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In this chapter, we discuss several techniques that are currently in use for seasonal prediction of 
tropical cyclone activity in various basins around the world.   

 

Introduction 

Not long ago, scientists only dreamed of making confident and reliable seasonal 
hurricane forecasts. These dreams are now a reality, thanks to tremendous technological 
increases over the last thirty years along with an improved knowledge of the global 
climate system.  The first seasonal hurricane forecasts for the North Atlantic basin were 
issued in 1984 (Gray 1984b), and by 2007, seasonal forecasts had expanded to include 
every major hurricane region in the world (see Table 1, adapted from Camargo et al. 
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2007a).  Several of the seasonal forecasts are discussed in this chapter, while the others 
are briefly discussed in Camargo et al. (2007a).   
 
Table 1:  Agencies that issue forecasts for various tropical cyclone basins.   
 

Australia   North 
Atlantic 

Eastern 
North 
Pacific 

Central 
North 
Pacific 

Western 
North 
Pacific Region 

North 
Indian 
Ocean 

South 
Indian 
Ocean 

South 
Pacific 
Ocean 

X City University 
of Hong Kong 

(China) 

      

Statistical 

        

  

X 

Colorado State 
University 

(CSU), USA 
Statistical 

              

  

X 

Cuban 
Meteorological 
Institute (Cuba) 

Statistical 

              

              

X X X X X X X 

European Centre 
for Medium-

Range Weather 
Forecasts 
(England) 

Dynamical Dynamical 

  

Dynamical  Dynamical Dynamical Dynamical Dynamical 

          

X X X X X 

International 
Research 

Institute for 
Climate and 

Society (USA) Dynamical Dynamical 

  

Dynamical Dynamical 

    

Dynamical 

    

X X 

Macquarie 
University, 
Australia 

        

Statistical 

    

Statistical 

  

X 

National 
Meteorological 
Service, Mexico 

  

Statistical 

            

X National Climate 
Centre (China) 

      

Statistical 

        

      

X X X 

NOAA Climate 
Prediction 

Center (USA) 
Statistical Statistical Statistical 

          

X X X Tropical Storm 
Risk (England) Statistical 

    

Statistical Statistical 

      

 
Several technological advances were needed before seasonal hurricane forecasts could 
become widespread. One advance came in the form of a major reanalysis project carried 
out in 1996 by the U.S. National Atmospheric and Oceanic Administration (NOAA) and 
the National Center for Atmospheric Research (NCAR) (Kalnay et al. 1996).  The 
NCEP/NCAR reanalysis project, utilizing a sophisticated global climate model, produced 
homogeneous and global datasets of wind, pressure, and temperature at 6-hourly intervals 
dating back to 1948.  For the first time, the available climate record was no longer 
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plagued by discontinuities that occurred each time an improved data analysis package and 
numerical forecast model was implemented. 
 
Another major advance came with the development of global climate models which were 
used not only to do the reanalysis but also to provide near real-time updates of global 
climate conditions. Now, ever-improving technologies such as satellites, computers, land-
based observation systems, and model-based forecasts and analyses are routinely used by 
forecasters and researchers throughout the world. 
 
But more than just better data and technology were needed before a seasonal hurricane 
outlook could be made. Fundamental breakthroughs in our understanding of the dominant 
climate factors influencing seasonal hurricane activity were also needed. The first major 
breakthrough came in 1984 with the pioneering research of Dr. William Gray, who 
discovered that the El Niño/ Southern Oscillation (ENSO) strongly influenced year-to-
year fluctuations in Atlantic hurricane activity (Gray 1984a, b). Using this research, Gray 
made the first seasonal Atlantic hurricane outlook in that same year at Colorado State 
University (CSU), and his team has been issuing outlooks ever since. 
 
Another breakthrough came in the 1990’s when scientists established that multi-decadal 
fluctuations in Atlantic hurricane activity were more than simply a random collection of 
above-normal or below-normal seasons. Instead, they were explained by predictable, 
large-scale climate factors that included multi-decadal fluctuations in Atlantic SSTs 
(called the Atlantic Multi-decadal Oscillation, Gray et al. 1996, Landsea et al. 1999) and 
the West African monsoon system (Hastenrath 1990, Gray 1990, Landsea and Gray 1992, 
Landsea et al., 1992, Goldenberg and Shapiro 1996).  
 
Utilizing the reanalysis dataset, Bell and Chelliah (2006) showed that inter-annual and 
multi-decadal extremes in Atlantic hurricane activity resulted from a coherent and inter-
related set of atmospheric and oceanic conditions associated with the leading modes of 
tropical climate variability. These modes were shown to be directly related to fluctuations 
in tropical convection, thereby linking Atlantic hurricane activity, West African monsoon 
rainfall, and Atlantic sea-surface temperatures, to tropic-wide climate variability. Based 
on this work, NOAA’s Climate Prediction Center (CPC) began issuing seasonal Atlantic 
hurricane outlooks in August 1998, followed by seasonal East Pacific outlooks in 2004. 
At the same time, forecasters throughout the world were developing seasonal hurricane 
predictions for other major hurricane regions (Table 1).  
 
Seasonal hurricane outlooks are based on either statistical, dynamical, or a blend of 
statistical and dynamical, procedures. Both the statistical and dynamical approaches bring 
a wide spectrum of forecast techniques to bear on the seasonal hurricane forecast 
problem. Some techniques are purely objective. Others are a subjective blend of selected 
statistical and dynamical techniques. Regardless of the technique or the way the forecast 
is communicated, seasonal hurricane forecasts are all probabilistic in nature. Forecasters 
try to give the best estimate of the likely (most probable) upcoming activity, while at the 
same time recognizing there are uncertainties inherent in all seasonal forecast techniques. 
 

 3



Three main statistical techniques are presently in use. One approach first utilizes 
statistical regression equations to predict the likely strength of key atmospheric and 
oceanic anomalies. This is done by either directly predicting their strength, or by first 
predicting the dominant climate patterns that strongly control their strength. A second set 
of regression equations is then used to predict the likely seasonal activity associated with 
the expected anomalies.  
 
A second and complementary statistical approach utilizes a climate-based binning 
technique, wherein the historical distribution of activity associated with the predicted 
climate conditions is isolated. This climate-based analog approach allows the forecaster 
to focus only on those seasons having similar climate conditions, and differs from the 
pure regression equations that are often derived using all seasons and therefore all sets of 
climate conditions.  
 
A third statistical approach developed by NOAA for use in their 2008 forecasts utilizes 
regression equations that relate coupled ocean-atmosphere dynamical climate model 
forecasts of key atmospheric and oceanic anomalies to the observed seasonal activity. In 
this way, dynamical predictions can be utilized to forecast the upcoming seasonal activity 
without a direct count of the exact number of named storms and hurricanes produced by 
the model. A second dynamical approach is to directly count the number of named storms 
a given climate model predicts (e.g., Vitart et al. 1997, Camargo et al. 2005). 
 
Although seasonal hurricane forecasts have expanded greatly in recent years, there are 
many long-term challenges ahead. Some challenges are related to the observed hurricane 
data itself.  In many regions, accurate hurricane records do not exist before satellites 
became widespread in the 1970s. In the Atlantic, more accurate records date back to the 
late 1940s with the beginning of aircraft reconnaissance.  
 
Other challenges involve developing long-term statistical regression equations from 
reanalysis data that extends back only to 1948. Also, there are biases within the 
Reanalysis itself, which are related to the evolution of observing systems in recent years 
(Ebisuzaki et al. 1997, Kistler et al. 2001). These include global satellite coverage, 
extensive buoy placements in the Pacific and Atlantic Ocean, and an expanded 
radiosonde network in tropical regions.  
 
Still other forecast challenges are related to accurate dynamical seasonal predictions of 
the key circulation and sea-surface temperature anomalies. While dynamical models have 
improved tremendously in recent years, they all contain large biases and errors that limit 
their use. For example, one major forecast uncertainty inherent to all climate models is 
tropical convection. Yet, two dominant climate factors influencing seasonal Atlantic 
hurricane activity (ENSO and the Multi-decadal signal), which are also leading modes of 
tropical variability, are both intimately linked to changing large-scale patterns of tropical 
convection.  ENSO predictions are especially critical, as ENSO has been shown to have a 
dramatic impact on tropical cyclone activity around the globe.  As a result, ENSO 
predictions remain a main source of uncertainty for seasonal hurricane forecasts.  
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Another uncertainty common to all forecast techniques is weather patterns that are 
unpredictable on seasonal time scales, yet can sometimes develop and last for weeks or 
months, possibly affecting seasonal hurricane activity. A third source of forecast 
uncertainty is that the numbers of named storms and hurricanes can sometimes vary 
considerably for the same set of climate conditions. For example, one cannot know with 
certainty whether a given set of climate conditions will be associated with several short-
lived storms or fewer longer-lived storms with greater intensity. 
 
Making seasonal hurricane landfall forecasts is perhaps the most sought-after goal of 
seasonal hurricane forecasters.  Unfortunately, an ongoing consequence of these 
challenges and uncertainties is the present very limited ability to make such forecasts 
accurately, confidently, and reliably. Compounding the challenge is the fact that 
hurricane landfalls are largely determined by the weather patterns in place at the time the 
hurricane approaches, which are generally not predictable more than 5-7 days in advance.  
Hurricane experts and emergency management officials throughout the world know that 
hurricane disasters can occur regardless of the activity within a season. They encourage 
residents, businesses, and government agencies of coastal and near-coastal regions to 
prepare for every hurricane season regardless of the seasonal outlook. It only takes one 
hurricane (or even a tropical storm) to cause a disaster. 
 
In the next few sections, several of the seasonal forecast methodologies currently in use 
for forecasting tropical cyclone activity in various basins around the globe are discussed 
in detail.  Several other forecast methodologies are also discussed in Camargo et al. 
(2007).  
 

Colorado State University Seasonal Hurricane Outlooks 

Colorado State University (CSU) has been issuing seasonal predictions of Atlantic basin 
tropical cyclone activity since 1984 (Gray 1984a, b).  These forecasts are issued at four 
lead times prior to the active part of the Atlantic basin hurricane season: in early 
December, in early April, in early June and in early August.  Real-time forecasts of 
named storms in early June have correlated at 0.57 with observations over the period 
from 1948-2007.   The statistical models utilized by the CSU forecast team to make their 
predictions have undergone considerable modifications in recent years.  Instead of 
attempting to individually hindcast indices such as named storms, named storm days, 
major hurricanes, etc., they have developed a technique that shows significant skill at 
hindcasting Net Tropical Cyclone (NTC) activity (Gray et al. 1994) and then empirically 
deriving these other indices from the NTC prediction.  Also, for the early April, June and 
August techniques, earlier seasonal forecasts are weighted at 50%, 50% and 40%, 
respectively when developing the final forecast (Figure 1).  In the next few paragraphs, 
each forecast will be briefly discussed, with references provided for more extensive 
discussion. 
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Figure 1:  The new methodology utilized by CSU in calculating statistical forecasts of 
seasonal NTC. 
 
December Forecast 
 
Initial predictions of seasonal hurricane activity from early December were issued by 
Gray and colleagues in December 1991 for the 1992 hurricane season (Gray et al. 1992).  
This model has undergone significant revisions since it was initially developed 
(Klotzbach and Gray 2004).  Following the unsuccessful seasonal hurricane forecasts of 
the past few years, a new December forecast model has been developed (Klotzbach 
2008).  This model, as is done with the April, June and August models, was built over the 
period from 1950-1989 and then the equations developed over the period from 1950-1989 
were tested on the years from 1990-2007 to determine if the model showed similar levels 
of skill in the more recent period.  Table 2 displays the current predictors utilized in the 
new December statistical model.   
 
Table 2: Listing of current early December predictors.    A plus (+) means that positive 
values of the parameter indicate increased hurricane activity during the following year.  
 
Predictor Location 
1) October-November SST (+) (55-65°N, 60-10°W) 
2) November 500 mb geopotential height) (+) (67.5-85°N, 50°W-10°E) 
3) November SLP (+) (7.5-22.5°N, 175-125°W) 

 
The forecast is created by combining the three December predictors using least-squared 
linear regression over the period from 1950-2007.  The resulting hindcasts are then 
ranked in order from 1 (the highest value) to 58 (the lowest value).  The final NTC 
hindcast was obtained by taking the final December NTC hindcast rank and assigning the 
observed NTC value for that rank.  For example, if the final December NTC hindcast 
rank was 10 (the 10th highest rank), the NTC value assigned for the prediction would be 
the 10th highest observed rank, which in this case would be 166 NTC units.  Final 
hindcast values are constrained to be between 40 and 200 NTC units.  When the rank 
prediction model is utilized, 54% of the variance in NTC is hindcast over the period from 
1950-2007.   
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April Forecast 
 
April forecasts are currently issued using a similar methodology to what was used in 
early December (Klotzbach and Gray 2008a).    Two February-March predictors were 
selected that explained a considerable amount of variability in NTC (Table 3).  These 
predictors were then ranked and combined with the early December prediction to come 
up with a final seasonal NTC hindcast.  64% of the variance in NTC is hindcast over the 
period from 1950-2007 using the April hindcast model.   
 
Table 3: Listing of current early April predictors.    A plus (+) means that positive values 
of the parameter indicate increased hurricane activity  
 
Predictor Location 
1) February-March SST Gradient (+) (30-45°N, 30-10°W) – (30-45°S, 45-20°W) (+) 
2) March SLP  (-) (10-30°N, 30-10°W) 
3) Early December Hindcast (+)  

 
June Forecast 
 
Early June forecasts are currently issued using two April-May predictors combined with 
the early April hindcast values (Klotzbach and Gray 2008b) (Table 4).   66% of the 
variance in NTC is hindcast over the period from 1950-2007 using the June hindcast 
model.     
 
Table 4: Listing of current early June predictors.  A plus (+) means that positive values of 
the parameter indicate increased hurricane activity.  
 
Predictor Location 
1) Subtropical Atlantic Index (+): April-May SST (+) 
                                                   & May SLP (-) 

(20-50°N, 30-15°W) 
(10-35°N, 40-10°W) 

2) April-May 200 MB U (-) (5-25°S, 50-90°E) 
3) Early June Hindcast (+)  
 
August Forecast 
A final seasonal forecast update is issued in early August, prior to the climatologically 
most active part of the Atlantic hurricane season.  The new August statistical model 
utilizes a combination of four predictors which show significant skill back to the start of 
the 20th century (Table 5) (Klotzbach 2007).  When these predictors are combined with 
the early June hindcast, approximately 65% of the post-1 August variance in NTC 
activity can be explained.  Brief descriptions of how each predictor likely impact Atlantic 
basin hurricane activity follow.   
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Table 5: Listing of current early August predictors.  A plus (+) means that positive values 
of the parameter indicate increased hurricane activity.  
 

Predictor Location 
1) June-July SST (+) (20-40°N, 35-15°W) 
2) June-July SLP (-) (10-20°N, 60-10°W) 
3) June-July SST (-) (5°S-5°N, 150-90°W) 
4) Before 1 August Tropical Atlantic Named Storm Days (+) (South of 23.5°N, East of 75°W) 
5) Early June Hindcast (+)  
 
Discussion 
 
The revised statistical models developed by CSU over the past several years put more of 
an emphasis on understanding physical links between individual predictors and Atlantic 
tropical cyclone activity.  Also, the new models have been developed over the period 
from 1950-1989, leaving aside the past 18 years for quasi-independent testing.  The more 
concrete physical links combined with increased statistical rigor should lead to improved 
skill in future years.   
 
NOAA Seasonal Hurricane Outlooks 

NOAA began issuing probabilistic seasonal outlooks for the North Atlantic hurricane 
region in 1998 and for the East and Central North Pacific regions in 2004. The Atlantic 
and East Pacific outlooks are an official product of the Climate Prediction Center, made 
in collaboration with the National Hurricane Center and Hurricane Research Division. 
The Central Pacific outlook is an official product of the Central Pacific Hurricane Center, 
made in collaboration with the CPC. The Atlantic hurricane seasonal outlook is issued in 
late May, and updated in early August to coincide with the onset of the peak months 
(August-October, ASO) of the season. A single seasonal outlook is issued in late May for 
the East and Central North Pacific regions. 
 
NOAA’s seasonal hurricane outlooks indicate the likely (approximately a two-thirds 
chance) seasonal range of named storms, hurricanes, and major hurricanes, along with the 
most probable season type. The Atlantic and East Pacific outlooks also indicate 
probabilities for each season type (above-, near-, or below-normal), along with the likely 
range of total seasonal activity as measured by the ACE (Accumulated Cyclone Energy) 
index which is a measure of the combined number, intensity, and duration of tropical 
storms, subtropical storms and hurricanes (Bell et al. 2000). The outlooks are designed to 
provide the public with a general guide to the expected overall nature of the upcoming 
hurricane season. They are not seasonal hurricane landfall forecasts, and do not imply 
levels of activity for any particular region. 
 
NOAA’s seasonal hurricane outlooks are based primarily on predicting the combined 
impacts of three dominant climate factors: ENSO (Gray 1984a), the Atlantic multi-
decadal oscillation (Gray et al. 1996, Landsea et al. 1999), and the tropical multi-decadal 
signal (Bell and Chelliah 2006). Each of these factors has strong links to recurring 
rainfall patterns along the equator, and together they produce the inter-related set of 
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atmospheric and oceanic conditions typically associated with both seasonal and multi-
decadal fluctuations in Atlantic hurricane activity (Fig. 2). For the August update, 
additional predictive information is also used, such as anomalous early season activity, 
and atmospheric and oceanic anomalies that may have developed which are not related to 
the dominant climate predictors. 
 

 
 
Figure 2: Schematic of atmospheric and oceanic anomalies during August-October 
(ASO) associated with active Atlantic hurricane seasons and eras. 
 
ENSO reflects year-to-year fluctuations in tropical convection across the equatorial 
Pacific Ocean, and mainly influences hurricane activity for a single season at a time. The 
Atlantic multi-decadal oscillation reflects changes in Atlantic SSTs in both the tropics 
and high latitudes, and is associated with both above-normal and below-normal active 
hurricane eras that historically last 25-40 years. The tropical multi-decadal signal is the 
leading multi-decadal mode of tropical convective variability (Bell and Chelliah (2006), 
and captures the observed link between the Atlantic multi-decadal oscillation and an east-
west seesaw in anomalous convection between the West African monsoon region 
(Hastenrath 1990, Gray 1990, Landsea and Gray 1992, Landsea et al., 1992, Goldenberg 
and Shapiro 1996), and the Amazon Basin (Chen et al. 2001, Chu et al. 1994).  
 
NOAA’s seasonal Atlantic hurricane outlooks reflect a subjective blend of three main 
statistical forecasting techniques. One technique utilizes regression equations for the 
period 1971-2007 to first establish the relationship between seasonal activity and the 
combined effects of ENSO, the tropical multi-decadal signal, and tropical Atlantic sea-
surface temperatures. Then, forecasts of these climate factors are used to predict the 
upcoming seasonal activity. Such a procedure inherently assumes the climate forecast is 
perfect, which is generally not the case of course. Therefore, in practice the forecaster 
uses a regression-based contingency table for each parameter (shown here for ACE, 
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Table 6), which yields a likely range of activity given reasonable uncertainties in the 
climate prediction itself.  
 
Table 6: Contingency table showing regressed seasonal ACE (Accumulated Cyclone 
Energy) values associated with an active Atlantic phase of the tropical multi-decadal 
signal for varying strengths of ENSO and tropical Atlantic sea-surface temperature 
anomalies. 
 
  Tropical Atlantic Sea-surface Temperature Anomalies (C) 
  -0.5 -0.25 0 0.25 0.5 0.75
        
 Strong  5.7 33.0 60.3 87.6 114.9 142.2
El Niño Moderate 22.2 49.5 76.8 104.1 131.4 158.7
 Weak  38.7 66.0 93.3 120.6 148.0 175.3
 Neutral 55.2 82.6 109.9 137.2 164.5 191.8
 Weak  71.8 99.1 126.4 153.7 181.0 208.3
La Niña  Moderate  88.3 115.6 142.9 170.2 197.5 224.8
 Strong  104.8 132.1 159.4 186.8 214.1 241.4

 
 
A chart showing the historical distribution of regression errors (Fig. 3) is used to quantify 
uncertainties in the regression technique itself. For example, the regression equation 
explains 67% of the seasonal ACE variance. The absolute regression error in ACE is less 
than 20 percent of the median (meaning a highly accurate forecast) in 27% of seasons, 
and less than 40 percent of the median in two-thirds (67%) of seasons. Therefore, in 
practice NOAA assigns a range of at least ±40 percent of the median to the predicted 
seasonal ACE.  
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Figure 3: Graph showing the percentage of seasons with an absolute error in the regressed 
seasonal ACE (Accumulated Cyclone Energy) less than 20 and less than 40 percent of the 
median. The absolute error is less than 20 percent of the median in about one-fourth of 
the seasons, and less than 40 percent of the median in about two thirds of the seasons. 
The regression period is 1971-2007. The predictors are ENSO, the tropical multi-decadal 
signal, and tropical Atlantic sea-surface temperatures. 
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The regression results also help the forecaster to better quantify the usefulness of the 
technique through an error analysis of the predicted season types. It is found that perfect 
predictions of the above climate factors correctly predict the Atlantic hurricane season 
type approximately 80% of the time. However, a one-category forecast error in season 
type (e.g. an above-normal season is predicted but a near-normal season is observed) is 
seen on average every 5-6 years. A two-category forecast error (e.g. a below-normal 
season is predicted but the season is above-normal) is seen on average every 12 years. 
Therefore, for the May outlook, the highest probability assigned to any season type is 
roughly 80%, and lowest probability is roughly 10%.  
 
A second prediction technique is the climate-based analogue approach, whereby the 
forecaster focuses on the distributions of activity associated with past seasons having 
comparable climate signals to those being predicted. This approach also allows the 
forecaster to quickly and accurately determine the historical probabilities of the three 
season types associated with the predicted climate factors. 
 
Another prediction technique (Wang et al. 2009) utilizes regression equations to first 
establish the relationship between the seasonal hurricane activity and dynamical model 
forecasts of atmospheric and oceanic conditions during ASO. The regression period is 
1982-2007. The predictors in the regression equations are 60-member ensemble mean 
forecasts for each ASO period of vertical wind shear and Atlantic sea-surface 
temperatures, which are obtained from NOAA’s coupled ocean-atmosphere climate 
model called the Global Forecast System (GFS). In practice, this technique is utilized to 
obtain the ensemble mean predicted seasonal activity, and the forecasted range of activity 
using the individual ensemble members. Using the individual members, the model 
probabilities of an above-, near-, and below-normal season are also derived. This 
technique is particularly appealing, because it avoids some of the very significant 
challenges associated with counting the actual number of named storms and hurricanes 
produced by a given climate model. 
 
City University of Hong Kong Seasonal Hurricane Outlooks  

Introduction 

Since 2000, the Laboratory for Atmospheric Research at City University of Hong Kong 
has been issuing real-time predictions of annual tropical cyclone (TC) activity over the 
western North Pacific (WNP)1.  The predictands include the annual number of tropical 
storms and typhoons and the annual number of typhoons.  These forecasts are issued in 
early April and early June prior to the active TC season, the latter serving as an update of 
the April forecast based on information in April and May.  Verifications of the 
predictions have shown that the predictions are mostly correct within the error bars.  
These are all statistical predictions with predictors drawn from a large pool of indices that 
represent the atmospheric and oceanographic conditions in the previous year up to the 

                                                 
1 Since 2008, responsibility for issuing these forecasts has been transferred to the Guy Carpenter Asia-
Pacific Climate Impact Centre, City University of Hong Kong. 
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spring of the current year.  Details can be found in Chan et al. (1998, 2001) and Liu and 
Chan (2003). 
 

April forecast  

a. Predictors related to ENSO 

Many studies have shown that El Niño/Southern Oscillation (ENSO) has an effect on TC 
activity in the year the ENSO event develops and the year after the ENSO event (Chan 
2000; Wang and Chan 2002).  Therefore, indices that can be used as proxies of ENSO 
may be good predictors of TC activity.  In this forecast scheme, a few predictors are used 
to represent the ENSO status prior to the TC season and to predict the possible status 
during the TC season.   
 
Predictor 1. Niño3.4 index  

Niño3.4 index is the mean sea surface temperature anomalies in the NINO3.4 region 
(5oS-5oN, 170o-120oW) and is commonly used to represent the status of ENSO.  In the 
April forecast, the Niño3.4 index from December of the previous year to January of the 
current year is included to reflect the ENSO status in the winter preceding the TC season.  
A winter associated with an El Niño (a La Niña) condition is generally followed by a less 
(more) active TC season.  The Niño3.4 index in March of the current year is used to 
represent the current ENSO status.  Subsequent changes of the Niño3.4 index also give 
the possible ENSO status during the TC season.  If an El Niño (a La Niña) event develops 
during the TC season, the TC season tends to be more (less) active especially for the 
number of typhoons.  This partly explains that the skill of prediction for the number of 
typhoons is higher than that of the number of tropical storms and typhoons using this 
predictor. 

 

Predictor 2. Equatorial Southern Oscillation Index (Equatorial SOI) 

The Equatorial Southern Oscillation Index (Equatorial SOI) is defined as the standardized 
anomaly of the sea-level pressure difference between the equatorial eastern Pacific 
(80°W-130°W, 5°N-5°S) and an area over Indonesia (90°E-140°E, 5°N-5°S).  This 
predictor also acts as a proxy of ENSO and the principle involved is similar to that of 
Niño3.4 index.  Note that this predictor is only used in the prediction of the number of 
typhoons. 
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b. Predictors related to atmospheric circulation 

Indices that represent the conditions in winter and spring prior to the TC season are used.  
The changes in these conditions are related to subsequent changes during the TC season 
so that the indices can be proxies of the summertime environment.  The indices 
considered include the westward extension of the 500-hPa subtropical ridge and the West 
Pacific index.  All these indices are monthly values from April of the previous year to 
March of the current year.  
 
Predictor 3. West Pacific index  

The West Pacific (WP) pattern is a primary mode of low-frequency variability over the 
North Pacific in all months (Barnston and Livezey, 1987).  During winter and spring, this 
pattern shows a north-south dipole of 500-hPa geopotential height anomalies, with one 
center over the Kamchatka Peninsula and another center of opposite sign over the WNP 
along 30oN. 
 
The WP index in the months March and April of the current year is negatively correlated 
with TC activity.  Positive values of this index indicate the positive phase of the WP 
pattern, which shows a north-south dipole of 500-hPa geopotential height anomalies, with 
positive anomalies over the WNP.  This pattern is generally associated with a stronger 
subtropical high and a weaker monsoon trough in the peak TC season.  Therefore a less 
active TC season is expected. 
 
Predictor 4. Index of the westward extent of the subtropical high over the WNP 
 
The index of the westward extent of the subtropical high over the WNP in the months 
February-May of the current year is positively correlated with TC activity.  A lower value 
of this index indicates that the subtropical high extends more westward and is generally 
associated with a less active TC season.  The values of this index in these months are 
correlated with the geopotential high anomalies during the peak TC season (July-
October).  Therefore, this index can represent the spring-time mid-level atmospheric 
conditions, which are related to subsequent changes of the subtropical high during the TC 
season which eventually affect the TC activity. 
 
June forecast 

The parameters used in the June forecast are similar to those in the April forecast.  As 
mentioned in the Introduction, the June forecast makes use of monthly values in the 
months April and May of each predictor to provide the more up-to-date information 
about the atmospheric and oceanographic conditions.  Such information is a reflection of 
these conditions during the TC season.  Therefore the June forecast should have a higher 
skill than the April forecast. 
 
Tropical Storm Risk Seasonal Hurricane Outlooks 
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Tropical Storm Risk (TSR) has been issuing public outlooks for seasonal tropical cyclone 
activity since 2000. These outlooks are provided for the North Atlantic, Northwest Pacific 
and Australian regions (Table 7). The TSR forecasts are available for basin activity and for 
landfalling activity on the USA, Caribbean Lesser Antilles and Australia. Outlooks are 
issued in deterministic and tercile probabilistic form. The TSR forecast models are 
statistical in nature but are underpinned by predictors having sound physical links to 
contemporaneous tropical cyclone activity. These predictors and their physical 
mechanisms are described by region in the sections below. TSR provides, as part of their 
seasonal outlooks, the hindcast precision of each forecast parameter assessed over prior 
periods of at least 20 years. An example of TSR’s extended hindcast skill as a function of 
lead time is shown for Northwest Pacific typhoon activity (Figure 5). 

 

Table 7: Summary of Tropical Storm Risk seasonal tropical cyclone outlooks. 
 
 

TSR Seasonal Tropical Cyclone Outlooks 

Region Parameters 
forecast Landfalling Forecast issue 

times 
Deterministic 

forecasts  
Probabilistic 

forecasts 

North Atlantic  
TS, H, IH, ACE 
(and for sub-

regions) 

United States  
TS, H, US ACE 

Monthly from Dec 
to Aug 

All parameters 
(basin and 
landfalling)  

Basin ACE 
US ACE  

Western North 
Pacific  TS, T, IT, ACE - Monthly from Mar 

to Aug 

All parameters 
(basin and 
landfalling)  

Basin ACE  

Australian 
Region  TS, STC, ACE Australia TS Monthly from May 

to Dec  

All parameters 
(basin and 
landfalling)  

Basin TS  
Australia TS 

TS = number of tropical storms; H = number of hurricanes; IH = number of intense hurricanes; ACE = Accumulated Cyclone Energy Index; US ACE = US 
Accumulated Cyclone Energy Index; T = number of typhoons; IT = number of intense typhoons; STC = number of severe tropical cyclones.  

 

Seasonal North Atlantic hurricane activity 
 
TSR divides the North Atlantic into two regions: (a) the ‘tropical’ North Atlantic 
comprising the North Atlantic south of 20°N, the Caribbean Sea and the Gulf of Mexico, 
and (b) the ‘extra-tropical’ North Atlantic. 85-90% of the hurricanes and intense 
hurricanes that made landfall on the United States between 1950 and 2005 originated as 
tropical depressions in the ‘tropical’ North Atlantic. TSR forecasts tropical cyclone 
activity in the ‘tropical’ North Atlantic and uses a rolling prior 10-year climatology for 
tropical cyclone activity in the ‘extra-tropical’ North Atlantic. 
 
TSR outlooks for tropical cyclone activity in the ‘tropical’ North Atlantic employ two 
predictors (Table 8 and Figure 4). These are: (1) The forecast speed of the trade winds 
which blow westward across the tropical Atlantic and Caribbean Sea in July, August and 
September. These winds influence cyclonic vorticity and vertical wind shear over the 
main hurricane track region. Cyclonic vorticity either helps or hinders the spinning up of 
storms depending upon its anomaly sign and magnitude. Vertical wind shear either helps 
or hinders a vertically coherent storm vortex from developing depending upon its 
magnitude; (2) The forecast temperature of sea surface waters between west Africa and 
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the Caribbean where many hurricanes develop during August and September. Waters 
here provide heat and moisture to help power the development of storms within the 
hurricane main development region. 
 

Seasonal US landfalling hurricane activity 
 
TSR outlooks for US landfalling tropical cyclone activity issued between December and 
July employ a historical thinning factor between ‘tropical’ North Atlantic activity and US 
landfalling activity. The TSR outlook issued in early August uses wind patterns (at 
heights between 750 and 7,500 metres above sea level) from six regions over North 
America and the east Pacific and North Atlantic oceans during July to predict the US 
ACE index (effectively the cumulative wind energy from all US striking tropical storms 
during the main hurricane season). Wind anomalies in these regions in July are indicative 
of persistent atmospheric circulation patterns that either favour or hinder evolving 
hurricanes from reaching US shores during August and September. The model correctly 
anticipates whether US hurricane losses are above-median or below-median in 74% of 
the years between 1950 and 2003 (Saunders and Lea 2005). It also performed very well 
in ‘real-time’ operation in 2004 and 2005. 
 
Table 8: Predictor(s) underpinning the Tropical Storm Risk seasonal outlooks by region. 
 

 

TSR Seasonal Forecast Predictor(s) 

Region Basin or 
Landfalling  Predictor(s)  References 

Basin 

Forecast July-September trade wind speed over the 
Caribbean Sea and tropical North Atlantic [region 
30°W-100°W, 7.5°N-17.5°N], and the forecast August-
September sea surface temperature in the hurricane 
main development region [20°W-60°W, 10°N-20°N]. 

Lea and Saunders (2004). 
Lea and Saunders (2006b). 
Saunders (2006). 
Saunders and Lea (2008).  

North Atlantic  

US 
Landfalling 

Historical thinning factors linking basin to US 
landfalling activity (Dec to July forecasts). July 
tropospheric wind anomalies between heights of 
925mb and 400mb over North America, the east 
Pacific and the North Atlantic (Aug US ACE index 
forecast). 

Saunders and Lea (2005). 

Western North 
Pacific  Basin 

Forecast August-September Niño 3.75 sea surface 
temperature [region 140°W-180°W, 5°S-5°N]. 

Lloyd-Hughes, Saunders 
and Rockett (2004). 
Lea and Saunders (2006a). 

Basin 
Forecast October-November Niño 4 sea surface 
temperature [region 150°W-160°E, 5°S-5°N]. 

Australian 
Region  Australia 

Landfalling 
Historical thinning factor linking basin to landfalling 
activity. 

Lloyd-Hughes, Saunders 
and Rockett (2004). 
Seasonal outlook 
documents at 
www.tropicalstormrisk.com 
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Figure 4: Physical nature of the TSR statistical model for ‘tropical’ North Atlantic 
hurricane activity. The display shows the two August-September environmental field 
areas that comprise the model and the August-September anomalies in sea surface 
temperature (color coded in degrees Celsius) and 925mb wind anomalies (arrowed) 
linked to active Atlantic hurricane years. (Reproduced from Saunders and Lea 2008).  

Seasonal Western North Pacific typhoon activity 
 
The TSR predictors for Western North Pacific typhoon activity are as follows. Tropical 
storm and typhoon numbers are forecast before May using the Niño 3 SST from the prior 
September; from May they are forecast using April surface pressure over the region 
17.5°N-35°N, 160°E-175°W. Intense typhoon numbers and the ACE index are forecast 
using the forecast value for the August-September Niño 3.75 region (5°S-5°N, 180°W-
140°W) SST (Table 2). The latter is predicted using the consolidated CLIPER model 
described in Lloyd-Hughes et al. (2004). Above average (below average) Niño 3.75 SSTs 
are associated with weaker (stronger) trade winds over the region 2.5°N-12.5°N, 120°E-
180°E. These in turn lead to enhanced (reduced) cyclonic vorticity over the Western 
North Pacific region where intense typhoons form. 
 
Figure 5 displays the seasonal predictability of the Western North Pacific ACE index for 
the 41-year period 1965 to 2005. This period starts in 1965 as this marks the beginning of 
reliable Pacific typhoon wind records (Lea and Saunders 2006a). Hindcast skill is 
assessed using cross-validation with 5-year block elimination. Confidence intervals are 
computed using the standard bootstrap method (Effron and Gong 1983) with 
replacement. The Northwest Pacific ACE index has positive forecast skill to 95% 
confidence over the 41-year period from early May. Historically 95% of typhoons occur 
after the 1st May. 
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Figure 5: TSR hindcast seasonal prediction skill for the Northwest Pacific ACE index 
1965-2005 shown for monthly leads from the previous October. Skill is displayed by the 
mean square skill score (MSSS) with 1965-2005 used as the climatology. 
 

Seasonal Australian-region tropical storm activity  

TSR defines the ‘Australian region’ as encompassing the Southern Hemisphere region 
from 100°E to 170°E (a storm must form as a tropical cyclone within to count). The 
Australian tropical storm season spans the period from 1st November to 30th April. The 
TSR predictor for leads up to November is the forecast October-November Niño 4 SST 
(Table 2). The TSR December seasonal outlook employs the observed October-
November Niño 4 SST. The Niño 4 SST forecasts are made with the consolidated 
CLIPER model reported by Lloyd-Hughes et al (2004). Early austral summer SSTs in the 
Niño 4 region influence Australian-region tropical storm activity by affecting 
atmospheric vertical wind shear over the Australian region during Austral summer. 
Cooler (warmer) than normal Niño 4 SST in October-November leads to below-average 
(above-average) atmospheric vertical wind shear which, in turn, favours above-average 
(below-average) tropical storm activity. 
 
ECMWF Seasonal Hurricane Outlooks  
 
The European Centre for Medium-Range Weather Forecasts (ECMWF) has produced 
seasonal forecasts of tropical storm frequency since 2001. These forecasts are not 
publicly available. They are available only to ECMWF member states and World 
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Meteorological Organization (WMO) members. Unlike the NOAA, CSU, City University 
of Hong Kong, and TSR statistical methods discussed above, the ECMWF seasonal 
forecasts of tropical storms are based on a dynamical method. They use the outputs of 
coupled Global Circulation Model (GCM) integrations to predict tropical cyclone 
activity. This method is based on the ability of GCMs to create tropical storm 
disturbances that have strong similarities to real-world tropical storms. For example, they 
develop a warm temperature anomaly over the centre of the vortex, which is a 
characteristic of observed tropical storms.  
 
The ECMWF seasonal forecasting system 3 (Anderson et al. 2007) is based on a coupled 
GCM that has been extensively integrated for 7-months forecasts. The atmospheric 
component has a T159 spectral resolution (about 120 kilometer resolution).  The model 
has 62 vertical levels with a model-top level located at about 5 hPa. The ocean model is 
the Hamburg Ocean Primitive Equation model (HOPE) with a resolution equivalent to 2o 
in the extra-tropics, but the resolution increases in the tropics to 0.5o. The ocean model 
has 29 vertical levels. Ocean initial conditions are provided by the ECWMF operational 
ocean analysis system (Balmaseda et al. 2007). The ocean and atmosphere are coupled 
directly, without flux correction, using the Ocean Atmosphere Sea Ice Soil (OASIS) 
coupler. The coupling frequency is 24 hours. The coupled system is integrated forward 
for 7 months from the initial conditions. In order to sample the uncertainty in the initial 
conditions and model formulation, the model is integrated 41 times starting from a 
control and 40 perturbed initial conditions. The atmospheric perturbations are identical to 
those applied to ECMWF medium-range forecasts: singular vectors to perturb the 
atmospheric initial conditions (Buizza and Palmer 1995) and stochastic perturbations 
during the model integrations (Buizza et al. 1999, Palmer 2001).  For each grid point, the 
stochastic physics perturbs grid point tendencies up to 50%. The tendencies are 
multiplied by a random factor drawn from a uniform distribution between 0.5 and 1.5. 
The random factor is constant within a 10ox10o domain for 6 hours. The whole globe is 
perturbed. The ocean initial conditions are perturbed by adding small perturbations to 
SST initial conditions. A set of SST perturbations has been constructed by taking the 
difference between different SST analyses. For each starting date, 20 combinations of 
SST perturbations are randomly chosen and applied with a + and - sign, creating 40 
perturbed states. A set of wind stress perturbations is also calculated by taking the 
difference between two monthly wind stress analyses. Nine ocean assimilations (one 
control and four perturbed) are produced by randomly picking two perturbations from the 
set of wind stress perturbations and adding them with a + and - sign to the analyzed wind. 
The wind stress and SST perturbations are combined to produce the 40 perturbed oceanic 
initial conditions. More details can be found in Anderson et al (2007). 
 
The forecasts are produced once a month with initial conditions from the 1st of each 
month.  These forecasts are then issued on the 15th of each month (the delay allows 
acquisition of SST fields from the previous month, time to run the forecasts, and a margin 
to ensure a reliable operational schedule).  A problem with long-term integrations is that 
the model mean climate begins to be different from the analysis climate. The effect of the 
drift on the model calculations is estimated from integrations of the model in previous 
years (the re-forecasts). The drift is removed from the model solution during the post-
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processing. The re-forecasts consist of an ensemble of 11 members starting on the 1st of 
each month from 1981 to 2007 (the ECMWF seasonal forecasting system 3 became 
operational in March 2007).   
 
The tropical storms produced by each forecast are tracked using the method described in 
Vitart and Stockdale (2001). This method identifies the low pressure systems with a 
warm core in the upper troposphere from the model outputs every 12 hours. Then an 
algorithm is applied to build the tropical storm trajectories from the low pressure systems 
with a warm core which have been identified.  
 
The number of tropical storms for each basin is then counted and added over the 7-month 
period of model integrations, but the first month of the forecast is excluded since it 
includes the deterministic part of the forecasts.  Also, these forecasts are issued with a 
delay of 15 days.  Since the model components have biases, the climatological frequency 
of model tropical storms can differ from observations. We calibrate the number of model 
tropical storms in a given year by multiplying the number of model tropical storms by a 
factor such that the mean of the central distribution (25%-75% distribution) of the model 
climate equals the mean of the observed central distribution. The calibration of the re-
forecasts is performed using cross-validation.  
 
The ECMWF seasonal forecasts of tropical storms are produced each month for all 
tropical cyclone basins (e.g., the North Atlantic, the eastern North Pacific, the western 
North Pacific, the North Indian Ocean, the South Indian Ocean, the Australian basin, and 
the South Pacific). For instance the seasonal forecasts of tropical storms for the Atlantic 
basin are issued from March to August. These forecasts do not necessarily cover the full 
season. For instance the 1st March forecasts, which are issued the 15 March, cover only a 
portion of the Atlantic tropical storm season: the period from June to September. On the 
other hand, the forecasts starting on 1st May cover the full Atlantic tropical storm season, 
from June to November.  Four times a year (February, May, August, November), the 
forecasts are extended to 13 months. The tropical storm forecasts produced by those 13 
months forecast are still experimental. Current seasonal tropical storm forecast products 
at ECMWF include: 
 
- The number of named storms 
- The mean genesis location (particularly relevant for the western North Pacific, where 
the genesis location of tropical storms can vary significantly from year to year) 
- The number of hurricanes (product available since May 2008) 
- The Accumulated Cyclone Energy (ACE) (product available since May 2008). 
 
The forecasts have been evaluated against observed data. Figure 6 shows an example of 
verification of ACE over the Atlantic for the ECMWF seasonal forecasts starting on 1st 
June.  
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2

1

2

Forecast Observations +/- 1 Std. Deviation

 
 
Figure 6: Interannual variability of Accumulated Cyclone Energy over the North Atlantic, 
normalized over its climatological value over the period 1990-2006. The red line 
represents observations from HURDAT, the blue line represents the interannual 
variability of the ECMWF ensemble mean forecasts starting on 1st June. The vertical 
green lines represent 2 standard deviations. The linear correlation between observations 
and ensemble mean model forecast is 0.72 over the period 1990-1007.  
 
Multi-model prediction: 
 
There exist a number of different methods to represent model uncertainty. One method 
makes use of the so-called multi-model technique. This method consists in combining the 
forecasts produced by different numerical models. The main idea is that the combination 
of the different models should filter some of the model errors which are specific to one of 
the model components. The DEMETER project (Palmer et al 2004) tested this hypothesis 
by combining the forecasts produced by 7 different coupled ocean-atmosphere seasonal 
forecasting systems. Vitart (2006) found that the DEMETER multi-model performed 
better overall than any individual model component. The success of DEMETER, led 
directly to the development of the operational EUROSIP multi-model ensemble. 
EUROSIP presently consists of 3 seasonal forecasting systems from the ECMWF, the 
Met Office and Météo-France. Multi-model seasonal forecasts of tropical storm activity 
are produced the same way as the ECMWF seasonal forecasts. Each model is calibrated 
separately and the multi-model tropical storm forecast is the median of the 3 model 
forecasts. The tropical storm products are the same as for the ECMWF forecast except 
that we do not issue EUROSIP forecasts of hurricane numbers. This is because some of 
the model components of EUROSIP do not have enough horizontal resolution to produce 
hurricanes. As is the case for the ECMWF forecasts, the EUROSIP multi-model tropical 
storm forecasts are not public, but are available to ECMWF member states. They may 
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soon become available to WMO members. The skill of the EUROSIP multi-model 
forecasts of tropical storm frequency is discussed in Vitart et al (2007). 
 
IRI Seasonal Hurricane Outlooks  

Since 2003, the International Research Institute for Climate and Society (IRI) has been 
issuing experimental forecasts for seasonal tropical cyclone (TC) activity in different 
regions based on climate models. The forecasts are available online at: 
http://portal.iri.columbia.edu/climate/forecast/tc. The forecasts are issued in the form of 
tercile probabilities (above-normal, normal, below-normal) for each of the variables 
(number of tropical cyclones and accumulated cyclone energy) in each basin for the peak 
of the TC season and are updated monthly. Here we briefly describe how the forecasts are 
produced and show their hindcast and real time skill in different regions.  This 
manuscript is strongly based on Camargo and Barnston (2008a, b). The figures and tables 
shown here appeared originally in Camargo and Barnston (2008a, b). 
 
Description of Forecasts 

  
The possible use of dynamical climate models to forecast seasonal TC activity has been 
explored by various authors, e.g. Bengtsson et al (1982).  Although the typical low 
horizontal resolution of climate general circulation models is not adequate to realistically 
reproduce the structure and behavior of individual cyclones, such models are capable of 
forecasting with some skill several aspects of the general level of TC activity over the 
course of a season (Camargo et al. 2005). The skill of dynamical TC forecasts depends on 
many factors, including the model used, the model resolution, and the inherent 
predictability of the large-scale circulation regimes, including those related to the ENSO 
condition. 
 
An important consideration is the dynamical design used to produce the forecasts.  
Currently, there are two methods for producing dynamical TC forecasts. The first is 
based on fully coupled atmosphere-ocean models (Vitart and Stockdale 2001; Vitart et al. 
2007). At IRI a two-tiered procedure is used (Mason et al. 1999; Goddard et al. 2003; 
Barnston et al.  2003, 2005), in which SST forecast scenarios are first established, which 
then are used to force an atmospheric model (Camargo and Barnston 2008a, b). 
 
The atmospheric model used for the IRI TC forecasts is the ECHAM4.5 model, 
developed at the Max-Planck Institute for Meteorology in Hamburg (Roeckner et al. 
1996), which has been studied extensively for various aspects of seasonal TC activity 
(Camargo and Zebiak 2002; Camargo and Sobel 2004; Camargo et al. 2005, 2007a). The 
integrations of this atmospheric model are subject to differing SST forcing scenarios, 
which are in constant improvement at IRI. Details of current and past SST scenario 
methodologies are given in Camargo and Barnston (2008a, b). In the tropics, multi-model 
SST forecasts are used for the Pacific, while statistical and dynamical forecasts are 
combined for the Indian and Atlantic Oceans. In all scenarios, the extra-tropical SST 
forecasts consist of damped persistence form the previous month’s observation (added to 
the forecast season’s climatology), with an anomaly e-folding time of 3 months (Mason 
et al. 1999). The model skill performance was first examined in model simulations forced 
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with observed SSTs, prescribed during the period 1950 to the present. These runs provide 
estimates of the upper limit of skill model in forecasting TC activity.  
 
For all types of SST we analyze the output of the ECHAM4.5 global climate model for 
TC activity. To define and track TCs in the models, we used objective algorithms 
(Camargo and Zebiak 2002), based in large part on prior studies (Vitart et al. 1997; 
Bengtsson et al. 1995). The algorithm has two parts: detection and tracking. In the 
detection part, storms that meet environmental and duration criteria are identified. A 
model TC is identified when chosen dynamical and thermodynamic variables exceed 
thresholds calibrated to the observed tropical storm climatology. Most studies (Bengtsson 
et al. 1982, Vitart et al. 1997) use a single set of threshold criteria globally. However, to 
take into account model biases and deficiencies, we use basin- and model-dependent 
threshold criteria, based on analyses of the correspondence between the model and 
observed climatologies. Thus, we use a threshold exclusive to ECHAM4.5 at a specific 
horizontal resolution. Once detected, the TC tracks are obtained from the vorticity 
centroid, defining the center of the TC, using relaxed criteria appropriate for the weak 
model storms.  These detection and tracking algorithms have been applied to regional 
climate models (Landman et al. 2005; Camargo et al. 2007b) and to multiple AGCMs 
(Camargo and Zebiak 2002; Camargo et al. 2005, 2007c). 
 
Following detection and tracking, we count the number of named storms (NS) and 
compute the model accumulated cyclone energy (ACE) index (Bell et al. 2000) over a TC 
season. ACE is defined as the sum of the squares of the wind speeds in the TCs active in 
the model at each 6-hour interval.  For the observed ACE, only TCs of tropical storm 
intensity or greater are included. The model ACE and named storm results are then 
corrected for bias, based on the historical model and observed distributions of NTC and 
ACE over the 1971-2000 period, on a per-basin basis. Corrections yield matching values 
in a percentile reference frame (i.e., a correspondence is achieved non-parametrically). 
Using 1971-2000 as the climatological base period, tercile boundaries for model and 
observed NTC and ACE are then defined, since the forecasts are probabilistic with 
respect to tercile-based categories of the climatology (below, near, and above normal).  
 
For each of the SST forcing designs, we count the number of ensemble members having 
their named storms and ACE in a given ocean basin in the below-normal, normal and 
above-normal categories, and divide by the total number of ensembles. These constitute 
the “raw”, objective probability forecasts.  In a final stage of forecast production, the IRI 
forecasters examine and discuss these objective forecasts and develop subjective final 
forecasts that are issued on the IRI website. The most typical difference between the raw 
and the subjective forecasts is that the latter have weaker probabilistic deviations from 
climatology, given the knowledge that the models are usually too “confident”. The 
overconfidence of the model may be associated with too narrow an ensemble spread, too 
strong a model signal (deviation of ensemble mean from climatology), or both of these. 
The subjective modification is intended to increase the probabilistic reliability of the 
predictions.  Another consideration in the subjective modification is the degree of 
agreement among the forecasts, in which less agreement would suggest greater 
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uncertainty and thus more caution with respect to the amount of deviation from the 
climatological probabilities. 
 
The raw objective forecasts are available since August 2001. The first subjective forecast 
for the western North Pacific basin was produced in real-time in April 2003. However, 
subjective hindcasts were also produced for August 2001 through April 2003 without 
knowledge of the observed result, making for 6 years of experimental forecasts. 
 
For each ocean basin, forecasts are produced only for the peak TC season, from certain 
initial months prior to that season (Table 9), and updated monthly until the first month of 
the peak season. The lead time of this latest forecast is defined as being zero, and the lead 
times of earlier forecasts are defined by the number of months earlier that they are issued. 
The definitions of the basins’ boundaries are given in Fig. 7. 
 
Table 9: Ocean basins in which IRI experimental TC forecasts are issued: Eastern North 
Pacific (ENP), Western North Pacific (WNP), North Atlantic (ATL), Australia (AUS) 
and South Pacific (SP). Date of the first issued forecast; seasons for which TC forecasts 
are issued (JJAS: June to September, ASO: August - October, JASO: July to October, 
ASO: August to October, JFM: January to March, DJFM: December to March); months 
in which the forecasts are issued; and variables forecasted --- NS (named storms), ACE 
(accumulated cyclone energy). 
 

Basin First Forecast Season Months forecasts are issued Variables 
Eastern North Pacific (ENP) March 2004 JJAS Mar., Apr., May, Jun. NS, ACE 
Western North Pacific (WNP) April 2003 JASO Apr., May, Jun, Jul. NS, ACE 
North Atlantic (ATL) June 2003 ASO Apr., May, Jun., Jul., Aug. NS, ACE 
Australia (AUS) September 2003 JFM Sep., Oct., Nov., Dec., Jan. NTC 
South Pacific (SP) September 2003 DJFM Sep., Oct., Nov., Dec. NTC 
 
Forecasts and hindcast skill 
 
In Camargo and Barnston (2008a;b), a large set of probabilistic and deterministic skill 
score measures are examined for simulations (forced with observed SST), hindcasts of 
persisted SSTs and the real-time forecasts. Here we show just a subset of that skill 
analysis. 
 
Figure 8 shows the approximate 6-year record of the model ensemble forecasts of NTC 
and ACE at all forecast lead times for each of the ocean basins. The vertical boxes show 
the inter-quartile range among the ensemble members, and the vertical dashed lines 
(“whiskers”) extend to the ensemble member forecasts outside of that range. The asterisk 
indicates the observation value. Favorable and unfavorable forecast outcomes can be 
identified, such as, respectively, the ACE forecasts for the western North Pacific for 
2002, and the ACE forecasts for the North Atlantic for 2004. 
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Figure 7: Definition of the ocean basin domains used in this study: Australian (AUS), 
(105˚E- 165˚E); South Pacific (SP), 165˚E-110˚W; western North Pacific (WNP), 100˚E-
160˚W, eastern North Pacific (ENP), 160˚W-100˚W; and Atlantic (ATL),100˚W-0˚. All 
latitude boundaries are along the equator and 40˚N or 40˚S. Note the unique boundary 
paralleling Central America for ENP and ATL basins. 
 
 
Probabilistic verification using the RPSS and likelihood scores for NTC and ACE,  using 
the multi-decadal simulations and hindcasts (OSST and HSST), and the real-time 
forecasts forced by the multiple SST prediction scenarios lead to skills that are mainly 
near or below zero. This poor result can be attributed to the lack of probabilistic 
reliability of atmospheric ensemble-based TC predictions as is seen in many predictions 
made by individual climate models ---not just for TC activity but for most climate 
variables (Anderson 1996; Barnston et al. 2003; Wilks 2006). Climate predictions by 
atmospheric models have model-specific systematic biases, and their uncorrected 
probabilities tend to deviate too strongly from climatological probabilities due to too 
small an ensemble spread and/or too large a mean shift from climatology. This problem 
leads to comparably poor probability forecasts, despite positive correlation skills for the 
ensemble means of the same forecast sets.  Positive correlations, but negative 
probabilistic verification is symptomatic of poorly calibrated probability forecasts---a 
condition that can be remedied using objective statistical correction procedures. 
 
The actually issued forecasts have better probabilistic reliability than the forecasts of the 
model output. Likelihood skill scores, and especially RPSS, are mainly positive for the 
issued forecasts, although modest in magnitude. This implies that the probability 
forecasts of the atmospheric are potentially useful, once calibrated to correct for 
overconfidence or an implausible distribution shape.  Such calibration could be done 
objectively, based on the longer hindcast history, rather than subjectively by the 
forecasters as done to first order here. 
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Figure 8: Model (raw) forecasts (box plots and whiskers) and observations (asterisks) of 
number of TCs (NTC) and accumulated cyclone energy (ACE) for all basins and leads. 
The cross inside the box shows the ensemble mean, and the horizontal line shows the 
median. Also shown by dotted horizontal lines are the boundaries between the tercile 
categories. Panels (a) - (f) are for the northern hemisphere basins, with NTC on the left 
panels and ACE on right panels, for ENP, ATL, WNP in each row, respectively. The two 
bottom panels are for NTC in the southern hemisphere basins: AUS (g) and SP (h). 
 
Summary 
 
The International Research Institute for Climate and Society (IRI) has been issuing 
experimental TC activity forecasts for several ocean basins since early 2003.  The 
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forecasts are based on TC-like features detected and tracked in the ECHAM4.5 
atmospheric model, at low horizontal resolution (T42). The model is forced at its lower 
boundary by sea surface temperatures (SSTs) that are predicted first, using several other 
dynamical and statistical models.  Results show that low-resolution model deliver 
statistically significant, but fairly modest, skill in predicting the inter-annual variability of 
TC activity. In a 2-tiered dynamical prediction system such as that used in the IRI 
forecasts, the effect of imperfect SST prediction is noticeable in skills of TC activity 
compared with skills when the model is forced with historically observed SSTs.      
Although prospects for the future improvement of dynamical TC prediction are uncertain, 
it appears likely that additional improvements in dynamical systems will make possible 
better TC predictions. As is the case for dynamical approaches to ENSO and near-surface 
climate prediction, future improvements will depend on better understanding of the 
underlying physics, more direct physical representation through higher spatial resolution, 
and substantial increases in computer capacity. Hence, improved TC prediction should be 
a natural by-product of improved prediction of ENSO, global tropical SST, and climate 
across various spatial scales. 
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