properties
(such asvelocity, temperature, opacity) of thewater flowing by, providesan Eul erian record.
We use the term displacement, regarded as afunction of space and time, and written as
u = u(x, t), to denote the vector distance of a particle at timet from the position x that it
occupies at somereferencetimetg, often taken ast = 0. Since x does not change with time,
it follows that the particle velocity is du/at and that the particle acceleration is 82u/at2.
To analyze the distortion of a medium, whether it be solid or fluid, elastic or inelastic,
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18 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

we use the strain tensor . If aparticleinitially at position x is moved to position x 4 u, then
the relation u = u(x) is used to describe the displacement field. To examine the distortion
of the part of the medium that was initialy in the vicinity of x, we need to know the new
position of the particle that was initialy at x + §x, where §x is a small line-element. This
new position (see Figure 1.11) is X + X 4+ u(X + 8x). Any distortion is liable to change
the relative position of the ends of the line-element §x. If thischangeis$u, then §x 4 Su is
the new vector line-element, and by writing down the difference between its end points we
obtain

8X 4 U = X4 X + U(X + 8X) — (X + u(X)).

Since|8x| isarbitrarily small, we can expand u(x 4 8x) asu + (§X - V)u plusnegligible
terms of order |8x|2. It follows that Su is related to gradients of u and to the original line-
element &x via

Ui
Su=(8x-V)u, or Suj = X 8X;j. (2.27)

However, we do not need al of the nine independent components of g% to specify true
distortion in the vicinity of x, since part of the motion is due merely to an infinitesimal
rigid-body rotation of the neighborhood of x. We shall write

s = gy = (240U sy 1 (28 0UE)
' 0X; =2 0X; X 2 0X; X y

and use the result given in Problem 1.8 to interpret the last term of the above equation.
Introducing the notation u; j for g%'j we then see that (1.27) can be rewritten as

sui = (ui.j + uj,)x; + (curlu x 8x)i, (1.28)

and the rigid-body rotation is of amount %curl u. The interpretation of the last term in
(1.28) as arigid-body rotation is valid if |u; j| < 1. If displacement gradients were not
“infinitesimal” in the sense of this inequality, then we would instead have to analyze the
contribution to su from afinite rotation—amuch more difficult matter, sincefinite rotations
do not commute and cannot be expressed as vectors.

In terms of the infinitesimal strain tensor, defined to have components

8j = 3(uj +uj), (1.29)

theeffect of truedistortion on any line-element §x isto changetherelative position of itsend
points by adisplacement whose i -th component is g8x;. By the quotient rule discussed in
Section 1.1.4, it follows that e isindeed a second order cartesian tensor. Rotation does not
affect the length of the element, and the new length is
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1.2 The strain tensor

[8X 4 8U| = /8X - 8X + 28U - 8X (neglecting Su - §u)
= /8Xi8% + 268x8x;j (from (1.28), and using (curl u x 8x) - §x = 0)

= [8X| (L + &jvivj) (tofirst order, if | & | < 1),
where v is the unit vector 8x/ |8x|. It follows that the extensional strain of a line-element

originaly in the v direction, which we define to be

e(v) = changein length _ PQ—PoQo
V= original length ~ PgQo

is given by
e(v) =§gjvjvj. (1.30)

Strain isadimensionless quantity. The diurnal solid Earth tide |eads to strains of about
10~7. Strains of about 10~* due to seismic surface waves from distant small earthquakes
can routinely be measured with modern instruments.

121 THE STRAIN QUADRIC

We can define the surface & xjx; = constant. If it is referred to the axes of symmetry as
coordinate axes, this quadric surface becomes Ejx? + Ex2 + Egx? = constant and the
strain tensor components become

E1 0 O
e=|l 0 E o0].
0 0 E;

The Ej(i =1, 2, or 3), called principal strains, are eigenvalues of the matrix

enn €ep 313
e=|ex ex 33
€13 €3 333

(thismatrix isdifferent for different cartesian coordinate systems, but itseigenvaluesarethe
same). Figure 1.12 shows an exampl e of the strain quadric, in the case that the E; do not all
havethesamesign. Inthiscase, T isahyperboloid. Thefigure caption describesthe two key
geometrical propertiesof X, analogousto the results shown previously for the stressquadric
(see (1.22) and (1.23)). Thefirst property, e(v) o« OP~2, follows from taking x = OPv and
substituting for the componentsof x inegj xjX; = constant. The second property, concerning
the direction of the displacement due to distortion, follows from showing that the direction
of thenormal at P isparallel to V(g xi X;j), which hasi-th component 2 jx; = 20Pgjv;.
In terms of the line-element éx, this i-th component is proportional to g;x;, and indeed
thisisin the displacement direction due to the distortion (see comments following (1.29)).

The physical interpretation of the axes of symmetry of X, is that these are the
three specia (mutually orthogonal) directions in which an original line-element is merely

Mrking pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR  2004/9/8 21:28

19



20 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

principal axis#2

principal axis#1

FIGURE 1.12

A hyperboloid is shown here, as an example of a strain quadric X. The third principa axis is
perpendicular to the first two (out of the page). For a line-element in the v direction, extensiona
strain is inversely proportional to OP2. The displacement of the end of the line-element, due to
distortion, isin the direction of the normal at P.

shortened or lengthened by the deformation. For these special directions, line-elements are
not subject to any shearing motions. The only rotation, is that which applies to the whole
neighborhood of the line-element as arigid body rotation (distinct from deformation).

1.3 Some simple examples of stress and strain

Examples are

(i)  Compacting sediments, which shrink inthe vertical direction but stay the sameinthe
horizontal direction. Think of them asbeinginalargetank (see Figure 1.13). If x; and
X2 are horizontal directions with x3 vertical, then the strain tensor has components

0 0 O
e=|0 0 O
0 0 e33

Compression at depth, from the weight of those above, leadsto es3 < 0.

But although the strain tensor has only one non-zero component, the stresstensor
has non-zero values of 711, t22, T33. If the sedimentslack strength, then the stresswill
essentially bethe same asif the material were composed of afluid (lacking any ability
to resist shearing forces). In this case, the stress at depth xs is due solely to pressure
generated by the overburden. There are no shearing forces, and

P 0O O X3
t=—|0 P O whereP:/ 09 dxs.
0 0P 0
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1.3 Some simple examples of stress and strain

x

FIGURE 1.13
Sediments, compressed vertically.

(i)

(iii)

A wirethat isstretched in the x; —direction will shrink in the perpendicular directions
X2 and X3. The strain tensor is

em 0 O
e=| 0 e 0|, withey1>0anden=e33<0.
0 0 e

The stress tensor has only one non-zero component:

T11 00
t=| 0 0 O
0 0O
We usetheterm pure shear to describe the type of deformation shownin Figure 1.14,
inwhich asmall rectangle is subjected to the stressfield

0O 12 O
T= 712 0 0
0O 0 O

In thisdeforamation the point B has moved to the right from its original position, by
u
an amount a—axz, and the point A has moved up an amount 8—8x1 In the case

%f pure éshear there is no rigid body rotation. So curlu =10 WhICh means here that

u u

a_xl 8_2 The line element OBy has been rotated over to the right (clockwise)
2 X1

. ou .
by an angle given by —18xz = 8Xp = 8—1 The line element O Ag has been rotated

X2
du2 3U2 duq
anticlockwise by the angle 875)(1 = 8X1 = Frvaliadron since thereis no rigid body
1 2
rotation, and the strain tensor components are

0 ep O

e=|e1 0 O

0 0O O
aul 8uz

Always, eji = gj. And for pure shear, e, = ey = —
The reduction in the original 7/2 angle at O (Fzgure 1.14) is 2ey». The ratio
between stress and this angle reduction,
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22 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES
X2 X2
original shape deformed shape (pure shear)
Bo B
%, /
A
(o] 0%y Ay X o)
FIGURE 1.14

A small rectangular prismis sheared with no changein area. The shearing stresses 712 and t21(= t12)
are the same as those shown in Figure 1.8b and 1.8d.

X, X2
angle=2e, /angle = %2
%,
angle= e,
(o) Xy X O
simple shear _ pure shear as shown above,
- plus a clockwise rotation of the
whole block through an angle e, ,
FIGURE 1.15

A simple shear is shown on the l€eft, with ug o< X2, so that an original rectangle in the Oxixo-planeis
now sheared with motion only in the x;-direction. This motion is equivalent to a pure shear followed
by aclockwise rigid-body rotation. The angle reduction at the origin is 2e;, in both cases. Rigidity is
the ratio between shear stress and the angle reduction. For aviscous material, the material continues
to deform as long as the shear stressis applied, and viscosity is defined as the ratio between shear
stress and the rate of angle reduction.

712
= 131
o1 (1.31)
isknown astherigidity.
(iv) Consider adeformation in which the displacement isu = (uy, 0, 0) and u; depends
on x only via the xp-component. An example is shown in Figure 1.15, and this

situation is called a simple shear. It can be regarded as a pure shear described by
1 3U1

2 3X2
The deflnltlon of rigidity is easier to understand with a simple sheari ng defor-

au
mation. It isthe shearing stress 121 divided by the displacement grad|ent (equal
to the angle reduction as shown in Figure 1.15).

10uq
ep =6 = > 9% , plus arigid rotation of amount 1 seurlu = (0 0, —
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1.4 Relations between stress and strain

extension
(strain) " strain hardening

onset of yielding

Stedl \ /\ strain weakening

Rubber

force (tension, stress)

FIGURE 1.16

For some solid materials, strain growsin proportion to stress at low stress, but the linearity islost and
strain either increases more slowly with increasing stress (for example, rubber), or increases more
quickly (for example, steel). At high enough stress, the material breaks. Thisis a schematic diagram:
some solids break at extensional strainsassmall as 10~2, and some forms of rubber maintain linearity
even for strains of order 1.

All of the above examples in this subsection are elastic examples. Stress and strain go to
zero together, if 7jj = Gjjk &, and there is no time-dependence.

Real materials can be quite different, exhibiting viscous behavior, or strain hardening,
or atendency to yield at high values of applied stress (see Figure 1.16). We take up this
subject next, with emphasis on solids.

1.4 Relations between stress and strain

A medium is said to be elastic if it possesses a natural state (in which strains and stresses
are zero) to which it will revert when applied forces are removed. Under the influence of
applied loads, stress and strain will change together, and the relation between them, called
the constitutive relation, is an important characteristic of the medium. Over 300 years
ago, Robert Hooke summarized the relationship today known as Hooke's Law between
the extension of a spring, and the force acting to cause the extension. He concluded
experimentally that force o extension. The constant of proportionality here is often called
amodulus, M (say), and then

force= M x extension.

(Hooke's Law appeared originally as an anagram, ceiiinosssttuv, of the Latin phrase ut
tensio, sic vis— meaning “ as the extension, so the force.” Some scientific personalities are
very strange.)

The modern generalization of Hooke's law is that each component of the stress tensor
isalinear combination of all components of the strain tensor, i.e., that there exist constants
Cijk such that

A material that obeys the constitutive relation (1.32) is said to be linearly elastic. The
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24 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES
quantities Gjjx are components of afourth-order tensor, and have the symmetries
Cjipg = Gijpq (dueto 7jj = 1jj) (1.33)
and
Cijgp=Cijpg  (duetoegp = epq). (1.34)
It is aso true from a thermodynamic argument that
Cpaij = Cijpas (1.35)

for a material in which the energy of deformation (associated with tensors T and €) does
not depend on the time history of how the deformation was acquired.

The ¢jjk are independent of strain, which is why they are sometimes called “elastic
constants,” although they are varying functions of position in the Earth. In general, the
symmetries (1.33), (1.34), and (1.35) reduce the number of independent components in
Gijk from81to 21. Thereis considerable simplification in the case of an isotropic medium,
since ¢ must beisotropic. It can be shown that the most general isotropic fourth-order tensor,
having the symmetries of c, has the form

Cijkl = Adijd + 1 (Sikdjl + il djK)- (1.36)

This involves only two independent constants, A and w, known as the Lamé moduli.
Substituting from (1.36) into (1.32), we see that the stress—strain relation becomes

Tjj = Adjj 6k + 216 (1.37)

in isotropic elastic media.

If we consider only shearing stresses and shearing strains, using (1.37) with i # j,
then 7jj = 216 and p hereis just the rigidity we introduced earlier, in (1.31). For many
materials, the Lamé moduli A and 1« (sometimes called Lamé constants) are approximately
equal. They can be used to generate a number of other constants that characterize the
propertiesof material which are subjected to particul ar typesof strainand stress, for example
the stretched wire discussed as item (ii) of Section 1.3. For that example, (1.37) gives

711 = A(€11 + €22 + €33) + 21e11
0= x(ew1 + e + e33) + 2uexn (1.38)
0= A(e11 + €+ €33) + 21€33.

By comparing the second and third of these equations, we seethat e;; = e33; and then from
these same two equationsit followsthat Ae11 + 2(A + w)ex = 0. Poisson’sratio is defined
as
shrinking strain
V=
stretching strain
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Problems

in this example of simple stretching, so

—e» A 1
Ten T 20tw 4 (139
if 2 and p are approximately equal (which isthe case for many common materials).

Another important class of materials is that for which shearing stresses lead to flow.
Such materials are not elastic. We introduce the deviatoric stress as the difference between
7jj and the average of the principal stresses, whichis %rkk and which we can symbolize by
—P. (Inaninviscid or perfect fluid, P with thisdefinitionissimply the scalar pressure.) The
viscosity of amaterial that can flow, such as syrup (with low viscosity) or the Earth’s mantle
(with high viscosity, and significant flow occurring only over many millions of years), is
the constant of proportionality between the deviatoric stress and twice the strain rate. Thus,
the viscosity v is given by

7ij + Pdij = 2v§;. (1.40)

A factor 2 appears here, for the same reason that a factor 2 appears in the definition of
rigidity (see (1.31)): both rigidity and viscosity are better appreciated for simple shearing
motions, than for pure shearing. For aviscous material, simple shearing due to application

Oaf_le as shown in Figure 1.15 resultsin angle reduction of an original rectangle at the rate
a_il = 2&15. Viscosity is shear stress divided by the spatial gradient of particle velocity.
2

Suggestions for Further Reading

Menke, William, and Dallas Abbott. Geophysical Theory, pp 41-50 for basic properties of
tensors, pp 237-252 for properties of strain and stress tensors. New York: Columbia
University Press, 1990.

Problems

1.1 Consider thetwo setsof cartesian axesshowninFigure 1.3, withljj asthedirection
cosine of the angle between Ox; and Ox} . Thus, the unit vector x; expressed in
Ox1X2x3 coordinates has the components (111, 121, 131).

&) Show in general that ljjlix = &jk and also that ljjlxj = dik.

b) Hence show that (I*l)ij =1ji.

¢) We know from (1.4) that a vector V having components V; in the Ox3Xox3
system has components in the Ox} ;x5 system given by Vj’ =1ijVi. Show that
the original components are given in terms of the transformed components by

Vi = lyj Vj/.

d) For two vectorsa and b with components defined in both of the two coordinate
systems, show that ajb; = a} b’j .
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26 Chapter 1 / ON VECTORS AND TENSORS, EXPRESSED IN CARTESIAN COORDINATES

€) Weknow from Section 1.1.4 that componentsof A inthetwo coordinate systems
are related by A/“ = Aikljjli. Show that A’j||pj|q| = Apg and hence that the
reverse transformation can be written as Ajx = A’j dijla-

f) The quadric surface associated with A is AjjxXj = ¢ in the Ox1X>X3 system.

Show that this same surface is Af; X/X| = ¢ in the Ox;X;x3 system.

1.2 Find the eigenvalues and eigenvectors of the following matrices:
3 -1 5 2 0.11 0.48
Az(—l 3)’ Az(z 5)’ A=(O.48 0.39>’

A:(144p—|—25q —60(p—q))

and

—60(p—q) 25p+ 144q

(normalize the eigenvectors, so that x@ . x@ = 1).
1.3 Consider a stress tensor T whose components in a particular cartesian coordinate

system are
3 -1 0
t=|-1 3 O
O 0 3

a) What are the principal stresses o1, 02, o3 in this coordinate system (order
them so that o1 < 02 < 03)? And what are the corresponding three mutually
orthogonal unit vector directions vy, vo, v3?

b) Evaluate the system of direction cosines

l1n l12 13

lo1 I I3
l31 I3z Is3

where ljj is the cosine of the angle between &; and v; (this matrix is not
symmetric).

c) Show that in the present example the matrix of |j; values has the property de-
scribed in Problem 1.1ab, namely that pre-multiplication or post-multiplication
of | by its transpose gives the identity matrix, and hence that (I*l)ij =lji.

d) Show in thisexamplethat when the principal axes are taken as coordinates, the
components of T become

op 0 O
T= 0 02 0
0O O o3

[Notethen that if the principal axes aretaken asthe coordinates O X1 X, X3, the
equation of the stress quadric issimply o1 X2 + 02X3 + 03X2 = constant.]

1.4 Supposethat at apoint insideafluid with volume V the stressfield hasthe property
that the normal stress across any surface through the point is a constant, — P
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Problems

(independent of the orientation of the surface). Show then that the corresponding
stress tensor at apoint in afluid isisotropic, and has components zjj; = —PJj;.

1.5 Show that

o = U v.u increase in volume
k=U,=V-u= —
' original volume

for a small volume element of material that is deformed. [Hint: to prove the
result, consider a small cube with faces paralld to the principal axes of strain
(the symmetry axes of the strain tensor). Alternatively, use the physical definition
of divergence (flux out of avolume, per unit volume). Theresult itself isthereason
that e and V - u are sometimes referred to as “volumetric strain.”]

1.6 The bulk modulus « of an isotropic material is defined as
-P
K= ——"—"——""—""
volumetric strain

when the material is compressed by an all-round pressure P.

a) Show that « = 1 + 2 where 1 and p are the Lamé moduli.
b) « is sometimes given other names, such the compressibility or the incompress-
ibility. Which of these two names makes more sense?

1.7 Usethealternating tensor ¢; discussed in (1.6) and (1.7) to show for vectorsa, b,
and c, that
(axbyxc=(@-cb—-(b-ca.
Using (V2u); = V2(u;), show also that
VAU=V(V-u)—V x (V xU).
[This last result, obtained here by using cartesian components, is essentialy a
definition of V2u, that can be applied to non-cartesian components]
. au;
1.8 Usingu; j to denotea—u'_, show that sjjke jkmUm, 18Xk = (Ui j — Uj,i)8X; and hence
j
that (Ui j — uj,i)éxj = (curlu x 8X)j.

1.9 Show that Poisson’s ratio (v) is% for amaterial that isincompressible.
1.10 Young'smodulus (E) isdefined asthe ratio of stretching stressto stretching strain
in the example (ii) of Section 1.3 (see also (1.39)). Show that
E_ w(3r + 2p)
T oa+u

1.11 For an isotropic elastic material, the stress is given in terms of strains by (1.37).
Show that strain is then given in terms of the stresses by

hkdij + Tij.

A
oue = ——
HeI =3 T2
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