
CHAPTER 3
On Fourier Transforms and Delta

Functions

The Fourier transform of a function (for example, a function of time or space) provides a
way to analyse the function in terms of its sinusoidal components of different wavelengths.
The function itself is a sum of such components.

The Dirac delta function is a highly localized function which is zero almost everywhere.
There is a sense in which different sinusoids are orthogonal. The orthogonality can be
expressed in terms of Dirac delta functions.

In this chapter we review the properties of Fourier transforms, the orthogonality of
sinusoids, and the properties of Dirac delta functions, in a way that draws many analogies
with ordinary vectors and the orthogonality of vectors that are parallel to different coordinate
axes.

3.1 Basic Analogies

If A is an ordinary three-dimensional spatial vector, then the component of A in each of the
three coordinate directions specified by unit vectors x̂1, x̂2, x̂3 is A · x̂i for i = 1, 2, or 3. It
follows that the three cartesian components (A1, A2, A3) of A are given by

Ai = A · x̂i, for i = 1, 2, or 3. (3.1)

We can write out the vector A as the sum of its components in each coordinate direction
as follows:

A =
3∑

i=1

Ai x̂i . (3.2)

Of course the three coordinate directions are orthogonal, a property that is summarized
by the equation

x̂i · x̂ j = δi j . (3.3)

Fourier series are essentially a device to express the same basic ideas (3.1), (3.2) and
(3.3), applied to a particular inner product space.
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62 Chapter 3 / ON FOURIER TRANSFORMS AND DELTA FUNCTIONS

An inner product space is a vector space in which, for each two vectors f and g, we
define a scalar that quantifies the concept of “a scalar equal to the result of multiplying f
and g together.” Thus, for ordinary spatial vectors x and y in three dimensions, the usual
scalar product x · y is an inner product. In the case of functions f (x) and g(x) that may be
represented by Fourier series over a range of x values such as − 1

2 L ≤ x ≤ 1
2 L , we can define

an inner product f.g by
∫ 1

2 L

− 1
2 L

f.g∗ dx . Here, g∗ is the complex conjugate of g. By analogy

with ordinary vectors we can think of
√

f. f as the real-valued positive scalar “length” of

f , where now
√

f. f =
√∫ 1

2 L

− 1
2 L

f. f ∗ dx . Even if f (x) is not a real function, f. f ∗ is real

and therefore the length
√

f. f is real.
In the case of Fourier series, we consider a space consisting of functions that can

be represented by their components in an infinite number n = 1, 2, 3, . . . of “coordinate
directions,” each one of which corresponds to a particular sinusoid.

Fourier transforms take the process a step further, to a continuum of n-values.
To establish these results, let us begin to look at the details first of Fourier series, and

then of Fourier transforms.

3.2 Fourier Series

Consider a periodic function f = f (x), defined on the interval − 1
2 L ≤ x ≤ 1

2 L and
having f (x + L) = f (x) for all −∞ < x < ∞. Then the complex Fourier series expansion
for f is

f (x) =
∞∑

n=−∞
cn e2iπnx/L . (3.4)

First we define

I (l) =
∫ 1

2 L

− 1
2 L

e2iπlx/L dx .

Then

I (l) = L

2iπl
(eiπl − e−iπl)

for l �= 0. If l is an integer, eiπl = e−iπl and I (l) = 0. If l = 0, then I (0) = ∫ 1
2 L

− 1
2 L

1 dx = L .

It follows that

∫ 1
2 L

− 1
2 L

e2iπ(n−m)x/L dx = L δnm, (3.5)

and we can find the coefficients in (3.4) by multiplying (3.4) through by e−2iπmx/L and
integrating over x from − 1

2 L to + 1
2 L . Here we can work with the inner product space

specified in Section 3.1. We can think of (3.5) as giving the component of the function
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FIGURE 3.1
The values of f (x) are shown from x = −1 to x = 4 together with S1, S2, S3, and S4 as heavy
lines from x = −π/10 to x = 11π/10, and S10, S20, and S40 as lighter lines from x = −π/100 to
x = 11π/100. Further detail is given with an expanded scale in the next Figure.

e2iπnx/L in the direction of the function e2iπmx/L . In application to (3.4), we find

∫ 1
2 L

− 1
2 L

f (x) e−2iπmx/ l dx = Lcm, (3.6)

which determines the coefficients cm in (3.4).
Comparing the last six equations, we see that (3.4), (3.5) and (3.6) correspond to (3.2),

(3.3), and (3.1) respectively.

3.2.1 GIBBS’ PHENOMENON

When a function having a discontinuity is represented by its Fourier series, there can be
an “overshoot.” The phenomenon, first investigated thoroughly by Gibbs, is best described
with an example.

Thus, consider the periodic function

f (x) = 1 for 0 < x < π

= −1 for π < x < 2π

f (x + 2π) = f (x) for all x .

(3.7)

It has discontinuities at 0, ±π, ±2π, ±3π, . . ., and the Fourier series for f is

f (x) = 4

π

(
sin x + sin 3x

3
+ sin 5x

5
+ . . .

)
. (3.8)
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FIGURE 3.2
Same as Figure 3.1, but with a scale expanded by a factor of 10 to show detail in the vicinity of a
discontinuity.

To examine the convergence of this series, define

Sn(x) = 4

π

n∑
j=1

sin(2 j − 1)x

2 j − 1
. (3.9)

Then Sn is the sum of the first n terms of the Fourier series (3.8). Figure 3.1 gives a
comparison between f and seven different approximations Sn(x).

Clearly the Sn(x) become better approximations to f (x) as n increases. But even when
n is quite large (n = 10, 20, 40) the series approximations overshoot the discontinuity.
Figure 3.2 gives a close-up view.

Instead of jumping up from −1 to +1, the finite series approximations Sn(x) for large
n overshoot to values almost equal to ±1.2. It turns out that the overshoot stays about the
same, tending to about ±1.18 in the limit as n → ∞. The overshoot amounts to 18%! This
means that Fourier series may not be very good for representing discontinuities. But they
are often very good for respresenting smooth functions.

3.3 Fourier Transforms

We begin with

f (x) =
∞∑

n=−∞
cn e2iπnx/L (3.4 again)

where
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cn = 1

L

1
2 L∫

− 1
2 L

f (x) e−2iπnx/L dx (3.6 again)

and let L → ∞.
Define

k = 2πn

L
and Lcn = g(k).

Then

L

2π
dk = dn = 1

for unit increments in the summation (3.4), and this summation converts to an integral via

f (x) =
∞∑

n=−∞
(Lcn)e

2iπnx/L dn

L
=

∞∫
−∞

g(k)eikx dk

2π
(3.10)

where

g(k) = lim
n→∞ Lcn =

∞∫
−∞

f (x)e−ikx dx . (3.11)

We refer to g(k) as “the Fourier transform of f (x).” Equivalently, we say that f (x)

and g(k) are “Fourier transform pairs.”
Obviously, (3.10) corresponds to (3.4), and (3.11) corresponds to (3.6). But what about

orthogonality?
Replacing k in (3.10) by K to get

f (x) =
∞∫

−∞
g(K )ei K x d K

2π

and then substituting this expression for f (x) into (3.10), we obtain

g(k) =
∞∫

−∞

[ ∞∫
−∞

g(K )ei K x d K

2π

]
e−ikx dx .

Re-arranging this,

g(k) =
∞∫

−∞
g(K )

{
1

2π

∞∫
−∞

ei(K−k)x dx

}
d K .
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66 Chapter 3 / ON FOURIER TRANSFORMS AND DELTA FUNCTIONS

Since this last result is true for any g(k), it follows that the expression in the big curly
brackets is a Dirac delta function:

δ(K − k) = 1

2π

∞∫
−∞

ei(K−k)x dx . (3.12)

This is the orthogonality result which underlies our Fourier transform. It says that eikx and
ei K x are orthogonal unless k = K (in which case they are the same function). We discuss
delta functions further in Section 3.4.

Comparing with Section 3.1: equations (3.10), (3.11), and (3.12) correspond to (3.2),
(3.1) and (3.3) respectively.

3.3.1 THE UNCERTAINTY PRINCIPLE

This subsection describes an important attribute of Fourier transform pairs, namely that
if one of the pair of functions has values that are large over only a limited range of its
independent variable (x , say), then the Fourier-transformed function will have significant
amplitude over a wide range of its independent variable (k, say). And if the transformed
function is significant over only a narrow range of k values, the original function will be
spread over a wide range of x values.

To appreciate these concepts, we shall work with the function

f (t) = e−t/T sin 
t if 0 ≤ t

= 0 if t < 0.
(3.13)

which has the Fourier transform

f (ω) =
∞∫

0

e[i(ω+
)−1/T ]t − e[i(ω−
)−1/T ]t

2i
dt

= 1

2(ω + 
) + 2i/T
− 1

2(ω − 
) + 2i/T
.

(3.14)

Note that in equation (3.14) we are working with the independent variables t and ω

rather than with x and k. The sign convention is discussed in Box 3.1. Note too that we
have chosen to use the same symbol, f , for the function under consideration, whether it is
specified in the time domain as f (t) in (3.13), or in the frequency domain as f (ω) in (3.14).
This use of the same symbol may at first appear confusing because previously we worked
with the concept of two functions, for example f (x) and g(k) when we were considering a
function of x and its transform in the k domain. The reason for now using the same symbol
is to acknowledge a deep truth, namely that we are really working with information, and it
doesn’t matter whether we express this information in the time domain or in the frequency
domain. Thus, in terms of the information contained in a function such as f (t), when we
transform it to the frequency domain we have simply chosen to use a different way to look
at the same information that was contained in the original function. Because it is really
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BOX 3.1
Sign Conventions, and Multi-dimensional Transforms

In equation (3.14), note that the sign convention taken for the transform of f (t) is

f (ω) = ∫ ∞
−∞ f (t)eiωt dt, whereas previously we used f (k) =

∞∫
−∞

f (x)e−ikx dx for the

spatial transform. The reality is that numerous different conventions are in use. Therefore,
when working out the details of a particular application of Fourier analysis, it is important
to be sure you know what the convention is. It is quite common to do what we are doing
here, namely, use a different convention for spatial transforms, than for time transforms.
Throughout these notes, we use

f (ω) =
∫ ∞

−∞
f (t)eiωt dt, and f (t) = 1

2π

∫ ∞

−∞
f (ω)e−iωt dω (1)

for the time transform, and

f (k) =
∫ ∞

−∞
f (x)e−ikx dx, and f (x) = 1

2π

∫ ∞

−∞
f (k)e+ikx dk (2)

for a spatial transform.
In the second of equations (1) we have written f (t) as a summation of its frequency

components; and in the second of equations (2), f (x) is a summation of its wavenumber
components.

Spatial transforms may have additional dimensions, such as the 3D transform from
x = (x1, x2, x3) to k = (k1, k2, k3) expressed by

f (k) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x) e−ik·x dx1 dx2 dx3 (3a)

where k · x = k1x1 + k2x2 + k3x3. The reverse transform, in which f (x) is represented as
a summation of its wavenumber components, is

f (x) = 1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (k) eik·x dk1 dk2 dk3. (3b)

An example of a combined space-time transform, from (x1, x2, t) to (k1, k2, ω), is used
in Section 2.1.4. It has the form

f (k1, k2, x3, ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, t) e−i(k1x1+k2x2−ωt) dx1 dx2 dt (4a)

and

f (x, t) = 1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (k1, k2, x3, ω) ei(k1x1+k2x2−ωt) dk1 dk2 dω. (4b)

This pair of equations is very useful, when it is possible to obtain a specific form for the
transformed solution f (k1, k2, x3, ω). In Section 2.1.4 we found that an integrand equivalent
to (4b) has the form of a plane wave, and hence that such basic solutions can be summed to
provide more general solutions to the wave equation.
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FIGURE 3.3
f (t) and its amplitude spectrum | f (ω)|. Values of T and 
 are indicated, and T 
 = 4 in this case.
The approximate amplitude spectrum is given for ω in the range ±20% around ω = −
 and ω = 
,
based on the formulas in (3.15). Also shown is the function H(t) exp(−t/T ) and its spectrum. Note
the highest values of | f (ω)| occur at ω = ±
, though these peaks in the spectrum are not very sharp
in this case.

the same information, albeit displayed in a different way, it makes sense to use the same
symbol, f . To remind ourselves of how the information is displayed, we refer to it either
as f (t) or f (ω).

To illustrate the “uncertainty principle,” we return to a discussion of equations(3.13)
and (3.14). An example of f (t) and its amplitude spectrum f (ω) for a particular choice of
T and 
 is shown in Figure 3.3.

We begin by noting that f (ω) has poles at ω = ±
 + i/T , which are near the real ω

axis if T is large. It follows that an approximation to f (ω) is given by

approx f (ω) = 1

2(ω + 
) + 2i/T
for ω near − 


= −1

2(ω − 
) + 2i/T
for ω near + 
.

(3.15)

The power spectrum of f , defined as | f (ω)|2, (i.e. the square of the amplitude spectrum)
is therefore concentrated near the two frequency values ω = ±
 if T is large, and is then
approximated by

1

4[(ω + 
)2 + 1/T 2]
for ω near − 


1

4[(ω − 
)2 + 1/T 2]
for ω near 
,
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ω = Ω
ω increasing

peak power level

half peak level

width, at half peak power

FIGURE 3.4
An illustration defining the width of a peak at the half-power level. The peak here is centered at
ω = 
.

which each have peaks of height T 2/4.
It follows that the value of | f (ω)|2 at ω = 
 ± 1/T has half the power of the maximum

located at ω = 
. The width of the region of significant values of | f (ω)|2, concentrated
near ω = 
, is therefore 2/T if the width is measured at ω values where the power level
has dropped to half its maximum. The definition of the “width at half power” is shown in
Figure 3.4.

The width of the original function f (t) is effectively T . So we see that the product of
the width of the range of t values where f (t) is significant, times the width of the range of
ω values where f (ω) is significant, is constant. As one width is increased, the other must
shrink. This is the result we refer to as the uncertainty principle for Fourier transforms: we
cannot obtain information confined over a short range of t values, that is also confined over
a short range of ω values.

Going on to see how the principle is expressed in practice for the functions f (t) and
f (ω) of equations (3.13) and (3.14) with different values of T , Figure 3.5 shows a situation
where information is spread out in time and concentrated in frequency. Figure 3.6 shows
the opposite situation — an example where information is restricted in time and spread out
in frequency.

Figures 3.3, 3.5 and 3.6 also show g(t) = H(t)e−t/T and its amplitude spectrum, which
is

|g(ω)| = 1√
ω2 + 1/T 2

, based on g(ω) = i

ω + i/T
. (3.16)

If 1/T � ω, (3.16) gives g(ω) = 1/(−iω), which in turn implies in the time domain that
g(t) = H(t), the unit step function. This is the situation shown in Figure 3.5. If |ω| � 1/T ,
(3.16) gives g(ω) = T , which in turn implies in the time domain that g(t) = T δ(t). This is
the situation shown in Figure 3.6. These two results are examples of the general idea that
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FIGURE 3.5
f (t) and its amplitude spectrum | f (ω)|, for T 
 = 80. The amplitude spectrum is strongly peaked
at ω = −
 and ω = 
. The approximation given in (3.15) is very accurate in this case and gives
a result (not shown here) that is indistinguishable from the exact spectrum. Information is widely
spread out in the time domain. (The range of t is shown, for only a fraction of the range for which
f (t) has significant values). Note also that the function g(t) is approximately the unit step function
H(t) in this case. Its amplitude spectrum is approximately 1/ω. The dependence of |g(ω)| on a
power of ω, namely on ω−1, is hard to see in this Figure but can be easily made apparent if we plot
log |g(ω)| versus log ω, because then the values of log |g(ω)| would fall on a straight line of slope
−1. Amplitude spectra are often shown with log–log scales in order to reveal underlying power-law
dependences.

if we look at the properties of a function of time over very long time scales, then in the
frequency domain these properties are apparent from the spectrum at very low frequencies
— and vice versa: properties of g(t) over short time scales (for example, it may have a step
discontinuity) are also apparent from study of g(ω) at high frequency (in the present case,
behavior like 1/(−iω)).

3.3.2 A FUNCTION WHOSE SHAPE IS SIMILAR TO THE SHAPE OF ITS FOURIER TRANS-

FORM

In statistics we often use so-called Gaussian curves, of the form

f (x) = e
− x2

2σ2

σ
√

2π
. (3.17)

The width of the Gaussian is controlled by σ . For f as a probability density, f (x) dx would
be the probability of f lying between x and x + dx . Since

∫ ∞
−∞ e−λx2

dx = √
π/λ (see

Box 3.2), there is unit area under the function given in (3.17), indicating that the probability
of f lying between −∞ and +∞ is 1, as we would expect for any probability density.

The Fourier transform of f (x), namely g(k), is given by
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FIGURE 3.6
f (t) and its amplitude spectrum | f (ω)|, for T 
 = 0.2. The amplitude spectrum is spread out
over a wide range of ω values (it is shown here, and in two previous Figures, only for the range
−1.2 × 
 < ω < 1.2 × 
). The approximation for | f (ω)| given in equation (3.15) is very poor,
since the poles at ω = ±
 + i/T are not near the real ω axis. In the time domain, information is
limited to only a short range of t values. Note that the function g(t) is approximately T × δ(t) in this
case. Its amplitude spectrum is approximately a constant value, T .

g(k) =
∫ ∞

−∞
f (x) e−ikx dx =

∫ ∞

−∞
e
− x2

2σ2

σ
√

2π
e−ikx dx

= 1

σ
√

2π
e− σ2k2

2

∫ ∞

−∞
e
−( x√

2σ
+ iσk√

2
)2

dx

= 1√
π

e− σ2k2
2

∫ ∞+ iσk√
2

−∞+ iσk√
2

e−µ2
dµ

= 1√
π

e− σ2k2
2

∫ ∞

−∞
e−µ2

dµ

= e− σ2k2
2 . (3.18)

(Additional details of the above evaluation are given in Section 6.1.3, in the context of
evaluating a similar integral, given in (6.28).)

We see here that the Fourier transform of a Gaussian is itself a Gaussian, but now the
width of the transformed Gaussian is controlled by 1/σ . A number of examples of f and g
are shown in Figure 3.7 with different values of σ .

We note that g(0) = 1. We should expect this from a remark made above, about the
area under the Gaussian curve (3.17) being unity, because the area under f (x) is given
by

∫ ∞
−∞ f (x) dx and in general this is just g(k) evaluated for k = 0 (see the first of

equations (3.18) with k = 0). So, the area under a function is equal to the long wavelength
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BOX 3.2
The area under a Gaussian curve

To prove

∫ ∞

−∞
e−λx2

dx =
√

π

λ
(1)

we first consider the case λ = 1 and define I = ∫ ∞
−∞ e−x2

dx . Then

I 2 =
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy =
∫∫

whole x−y plane
e−(x2+y2)dx dy.

But, integrating over the whole xy plane can be done using cylindrical coordinates (r, φ)

where r cos φ = x , r sin φ = y, and r2 = x2 + y2. Since the integrand for I 2 depends
only upon r we can integrate over the whole x − y plane by summing contributions
from concentric area elements 2πrdr , and I 2 = 2π

∫ ∞
−∞ e−rr dr . With s = r2, I 2 =

π
∫ ∞

0 e−sds = π
e−s

−1

∣∣∣∣∣
s=∞

s=0

= π , and so I = √
π . To prove (1), we simply replace

√
λx

by y. Then
∫ ∞

−∞
e−λx2

dx =
∫ ∞

−∞
e−y2

dx/
√

λ = I
√

λ =
√

π/λ.

or long period limit of the spectrum (using terminology appropriate for functions of space
or time). In the present case, the area under the original curve (3.17) is unity, therefore we
must have g(0) = 1.

We see from Figure 3.7 that the width of the function in the x-domain goes up as σ

increases, and the width of the function in the k-domain correspondingly goes down. This
is another example of the general point made in the previous subsection, about a trade-off
in the way that information is concentrated in one domain or the other.

3.4 More on Delta Functions

Let us go back to the “substitution” property of the Kronecker delta function, defined in
Chapter 1. From the first of (1.8), this property is

Aiδi j = A j . (3.19)

One way to think of the summation contained in the left-hand side here, is that it represents
a weighted average of all the different Ai values (i = 1, 2, 3). Because δi j = 0 for i �= j ,
the only contributing term is the one for which i = j . The summation over i , then gives the
right-hand side value A j .

When we investigated Fourier series in Section 3.2 we obtained a generalization of the
above, in that
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FIGURE 3.7
f (x) (top) and its spectrum g(k) (bottom), from equations (3.17) and (3.18), for four different values
of σ . If σ = 1, the original function and its transform have the same half-width. But for any other
value of σ , one function has a half-width wider than the case σ = 1 and the other function has a
half-width that is narrower.

1

L

∫ 1
2 L

− 1
2 L

e2iπ(n−m)xπ L dx = δmn (3.20)

and this again is a Kronecker delta function (equal to 0 for m �= n; equal to 1 for m = n). But
now m = 1, 2, . . . ,∞ and n = 1, 2, . . . ,∞. So now the inner product space has a countably
infinite number of dimensions.

Again, we have the substitution property

∞∑
m=1

cmδmn = cn. (3.21)

Paul Dirac took a major step in generalizing (3.19) and (3.21) to develop what today
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we call the Dirac delta function δ(x − X), with the property

∫ ∞

−∞
f (x) δ(x − X) dx = f (X). (3.22)

This delta function is again a function of two variables, but now they are two continuous
variables (x and X ), instead of the integer variables i and j of (3.19), or integer variables m
and n of (3.21). We should not let such superficial differences in notation obscure the fact
that there are strong similarities between (3.19), (3.21), and (3.22).

Another way to convey these results, is to note that the defining properties of a one-
dimensional Dirac delta function δ(x, X) are that

δ(x, X) = 0 if x �= X, and∫ ∞

−∞
δ(x, X) dx = 1.

(3.23)

It is only a notation convention, that we write δi j rather that δ(i − j); and usually we
write δ(x − X) rather that δx X or δ(x, X). All these delta functions are mostly equal to
zero, and have non-zero value only where the difference in independent variables (i and j ,
m and n, x and X ) is equal to zero.

All of (3.19), (3.21), and (3.22) are examples of weighted averaging, in which the
weights are so strong for one particular value (i = j, m = n, x = X ), and so weak for all
other values (i �= j, m �= n, x �= X), that only one value of the original function has any
importance (Ai for i = j; cm for m = n; f (x) for x = X).

What is particularly strange about the Dirac delta function δ(x − X), is that it is zero
everywhere as a function of x (provided x �= X ); but at x = X itself, it has such a strong
value (super infinite), that it gives a finite result when we do the integration in (3.22). These
properties of the Dirac delta function were for many years a challenge that was associated
with new developments in the theory of integration of generalized functions. Delta functions
of a continuous variable can be thought of as the limit, as ε → 0, of a sequence of functions
like

B(x, X, ε) = 0 for x < X − 1
2ε

= 1

ε
for X − 1

2ε ≤ x ≤ X + 1
2ε

= 0 for X < x,

(3.24)

or

G(x, X, ε) = 1√
2πε

e
−(x−X)2

2ε2 . (3.25)

At any fixed value of ε, B(x, X, ε) and G(x, X, ε) have unit area in the sense that

∫ ∞

−∞
B(x, X, ε) dx =

∫ ∞

−∞
G(x, X, ε) dx = 1.
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Also,

lim
ε→0

B(x, X, ε) = lim
ε→0

G(x, X, ε) = 0 for x �= X.

These functions, B and G, are two of many such functions that can be used to establish the
basic properties of the Dirac delta function.

In Section 6.1.3 and Box 6.1, we discuss additional features of Dirac delta functions
in time and space.

Suggestions for Further Reading

Snieder, Roel. a Guided Tour of Mathematical Methods for the Physical Sciences, pp 186–
194 for delta functions, pp 200–211 for Fourier analysis. Cambridge, UK: Cambridge
University Press, 2001.

Problems

3.1 In the case that f (t) is real, the Fourier transform f (ω) defined for example by
equation (1) of Box 3.1 is subject to constraints that allow us to avoid the use of
negative frequencies, and to work with the real part of f (ω) alone, rather than
with the complex-valued transform, f (ω). The reader is asked to obtain the main
results as follows, when f (t) is real:

a) If f (ω) is expressed in terms of its real and imaginary parts by f (ω) =
�[ f (ω)] + i�[ f (ω)], show that �[ f ] is even in ω, and �[ f ] is odd. That
is, show

�[ f (−ω)] = +�[ f (ω)] and �[ f (−ω)] = −�[ f (ω)].

b) Show that �[ f (t)] = 1

2π

∫ ∞
−∞ (�[ f (ω)] cos ωt − �[ f (ω)] sin ωt) dω.

c) Show that result a), applied to result b), does give �[ f (t)] = 0 and that therefore
a) and b) are consistent with f (t) being purely real.

d) Show that f (t) = 1

2π

∫ ∞
−∞ (�[ f (ω)] cos ωt + �[ f (ω)] sin ωt) dω.

e) Hence show that

f (t) = 1

π

∫ ∞

0
�[ f (ω)] cos ωt dω.

[This is the key result that allows us to work with only with 0 ≤ ω when
evaluating f (t) as a summation over its frequency components.]
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