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Abstract. A self-consistent equilibrium calculation, valid for arbitrary aspect ratio tokamaks, is
obtained through a direct variational technique that reduces the equilibrium solution, in general
obtained from the 2D Grad–Shafranov equation, to a 1D problem in the radial flux coordinateρ. The
plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch–Schlüter and the
neoclassical ohmic and bootstrap currents. An iterative procedure is introduced into our code until
the flux surface averaged toroidal current density 〈JT〉, converges to within a specified tolerance for
a given pressure profile and prescribed boundary conditions. The convergence criterion is applied
between the 〈JT〉 profile used to calculate the equilibrium through the variational procedure and
the one that results from the equilibrium and given by the sum of all current components. The
ohmic contribution is calculated from the neoclassical conductivity and from the self-consistently
determined loop voltage in order to give the prescribed value of the total plasma current. The
bootstrap current is estimated through the full matrix Hirshman–Sigmar model with the viscosity
coefficients as proposed by Shaing, which are valid in all plasma collisionality regimes and arbitrary
aspect ratios. The results of the self-consistent calculation are presented for the low aspect ratio
tokamak Experimento Tokamak Esférico. A comparison among different models for the bootstrap
current estimate is also performed and their possible limitations to the self-consistent calculation
is analysed.

1. Introduction

The total current profile in tokamak plasmas may have contributions of several components
such as the ohmic, diamagnetic and the Pfirsch–Schlüter currents, the so-called bootstrap
current [1] and any other non-inductive currents that may be externally driven. An external,
non-inductive current drive may be driven, for instance, radio frequency, neutral beam and
helicity injections into the plasma column [2, 3], which cause a toroidal asymmetry in the
system and generate a current in some privileged direction. At the moment, tokamaks work
mainly as pulsed devices that are limited by the flux provided by the ohmic transformer used to
sustain the plasma current. These non-inductive current drive techniques are then employed in
order to enable a tokamak to operate continuously, which is important for future fusion reactor
design. The bootstrap current, on the other hand, is derived from the momentum and heat flow
balance equations for each species in the plasma and has its origin in neoclassical effects. High
fractions of bootstrap current may be obtained in high beta poloidal equilibria and its presence
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has already been observed in several experiments [4–6]. In advanced tokamak designs [7] and
low aspect ratio configurations [8] the bootstrap current may represent a large fraction of the
total plasma current, opening a new route to the viability of a steady-state reactor concept,
since the generation of the total plasma current that is entirely provided by non-inductive
techniques could be far more expensive. In the same way the ohmic current may be modified
by neoclassical effects, since the classical Spitzer conductivity is reduced due to the presence
of trapped particles. This occurs due to the toroidal tokamak geometry, which causes the
trapping of circulating particles in magnetic mirrors and decreases the number of particles
which can effectively carry the current. Magnetic flux consumption experiments [4–6, 9, 10]
have already confirmed the prescription of neoclassical models for the plasma conductivity.

The knowledge of the total plasma current profile depends on an accurate prediction of
its components and is very important for stability and transport studies in tokamak plasmas.
We will consider here the first four current contributions previously mentioned: the ohmic,
bootstrap, diamagnetic and Pfirsch–Schlüter currents. Non-inductive current drive and strong
anisotropies in the plasma pressure profile will not be considered at the moment. The
neoclassical bootstrap and ohmic currents can greatly change the total current profile but they
can only be accurately determined if the total plasma current itself is known. However, the total
current profile depends on the equilibrium and the equilibrium cannot be determined until all the
current components have been determined, that is the total current profile is known. Therefore,
we can only solve this problem with a self-consistent solution for the equilibrium. The purpose
of this paper is to describe such an equilibrium for low and high aspect ratio tokamaks.

The plasma fixed boundary equilibrium is generated here from a variational principle,
applied in its energy form, that uses a truncated Fourier expansion in flux coordinates (ρ, θ , ζ )
to describe the magnetic surfaces in a D-shaped plasma [11]. Here ρ is the radial flux surface
label, θ is the poloidal angle and ζ is the ignorable toroidal symmetry angle. Trial functions,
parametrized by a set of constants that are determined by the condition of stationary energy,
are introduced to represent the spectral radial amplitudes, and an approximate solution for
the equilibrium is obtained through a direct variational technique. By using this Lagrangian
formulation, the standard procedure of solving the 2D quasi-linear Grad–Shafranov equation,
following an Eulerian approach, is reduced, in our case, to a 1D problem that consists in finding
these radial coefficients.

The self-consistent calculation requires that the toroidal plasma current profile IT(ρ),
used as an input to the variational procedure, takes into account all the current contributions
that result from the equilibrium given in our case by the external inductive neoclassical ohmic
current and the current components basically driven by pressure gradients such as the bootstrap,
diamagnetic and Pfirsch–Schlüter currents [12]. In order to do this an iterative algorithm was
implemented to our equilibrium calculation, where a current profile IT(ρ) is first specified, and
an equilibrium is determined from the variational technique. A new IT(ρ) results from this
equilibrium and is defined by the sum of the pressure-driven toroidal current components with
the ohmic contribution. The flux surface average of the toroidal current density (〈JT〉), which
is a more physically relevant profile, is then calculated for both IT(ρ) mentioned above and
compared. In case they differ by more than a specified accuracy, the new IT(ρ) is reintroduced
into the algorithm and a new equilibrium is calculated. Otherwise, a self-consistent solution
for the equilibrium is obtained. This convergence criterion ensures that the current density
profile itself is obtained consistently within the tolerance assumed for the iterative procedure.
A convergence criterion applied to f df/d
P with f (
P) = RBT being the toroidal flux
function, or, equivalently in our case, to IT(ρ)dIT/dρ, as usually employed in self-consistent
equilibrium calculations [13, 14], still leads to a self-consistent solution but the error in the
convergence of JT(ρ, θ) may be greater than that required for IT(ρ) dIT/dρ, as will be shown



Self-consistent equilibrium calculation 1271

in section 4. Here, R is the distance of a given point in the plasma to the tokamak axis, BT is
the toroidal induction and 
P is the poloidal magnetic flux.

The bootstrap current will be determined by using the multi-species full matrix Hirshman–
Sigmar model [15], with the viscosity coefficients provided according to Shaing et al [16],
which are continuously valid throughout the three collisionality regimes (banana, plateau and
Pfirsch–Schlüter regimes) arbitrary aspect ratios and for any flux surface geometry. This
extends results provided by self-consistent equilibrium calculations that use more restrictive
calculations for the bootstrap current estimate. We consider here the first two odd-velocity
moments of the Fokker–Planck equation in order to derive the momentum and heat flux balance
equations in the plasma. In high-collisional conventional tokamak plasmas, the bootstrap
current effect tends to vanish since trapped particles are scattered before performing a whole
excursion on their banana orbits, eliminating the neoclassical effect. However, according to
Shaing et al [17], in the limit when the aspect ratio A = R0(a)/a tends to unity (R0(a) and
a are the major and minor plasma radii, respectively) the bootstrap current is independent of
the collisionality regime, and would not disappear since the ion and electron viscosities in this
limit tend to infinity. We will check these prescriptions for the low aspect ratio tokamak ETE
(Experimento Tokamak Esférico) [18], at the Associated Plasma Laboratory of the National
Institute for Space Research (LAP/INPE) in Brazil, that will start operating by the end of 2000.
The bootstrap current estimate will be compared to that provided using the Hirshman–Sigmar
viscosity coefficients [15]. An estimate in low-collisionality regimes for the bootstrap current
that is valid for arbitrary aspect ratios and which accounts for the presence of a single-ion species
in the plasma (Hirshman model) [19] is also implemented in our code as an alternative to the full
matrix Hirshman–Sigmar model. However the collisionless model presents some limitations to
the self-consistent calculation as our code simulations will demonstrate throughout this paper.

The ohmic current is calculated in terms of the neoclassical conductivity which follows
the calculation given in [20] and from the loop voltage determined such that the total plasma
current IT(a) is equal to a prescribed value.

Some other neoclassical issues caused by plasma rotation [21] and orbit squeezing
effects [22], characteristic of high-confinement regimes, will not be addressed at the moment.
These effects can cause modifications in the neoclassical coefficients bringing the neoclassical
theory into accordance with the ion transport levels observed in enhanced confinement
scenarios. In the same way, corrections to the bootstrap current and to the plasma resistivity
close to the magnetic axis provided by the existence of potato orbits [23] are not considered
here. These corrections have to be carefully analysed according to what has been recently
discussed by Helander [24].

Our self-consistent equilibrium code was implemented in a PC-type computer using the
Mathematica package [25]. This was possible mainly because the plasma equilibrium was
obtained through a semi-analytic procedure provided by the direct variational technique.

The paper is organized as follows. In section 2 we briefly present our equilibrium model
and the implementation of the self-consistent calculation is described in detail. The neoclassical
bootstrap and ohmic currents are introduced in section 3. In section 4 we show some results of
our self-consistent equilibrium code applied to the ETE low aspect ratio tokamak. A discussion
and the conclusions of the paper are presented in section 5.

2. Equilibrium model and self-consistent equilibrium formulation

As mentioned in section 1, the plasma fixed boundary equilibrium was generated through
a direct variational method, applied in its energy form, that uses a spectral representation
of the flux surfaces in a D-shaped plasma and trial functions to represent the radial spectral
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amplitudes [11].
The truncated Fourier expansion, representing the D-shaped flux surfaces, describes the

transformation from cylindrical to flux coordinates, (R,Z) → (ρ, θ), as

R(ρ, θ) = R0(ρ)− 1
4ρT (ρ) + ρ cos θ + 1

4ρT (ρ) cos 2θ (1a)

Z(ρ, θ) = ρE(ρ)(sin θ − 1
4T (ρ) sin 2θ). (1b)

This representation is valid for an up–down axisymmetric plasma where the toroidal ζ variable
is ignored. The spectral coefficients R0(ρ), E(ρ) and T (ρ) represent, respectively, the centre,
the elongation and the triangularity of the magnetic surfaces labelled by ρ. Appropriate
trial functions are introduced for these coefficients and parametrized by a set of constants,
determined from the variational technique, for a given toroidal plasma current profile IT(ρ),
pressure profiles p(ρ) and prescribed boundary conditions. IT(ρ) describes the total plasma
current enclosed by a magnetic surface. Higher orders in the Fourier expansion imply more
constants to be determined in the variational procedure. Once the radial amplitudes are
obtained, the equilibrium calculation is complete and is reduced to the solution of a 1D problem
in the radial coordinate ρ, instead of solving the 2D quasi-linear Grad–Shafranov equation in
the cylindrical coordinates (R, Z). All the formalisms involving this calculation, including the
construction of trial functions, are found in detail in [11].

The expression for the magnetic field in flux coordinates is given by

�B = 1

2π
(∇ζ × ∇
P) +

µ0I (
P)∇ζ
2π

(2)

where the first term represents the poloidal magnetic field �BP and the second term refers to the
toroidal induction component �BT. Furthermore, 
P is the poloidal magnetic flux and |∇ζ | =
1/hζ (hζ is the distance to the symmetry axis or the cylindrical coordinate R). I (
P) is the
total poloidal current between the symmetry axis and a given magnetic surface. This current is
related to the toroidal flux function f (
p) through the relation f (
p) = µ0I (
p)/2π = RBT.

The implementation of the self-consistent calculation of our equilibrium model will be
now described.

The total current density is given in terms of four components represented by the ohmic,
bootstrap, diamagnetic and Pfirsch–Schlüter currents, that is

�J = 〈 �Joh · �B〉
〈B2〉

�B +
〈 �Jbs · �B〉

〈B2〉
�B +

dp

d
P

(
µ0I

�B
〈B2〉 − 2πR2∇ζ

)
. (3)

The first term in equation (3) is the ohmic current modified by neoclassical effects through
plasma conductivity, the second term is the bootstrap current, which is calculated through the
full matrix Hirshman–Sigmar model [15] with the viscosity coefficients as proposed by Shaing
[16], and the last two terms are the combination of the diamagnetic and the Pfirsch–Schlüter
currents ( �Jdia and �Jps, respectively) [12], which are obtained from fluid plasma equations and
are independent of the plasma collisionality regime. The brackets in equation (3) refer to a
flux surface average, defined as

〈F 〉 =
∫
F d�θ/BP∫
d�θ/BP

=
∫
F

√
g dθ∫ √
g dθ

(4)

where d�θ is a poloidal arc length and
√
g = (∇ρ · ∇θ × ∇ζ )−1 is the Jacobian of the

transformation from cylindrical (R, φ, Z) to flux (ρ, θ , ζ ) coordinates, where ζ = −φ. The
ohmic and the bootstrap currents will be presented in detail in the next section.

In order to solve the equilibrium self-consistently we need to solve the Grad–Shafranov
equation taking into account equation (3).
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The Grad–Shafranov equation is given by [26]

�∗
P = −4π2µ0R
2 dp

d
P
− µ2

0I
dI

d
P
= 2πµ0RJT (5)

and the toroidal and poloidal current density components are described, according to Ampére’s
law and force balance equation, as

�JT =
[
−2πR

dp

d
P
− µ0I

2πR

dI

d
P

]
êζ (6)

�JP = − dI

d
P

�BP (7)

where êζ is a unit vector in the toroidal direction. The total current density which is given by
the sum of equations (6) and (7) results:

�J = −2πR2 dp

d
P
∇ζ − dI

d
P

�B. (8)

Combining equations (3) and (8), an equation for the poloidal current profile I (
p) follows:

−I dI

d
P
= 〈 �Joh · �B〉

〈B2〉 I +
〈 �Jbs · �B〉

〈B2〉 I +
µ0I

2

〈B2〉
dp

d
P
. (9)

The self-consistent calculation implies that the toroidal current density that enters into the
Grad–Shafranov equation has also to be given by the sum of all the current components as
described by equation (3), that is it implies the solving of equations (5) and (9) simultaneously.
Actually, in our case, instead of solving equation (5) itself we solve the equilibrium by applying
variational techniques to the internal plasma energy. In fact, we solve the Grad–Shafranov
equation after taking its average over a flux surface. This equation is given in [11] by

d
p

dρ

d

dρ

(
K(ρ)

d
P

dρ

)
= −dL

dρ
I (ρ)

dI

dρ
− dV

dρ

dp

dρ
(10)

and corresponds to an extremum of the functional representing the total energy W(a), given
below:

W(a) =
∫ ∫ ∫

V (a)

d3r

(
B2

P

2µ0
+
B2

T

2µ0
+ p

)
=
∫ a

0
dρ 〈H 〉(
P, IT, ρ) (11)

where 〈H 〉 is a flux surface averaged Hamiltonian density, which may be written as

〈H 〉 = I 2
T(ρ)

2K(ρ)
+
I 2(
P)

2

dL

dρ
+ p(
P)

dV

dρ
. (12)

The three terms in equation (11) represent, respectively, the internal magnetic energy stored
in the plasma loop, the internal magnetic energy stored in the plasma solenoid and the thermal
energy confined in the plasma. In our Lagrangian formulation, 
P is a generalized coordinate
and the toroidal plasma current profile, IT(ρ), represents a generalized momentum given by

IT(ρ) = K(ρ)
d
P

dρ
. (13)

L(ρ), V (ρ) and K(ρ) are, respectively, the inductance of the toroidal solenoid coincident
with a given flux surface, the volume involved by this surface and the inverse kernel used to
calculate the self-inductance of the plasma loop. They depend only on the system geometry
and are derived in detail in [11].

In order to complete the set of equations used in our equilibrium calculation we will
introduce the internal plasma energy U(a), upon which we apply the variational technique.
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U(a) is given by the sum of the magnetic and thermal energies, confined in the plasma, after
discounting, from the total energyW(a), the energy contribution due to the vacuum field. This
contribution is constant for variational procedure considerations, in a fixed boundary problem,
leading to an internal plasma energy written as:

U(a) =
∫ a

0
dρ

[
I 2

T(ρ)

2K(ρ)
+

L(ρ)

K(ρ) dL/dρ
IT(ρ)

dIT(ρ)

dρ

+p(ρ)
dV (ρ)

dρ
+

L(ρ)

dL/dρ

dp(ρ)

dρ

dV (ρ)

dρ

]
. (14)

The constants involved in the parametrization of the trial functions that describe the spectral
coefficients of the Fourier expansion given in (1) are determined by finding a stationary value of
U(a), for given plasma current and pressure profiles and prescribed values of the total plasma
current, IT(a), pressure on the magnetic axis, p(0), and at the plasma edge, p(a). All the other
quantities in (14) carry the geometry information of the flux surfaces. The self-consistent
calculation implies that the current profile IT(ρ) takes into account all current contributions,
as described in (9).

The profiles I (ρ) and IT(ρ) are related through the following expression

IT(ρ)
dIT

dρ
= −K(ρ)dL

dρ
I (ρ)

dI

dρ
−K(ρ)

dV

dρ

dp

dρ
(15)

which results from the substitution of equation (13) into (10). Still using relation (13), we can
rewrite (9) as

−I dI

dρ
= IT(ρ)

K(ρ)

[
〈 �Joh · �B〉

〈B2〉 I +
〈 �Jbs · �B〉

〈B2〉 I

]
+
µ0I

2

〈B2〉
dp

dρ
. (16)

In order to solve (10) and (16) simultaneously, we implemented in our code the following
iterative procedure: initially, a current profile IT(ρ) is specified and the equilibrium is solved
by finding a stationary value for U(a). From this equilibrium we obtain the profile I dI/dρ
from the right-hand side of (16) and, consequently, IT dIT/dρ from (15), given by the sum of
all the current components. In this way a new IT(ρ) is obtained from the integration of (15).
The flux surface average of the toroidal current density (〈JT〉) is then calculated for this new
profile as well as for IT(ρ), previously introduced in order to generate the equilibrium. If they
are different by more than a given tolerance then the new IT(ρ), given by the sum of all the
current components, is reintroduced into our algorithm and a new equilibrium is calculated.
Otherwise a self-consistent equilibrium is obtained. A convergence criterion applied to the
IT dIT/dρ or I dI/dρ profiles, as mostly used in self-consistent equilibrium codes, may result
in a current density profile that is not converged to within the same accuracy as requested for
IT dIT/dρ, according to what will be shown in section 4.

In the next section we will present in detail the derivation for the neoclassical ohmic and
bootstrap currents as introduced in our code.

3. Neoclassical ohmic and bootstrap currents

3.1. Ohmic current

The ohmic current, induced by transformer action, is solenoidal and parallel to the magnetic
field and takes the following form:

�Joh = 〈 �Joh · �B〉
〈B2〉

�B (17)
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or by replacing the expression for �Joh with

�Joh = σNC
〈 �E · �B〉
〈B2〉

�B (18)

it can be written as

�Joh = µ0I

(2π)2
σNCVloop

〈1/R2〉
〈B2〉

�B. (19)

In (18) and (19) σNC is the plasma conductivity modified by neoclassical effects and �E is the
driving electric field, which is considered here to be in the toroidal direction and can be written
in terms of the loop voltage Vloop as

�E = Vloop

2πR
êζ (20)

where êζ is the unit vector in the toroidal direction. In (19) we have also replaced the expression
for the toroidal magnetic field BT = µ0I/2πR. Vloop is considered constant in the plasma
column and is determined from the condition that the total plasma current IT(a), given by a
prescribed value, must be equal, at the same time, to the sum of all the current components,
which are obtained from the integration of the respective toroidal current density over the
plasma cross section:

IT(a) = Ibs + Ioh + Ips + Idia. (21)

The subscripts denote, respectively, the bootstrap, ohmic, Pfirsch–Schlüter and diamagnetic
currents. Once the loop voltage is determined from (21) the current profile I dI/dρ, given
in (16), is updated along with IT(ρ), through (15), which will be used in the next iteration in
our algorithm. The equations for all currents in (21) are given in appendix A.

The neoclassical conductivity is taken from the Hirshman–Hawryluk–Birge calcula-
tion [20], which includes modifications due to impurity species and is valid for all plasma
collisionality regimes. The full expression for σNC, according to this formulation, is given by

σNC

σ0
= 8

3
√
π

∫ ∞

0
x4

e e−x2
e dxe{(1 − f ∗

t )Fs[1 − f ∗
t (ν

e
DτeeFs − 1)]} (22)

where σ0 = nee
2τee/me is the Spitzer conductivity not modified for impurities, τee is the

self-scattering time between electrons given by τee = 12π3/2ε2
0m

2
ev

3
the/(4nee

4 ln-), f ∗
t is

an effective trapped particle fraction, FS is the Spitzer function which can be fitted to a
polynomial and νe

D is the total pitch angle diffusion frequency that depends on xe = v/vthe,
with vthe = (2Te/me)

1/2 being the electron thermal velocity and Te the electron temperature.
The effective trapped particle fraction f ∗

t is defined by f ∗
t = ft[1+1.75ν∗e (ν

e
D(xe)τee)x

−1
e ]−1,

where ft is the trapped particle fraction in the banana regime that will be introduced
in the next section through (23). ν∗e is the electron collisionality parameter given by
ν∗e = √

2R0(ρ)q(ρ)/(τeeε
3/2vthe), where ε is the inverse of the local aspect ratio (ρ/R0(ρ))

and R0(ρ) and q(ρ) represent the centre and the safety factor of a given flux surface. me, ne

and e are, respectively, the electron mass, density and electron charge. The expression for νe
D

is given in appendix B and the equations for all other quantities mentioned above are given in
detail in [20]. There is also an analytic form for σNC, presented in [20], which gives a quite
reasonable result for the plasma conductivity, including low aspect ratio tokamaks, when their
approximation for the trapped particle fraction is replaced by the calculation given by Lin-Liu
and Miller [27]. The accuracy of this form for the neoclassical conductivity will be shown in
section 4, where it will be compared with the exact formula given by (22), indicating that it
may be used in order to reduce the computer time consumption. However, in our calculations
we used (22).
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The next current density component to be described is the bootstrap current which is
estimated in our code according to the full matrix Hirshman–Sigmar model using the viscosity
coefficients as given by Shaing.

3.2. Bootstrap current

The neoclassical effect, originating from the toroidal tokamak geometry, causes the trapping
of particles in magnetic mirrors that define the so-called banana orbits, which are formed in
the weak magnetic field side on the outboard of the machine. The balance in the momentum
exchange between the passing and trapped particles due to friction leads to a net current
driven by the passing particles that is called the bootstrap current [1, 28]. This current
occurs due to plasma diffusion and exists independently of any external electric field. It
is, however, dependent on the existence of trapped particles in the plasma and is largest
in the low-collisionality regimes (banana regime) such that the trapped particles perform a
whole excursion on their orbits before being scattered, which would result in their de-trapping
decreasing the bootstrap effect. In low aspect ratios, however, the bootstrap current would not
disappear even in collisional plasmas, according to Shaing et al [17], since the ion and electron
viscosities tend to infinity in this limit. We will check these assumptions in section 4.

As the trapped particle fractionft , is an important feature for the bootstrap current estimate,
we introduce here the well known expression for ft given by [15]

ft = 1 − 3

4
〈B2〉

∫ 1/Bmax

0

λ dλ

〈√1 − λB〉 (23)

where λ = sin2 ξ/B, and ξ is the pitch angle of the particle gyro orbit. Bmax refers to the
maximum value of the total induction B, over a flux surface. An approximation to avoid
calculating the integral given in (23), which actually requires a double numerical integration,
is the approximation given by Lin-Liu and Miller [27], which is used in our code as described
in appendix B. The accuracy of this approximation has already been checked [29] where the
bootstrap current was estimated through the Hirshman collisionless model.

In analogy to the ohmic current, the bootstrap current flows parallel to the magnetic field
and is divergence free, assuming the following form:

�Jbs = 〈 �Jbs · �B〉
〈B2〉

�B (24)

with

〈 �Jbs · �B〉 =
∑
a

naea〈ua‖B〉 (25)

na ea and ua‖ are, respectively, the density, charge and parallel flow velocity of species a in
the plasma.

The solution of the system consists of the parallel momentum and heat flow balance
equations for each species in the plasma and provides the parallel fluid 〈ua‖B〉 and heat
〈2qa‖/5pa〉 flows in terms of the thermodynamic flows for each one of these species. qa
and pa are, respectively, the parallel heat flow and the partial plasma pressure due to species a.
The parallel fluid flows determine the bootstrap current through equation (25). Taking the
flux surface averaged parallel component of the odd-velocity moments (�v, v2�v) of the Fokker–
Planck equation one obtains the following final expressions for the two equations mentioned
above:

µa1〈ua‖B〉 − µa1Va1B +
2

5
µa2

〈
qa‖
pa

B

〉
− µa2Va2B =

∑
b

(
lab11 〈ub‖B〉 − 2

5
lab12

〈
qb‖
pb

B

〉)
(26)
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µa2〈ua‖B〉 − µa2Va1B +
2

5
µa3

〈
qa‖
pa

B

〉
− µa3Va2B =

∑
b

(
−lab21 〈ub‖B〉 +

2

5
lab22

〈
qb‖
pb

B

〉)
(27)

which are derived in detail in [15]. The left-hand sides in equations (26) and (27) refer to
the plasma viscosity and the right-hand sides shows the parallel friction forces acting upon a
given plasma species a. The summation describing the friction forces is made over all species,
including a. This system of equations is solved for the parallel flows, 〈uj‖B〉 and 〈qj‖B/pj 〉,
and the bootstrap current is finally obtained from equation (25). Va1 and Va2 are the poloidal
components of the diamagnetic flows [15], given in terms of the thermodynamic flows as

Va1 = −µ0ITa

eaB

(
1

pa

dpa
d
P

+
ea

Ta

dφ

d
P

)
(28)

Va2 = −µ0ITa

eaB

(
1

Ta

dTa
d
P

)
. (29)

In equations (28) and (29), Ta is the temperature of species a. The electric potential φ is the
same for all species and does not contribute to the final bootstrap current estimate.

In order to complete this formulation and have all the elements to solve the system of
equations established by equations (26) and (27), we have to define the viscosity (µaj ) and
friction (labij ) coefficients. The latter relate the friction forces experienced by the plasma species
in terms of the parallel flows and are given in appendix B. They are independent of the magnetic
field and so are valid in all neoclassical collision frequency regimes.

The viscosity coefficients for each species, on the other hand, depend on the plasma
collisionality and are used here according to Shaing et al’s formulation, see [16, 30]:{

µa1

µa2

µa3

}
= 8

3
√
π
nama

∫ ∞

0
dxa x

4
a e−x2

a

{ 1
(x2

a − 5/2)
(x2

a − 5/2)2

}
Ka

BK
a
PS

Ka
B + Ka

PS

. (30)

These coefficients are valid throughout the three plasma collisionality regimes and arbitrary
aspect ratios, with KB and KPS being the banana and Pfirsch–Schlüter contributions to the
viscosity integral, respectively given by

Ka
B = ft

fc
νaD (31)

and

Ka
PS = 3

2
v2

thax
2
a

∞∑
m=1

Fm
(νTI

m
R )a

νaT
. (32)

In equation (32) we have

Fm = 2

〈B2〉〈 �B · ∇θ〉 〈sinm6(n̂ · ∇B)〉〈sinm6( �B · ∇6)(n̂ · ∇B)〉 (33)

and
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R )a = −3

2

(
νaT
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)2
}

× 2νaT
ωm,a

arctan

(
ωm,a

νaT

)
(34)

with 6 = γ (
P)
∫ �

0 B d�θ/BP, 1/γ (
P) = 1/(2π)
∮
B d�θ/BP and n̂ = �B/B. ωm,a =

xavtham(�n · ∇6), where xa = v/vtha , with vtha being the thermal velocity for species a. We
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Table 1. Parameters of the tokamak ETE.

Major radius R0(a) 0.30 m
Minor radius a 0.20 m
Triangularity δ 0.3
Toroidal magnetic field on axis B0 0.4 T
Plasma current IT(a) 200 kA

have not considered the cosm6 terms in Fm since we are dealing with up–down symmetric
plasmas where these terms do not contribute. Still, in equation (31) we have ft and fc = 1−ft

representing, respectively, the trapped and circulating particle fractions. The definitions for
the collision frequencies νaD and νaT in (31) and (32) are given in appendix B.

The number of modes to be used in the summation of equation (32) can be estimated
employing the identity:

∞∑
m=1

Fm = 〈(n̂ · ∇ �B)2〉
〈B2〉 . (35)

These expressions for the viscosity coefficients provide an estimate for the bootstrap current
valid in all collisionality regimes and arbitrary aspect ratios. They were derived using an
approximation for the Coulomb collision operator and their accuracy is within 20% of those
calculated from the full form of this collision operator as already mentioned in [15, 16, 30].
The estimate of the bootstrap current will be compared to those obtained from the Hirshman–
Sigmar model [15] that, in spite of being valid in all collisionality regimes, does not give the
right limit when the aspect ratio tends to unity and to the Hirshman model [19], valid for all
aspect ratios in low-collisionality regimes.

4. Applications

We will present some results of the self-consistent equilibrium calculation for the ETE low
aspect ratio tokamak [18]. Its main parameters are summarized in table 1.

The plasma beta during the ohmic phase is expected to be between 4 and 10%. The
pressure, electron and ion temperature profiles, used in the self-consistent calculation, were
taken as Gaussian-shaped functions in the following form: f (ρ) = f (0) exp[−αf (ρ/(wf −
ρ))2]. The parameter f (0) determines the profile value at the axis, whereas αf andwf control
the gradient and the width of the profile, and, therefore, the value at the boundary. We have
also considered Te(0) = Ti(0), Te(a) = Ti(a) and αTe = αTi . As the pressure profile is given
as a fixed input in our code, the density profiles were derived by taking into account the fact
that the total pressure in the plasma is given by p = neTe +

∑
k nkTk and considering the

quasi-neutrality condition (ne = ∑
k nkZk), with the summations taken over all ion species.

The initial current profile IT(ρ), first specified in the variational procedure, is taken as
given in [11] with an amplitude A0 = 1/5, its centre at ρ0 = 0 and a width w = 2a/3,
with a being the minor plasma radius. αI is the initial peaking factor current profile. We have
established a tolerance of 1% for 〈JT〉 in the self-consistent calculation in most of the equilibria
analysed.

In table 2 we show the estimate of the bootstrap current fraction Ibs/IT(a), resulting
from the self-consistent equilibrium, according to the full matrix Hirshman–Sigmar model
[15] with the viscosity coefficients given by Shaing et al [16]. Different plasma parameters
were considered, such as the pressure on the magnetic axis p(0), the central electron and ion
temperatures Te,i(0), the peaking factor pressure profile (αp), the elongation at the plasma
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Table 2. Plasma parameters for bootstrap current estimate in ETE generated from the self-consistent
calculation.

p(0) (kPa) Te,i(0)(keV) Te,i(a)(keV) αp αTe,i κ(a) Zeff βI β0 Ibs/IT(a)

I 15 0.5 0.03 3.0 0.2 2.0 1.54 0.54 0.09 0.36
II 10 0.4 0.03 3.0 0.2 2.0 1.00 0.36 0.06 0.23
III 10 0.4 0.03 3.0 0.2 2.0 1.54 0.36 0.06 0.22
IV 10 0.2 0.03 3.0 0.2 2.0 1.00 0.36 0.06 0.14
V 10 0.4 0.03 3.0 0.2 1.7 1.00 0.31 0.06 0.17
VI 10 0.4 0.03 2.0 0.2 2.0 1.00 0.39 0.06 0.24
VII 8 0.4 0.03 3.0 0.2 2.0 1.00 0.29 0.05 0.18

edge κ(a) and the level of impurities in the plasma where Zeff = 1 corresponds to a pure
hydrogen plasma and Zeff = 1.54 represents a hydrogen plasma plus 2% carbon. Zeff was
considered constant over the plasma column. The optimum case, represented by the set of
parameters I , with a central pressure of 15 kPa and a plasma elongation of k(a) = 2.0,
gives a bootstrap current fraction of approximately 36% and poloidal beta βI = 0.54, where
βI = 4

∫
p dV/(µ0RmI

2
T(a)), as in [13], with Rm being the radius of the magnetic axis.

Comparing cases II and V let us conclude that more elongated plasmas correspond to higher
bootstrap current fractions. These plasmas have higher safety factors generating more bootstrap
current according to equation (A.5), see appendix A. Plasmas with 2% carbon, as in case III,
present a slight decrease in the bootstrap current as observed from a comparison with II. We can
also confirm from the set of parameters I, II and V that the bootstrap current fraction generated
in the plasma is proportional to the βI values [28, 31]. Although the final combination of
parameters may result in the same βI , as in II, III and IV, the bootstrap current level is more or
less sensitive to some plasma profile parameters and may be different in each of these cases.
The low temperature in case IV, for instance, is the main cause of the low bootstrap current
obtained due to the increase on the plasma collisionality. Finally, flatter pressure profiles
produce a slightly higher bootstrap current fraction, as observed by comparing II and VI, and
generate current closer to the plasma edge, which can be destabilizing. β0 in table 2 refers
to the toroidal beta calculated with the external magnetic field at the geometric centre. The
plasma parameters presented in table 2 represent ETE plasmas in ETE’s first phase of operation,
when no additional heating is predicted, making higher levels of bootstrap current unlikely.
Calculations with our code for other machines, such as MAST [32] or NSTX [33], reproduce
bootstrap current fractions that can reach more than 50%, since these machines will be able to
operate with more elongated plasmas at higher temperature levels.

Figure 1 shows the current density profiles for cases II (figures 1(a)–(c)) and IV
(figures 1(d)–(f)) that result from the self-consistent equilibrium. For case II, the plasma
temperature is higher (Te(0) = 0.4 keV) and fewer collision occur than in IV. In figures 1(a)
and 1(d), the full curves refer to the total equilibrium current density profile, whereas the dashed
curves are the ohmic contributions, the dash–dotted curves are the sum of the diamagnetic and
Pfirsch–Schlüter currents and the dotted curves represent the bootstrap current components.
Figures 1(b) and 1(e) show the consistency of the solution since the full curve correspond to
the final equilibrium current densities used as input to the variational procedure and the dashed
curves refer to the sums of the toroidal current contributions (ohmic, bootstrap, diamagnetic
and Pfirsch–Schlüter currents) obtained from the equilibrium. Finally, the flux surface average
of the total parallel equilibrium current and its ohmic and bootstrap contributions are plotted in
figures 1(c) and 1(f) (note that the Pfirsch–Schlüter and diamagnetic components are null). The
dashed curves are the ohmic currents, determined from the differences between the equilibrium
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Figure 1. Toroidal current density profile components are shown in (a) and (d) for cases II and IV
of table 2, respectively. The full curves correspond to the total equilibrium currents, the dashed
curves refer to the ohmic components, the dash-dotted curves show the sum of the diamagnetic
and Pfirsch–Schlüter contributions and the dotted curves refer to the bootstrap currents. (b) and (e)
show the current density profiles obtained from the final IT(ρ) used in the variational procedure (full
curve) and the sum of all current density contributions provided by the equilibrium solution (dashed
curves). Finally, the parallel equilibrium current density and its ohmic and bootstrap contributions
are plotted in (c) and (f). The grey curves are the ohmic currents provided by the loop voltage and
neoclassical conductivity and the dashed curves are the differences between the total equilibrium
and the bootstrap current components.

and the bootstrap currents, whereas the grey curves refer to the ohmic currents obtained from
the plasma conductivities and the loop voltages obtained self-consistently, showing, once more,
the consistent solution that results from our equilibrium calculation. The vertical lines in these
figures correspond to the tokamak geometric centre and the full points refer to the magnetic
axis.

The peaked current density observed for case II (Te(0) = 0.4 keV), in figures 1(a) and
1(b), follows the behaviour of the neoclassical conductivity, which is reduced in relation to the
Spitzer conductivity (already corrected for impurities), as shown in figure 2(a). This reduction
increases the loop voltage, and the sharpness of the neoclassical conductivity decreases the
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Figure 2. Neoclassical conductivity reduction in relation to the Spitzer conductivity corrected for
impurities for case II (a) and a comparison between the full form of σNC, given in equation (22),
(full curve) and the analytical approximation proposed in [20] (dashed curve) (b).

Figure 3. Temperature and density profiles for the set of parameters II (a) and IV (b) of table 2.

safety factor at the magnetic axis in relation to the classical equilibrium. Near the magnetic
axis (ρ = 0), where the neoclassical effects are diminished since the trapped particle fraction
tends to zero, both values of the conductivity coincide according to the usual neoclassical
theory. Corrections to the trapped particle fraction close to the magnetic axis, due to potato
orbit effects [23], might bring modifications to the bootstrap current and to the neoclassical
conductivity in this region, which could lead to a different profile behaviour around ρ = 0.
However, these corrections have to be carefully analysed as discussed in [24]. Figure 2(b)
shows a comparison for σNC obtained from equation (22) and from the analytical form given
in [20] for the set of parameters II. In the analytical calculation we used the trapped particle
fraction according to the Lin-Liu and Miller approximation [27]. The figure shows that the
analytical calculation is quite reasonable and may be used in order to speed up the computer
calculations.

Typical temperature and density profiles used in the self-consistent calculation are shown
in figures 3(a) and 3(b) for cases II and IV, respectively. As the pressure profiles are the same
and kept constant in both cases, higher temperatures lead to lower density values and vice versa.

In table 3 we have all the current component contributions for the sets of plasma
parameters I, II and V, in table 2, with the respective safety factors at the plasma centre and
in the plasma edge, and the loop voltage Vloop that results from the self-consistent calculation.
From table 3 we notice that as the bootstrap current increases, following the behaviour of the
poloidal beta (βI ), the inductive ohmic current decreases, decreasing the required loop voltage
and so the magnetic flux consumption. At the same time, the safety factor increases on the
magnetic axis as the bootstrap current fraction increases.
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Table 3. Plasma parameters and contributions to the total plasma current provided by the self-
consistent calculation for cases I, II and V in table 2.

IT(a) (kA) Ibs (kA) Idia (kA) Ips (kA) Ioh (kA) q(0) q(a) βI Vloop (V)

I 200 71.9 12.2 −2.74 119 0.92 9.25 0.54 0.41
II 200 45.7 8.26 −1.78 148 0.71 9.11 0.36 0.57
V 200 34.8 7.91 −1.61 159 0.52 6.99 0.31 0.76

Figure 4. Same profiles shown in figures 1(e) and 1(f) for case IV, with the convergence criterion
applied to ITdIT/dρ and not to 〈JT〉.

Figure 4 shows the same set of profiles as given in figures 1(e) and 1(f), for case IV,
obtained here by requiring the convergence of ITdIT/dρ instead of applying the convergence
criterion to the flux surface average of the toroidal current density profile 〈JT〉 as used in figures
1(e) and 1(f). From figures 4(a) and 4(b) we can note that although a tolerance of 1% was
adopted for the convergence of ITdIT/dρ, the error observed in the convergence of the current
density profiles is amplified. Only for an extremely low tolerance in the convergence of the
ITdIT/dρ, the current density JT will converge in the same way as shown in figures 1(e) and
1(f).

The bootstrap current profiles obtained from different models are plotted for comparison
in figure 5 for the sets of parameters II and IV. The full curves represent the full matrix
Hirshman–Sigmar model with the viscosity coefficients as given by Shaing et al and presented
in section 3.2. The dashed curves refer to the Hirshman–Sigmar model with the viscosity
matrix coefficients Ka

ij , taken from the Hirshman–Sigmar [15], corrected by a 1/fc factor
in order to reproduce the correct limit in the finite aspect ratio banana regime (fc is the
fraction of circulating particles in the plasma). Finally, the dash–dotted curves refer to the
collisionless Hirshman model. In both cases the model that uses the Hirshman–Sigmar
viscosity coefficients overestimates the bootstrap current in a rate that is higher for more
collisional plasmas (figure 5(b)). As the plasma collisionality decreases, the results provided
by the Hirshman–Sigmar and Shaing et al models approach each other, since the viscosity
coefficients derived by Shaing et al tend to the Hirshman–Sigmar coefficients in the banana
regime when these are corrected by the 1/fc factor mentioned above. We can also observe that
the bootstrap current reduction due to the plasma collisionality is important even in low aspect
ratios (A � 2). Our simulations for the NSTX, considering an aspect ratio of the order 1.25,
shows that the suppression of the bootstrap current due to the plasma collisionality still takes
place, confirming results provided by [30]. We pushed limits down to A = 1.15 and could
still observe the bootstrap current reduction in the collisional regimes. Checking Shaing et al’s
assumptions at ultra-low aspect ratios with A → 1 is more difficult to carry out since a set
of realistic plasma parameters has first to be found and so far we do not know of any feasible
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Figure 5. Bootstrap current profiles provided by different models for cases II (a) and IV (b)
in table 2. The full curves refer to the Hirshman–Sigmar matrix formulation with the viscosity
coefficients derived by Shaing et al , the dashed curves refer to the Hirshman–Sigmar model, and
the dash–dotted curves refer to the collisionless Hirshman model.

device proposal at this limit. The plasmas shown here are not collisional close to the plasma
edge because we have considered a very low pressure on the plasma border. The Hirshman
collisionless model provides the highest bootstrap current estimate. This occurs since it does
not take into account the particles scattering due to collisions, which would modify the plasma
viscosity and decrease the bootstrap effect.

For the same reason, self-consistent equilibrium calculations, where the bootstrap current
estimate is performed with the Hirshman collisionless model, may provide unusual current
profiles close to the magnetic axis (when the plasma goes into the plateau regime). This problem
is more pronounced in more collisional plasmas, as we could expect. Figure 6 illustrates this
fact, showing the toroidal current profiles for cases II (figure 6(a)) and IV (figure 6(b)), of
table 2. We can see that for case IV, more collisional, the current profile presents an unusual
behaviour close to the magnetic axis, in relation to that shown in figure 1(d) and obtained by
using the Hirshman–Sigmar full matrix form and the viscosity coefficients given by Shaing
et al. For the plasma parameters described in II the problem is less pronounced, although the
bootstrap current is still overestimated by the Hirshman collisionless model.

The parallel fluid fluxes 〈ua‖B〉 for case III and for a plasma corresponding to the same
set of parameters as given in IV, but with 2% carbon, are illustrated in figure 7 in arbitrary
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Figure 6. Toroidal current density profiles as shown in figures 1(a) and 1(d), with the bootstrap
current provided by the Hirshman collisionless model.

Figure 7. Normalized parallel fluid fluxes 〈u‖aB〉 for cases III (a) and IV +2% carbon (b). The
grey circles correspond to the hydrogen fluid flux, the large full circles to the electron population
and the small full circles to the carbon fluid flux. The full curves refer to the normalized flux surface
averaged collisionality parameter ν̄∗a . When a dashed curve crosses a full curve the collisionality
parameter is equal to one.

units. The large full circles refer to the electron population, the large grey circles refer to the
hydrogen ions and the small full circles refer to the carbon ion population. The full curves are
the normalized flux surface averaged collisionality parameter ν̄∗e, given in appendix B, and
the point where the dashed curves cross the full curves refer to a collisionality parameter equal
to one. Therefore, the plasma regions where the collisionalities are below these curves are in
the banana regime. We can see that for case IV, +2% carbon (figure 7(b)), this occurs only in
a small region of the plasma column. We notice that all the fluid fluxes tend to travel in the
same direction until the plasma collisionality decreases to below the banana limit, when the
electron and ion fluxes will tend to travel in opposite directions. The sooner this happens, that
is the less collisional is the plasma, the higher will be the bootstrap current fraction. The fluid
fluxes are normalized by the same factor in figures 7(a) and 7(b).

5. Summary and conclusions

We have presented a self-consistent equilibrium calculation for low and high aspect ratio
tokamak plasmas where the fixed boundary equilibrium is generated through a direct variational
technique that uses a truncated Fourier expansion to represent the flux surfaces in a D-shaped
plasma. The direct variational technique is applied in its energy form and consists in finding
the radial coefficients of this spectral representation that are determined from the condition of
stationary energy. In this way, the plasma equilibrium, in general obtained from the solution
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of the 2D quasi-linear Grad–Shafranov equation, is reduced to a 1D problem in the radial
flux coordinate ρ. The self-consistent calculation, implemented in our equilibrium code,
requires that the toroidal plasma current profile IT(ρ), used as an input to the variational
technique, takes into account the contributions that result from the equilibrium corresponding
to the diamagnetic, Pfirsch–Schlüter and the neoclassical bootstrap and ohmic currents. The
convergence criterion used in the self-consistent calculation is applied to the flux surface
average of the toroidal current density 〈JT〉, rather than to the current profile IT(ρ) itself or to
the toroidal flux function f (
P) = RBT, as usually employed in self-consistent equilibrium
codes. This is due to the fact that the error allowed for the convergence of ITdIT/dρ might be
amplified when looking at the current density profile, that is the current density profile might
not be converged to within the same accuracy as that requested for ITdIT/dρ.

The bootstrap current profile is obtained from the Hirshman–Sigmar full matrix
formulation with the viscosity coefficients as given by Shaing et al . These coefficients are
valid in all collisionality regimes and arbitrary aspect ratios. This estimate is compared to
those provided by the Hirshman–Sigmar and the Hirshman collisionless models. We could
observe that both Hirshman–Sigmar and the Hirshman models overestimate the bootstrap
current when compared to the formulation employed in this paper. It is interesting to note that
the bootstrap current does suffer a reduction in collisional regimes, even when evaluated by the
Hirshman–Sigmar/Shaing et al formulation, for low aspect ratio machines as is the case of the
ETE tokamak. As the collisionality decreases, the bootstrap current profiles provided by the
Hirshman–Sigmar/Shaing et al and the Hirshman–Sigmar formulations approach each other.
Still regarding the different calculations available for the bootstrap current estimate, we note
that the Hirshman collisionless model may lead to unusual current density profiles close to the
magnetic axis. The problem is more pronounced for collisional plasmas, as expected. This
occurs since this model does not properly take into account the plasma viscosity in this region.
The bootstrap current for the ETE tokamak may roughly represent 10–35% of the total plasma
current in its first phase of operation depending on the plasma profile parameter optimization.
More elongated plasmas provide higher fractions of the bootstrap current and the presence of
impurities cause a slight decrease in the bootstrap contribution.

The ohmic current is calculated in terms of the neoclassical conductivity and from the loop
voltage obtained from the self-consistent calculation, requiring that the total plasma current
has a prescribed value that must be equal, at the same time, to the sum of all the toroidal current
components. Peaked density profiles for plasmas of higher temperatures follow the behaviour
of the neoclassical conductivity, which is reduced in relation to the Spitzer conductivity, already
corrected for impurities. Potato orbits close to the magnetic axis, not considered in the present
work, might change the current profile behaviour in this region due to corrections to the
trapped particle fraction and could result in different profiles for the bootstrap current and
for the plasma conductivity. However, according to [24], the bootstrap current would still be
very small around the magnetic axis. As already pointed out in the introduction of this paper,
plasma rotation and orbit squeezing effects, characteristic of high-confinement regimes, were
not taken into account and will be considered in future works. As a next step it would be
interesting to implement the faster bootstrap current evaluation provided by the fitted formula
given in [34] in order to speed up the calculation of the bootstrap current and compare the
results obtained with the Hirshman–Sigmar/Shaing et al model. This fitted formula is valid
throughout all of the collisionality regimes and arbitrary aspect ratios and uses the full Coulomb
collision operator (rather than an approximated one), increasing the accuracy of the viscosity
coefficients by 20% in relation to those used in this paper. On the other hand, it does not
consider the effects of potato orbit close to the magnetic axis and has an approximated form
of dealing with impurities in the plasma. Finally, in the banana regime, the Coulomb collision
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operator could be used as given by Taguchi in [35].
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Appendix A

The total toroidal bootstrap, ohmic, diamagnetic and Pfirsch–Schlüter currents that are used in
the loop voltage calculation (equation (21)) and that may be compared to the plasma current
IT(a) are obtained by integrating the respective toroidal current density component over the
plasma cross section. Starting, for instance, with the bootstrap current, we have

Ibs =
∫
JbsT(ρ, θ)

√
g

hζ
dρ dθ. (A.1)

Recalling equation (24) we have the fact that the toroidal component of the bootstrap current
density is given by

JbsT = 〈 �Jbs · �B〉
〈B2〉 BT. (A.2)

Replacing (A.2) into (A.1) and taking the equation for the toroidal magnetic field, we obtain

Ibs = µ0

2π

∫ a

0
dρ

〈 �Jbs · �B〉
〈B2〉 I (ρ)

∫ 2π

0

√
g

h2
ζ

dθ. (A.3)

Using the expression for the inductance of the toroidal solenoid coincident with a flux surface
[11], L(ρ) = µ0/2π

∫ √
g/h2

ζ dρ dθ , and its derivative with respect to the radial coordinate,
we may rewrite (A.3) as

Ibs =
∫ a

0
dρ

〈 �Jbs · �B〉
〈B2〉 I (ρ)

dL

dρ
. (A.4)

Finally, in terms of the safety factor profile (q(ρ)), given by q(ρ) = K(ρ)I (ρ)/IT(ρ)(dL(ρ)/
dρ) [11], the total toroidal bootstrap current may be written as

Ibs =
∫ a

0
dρ

IT(ρ)

K(ρ)
q(ρ)

〈 �Jbs · �B〉
〈B2〉 . (A.5)

In analogy to the toroidal bootstrap current given by equation (A.5), the total toroidal ohmic
current is also given by

Ioh =
∫ a

0
dρ

〈 �Joh · �B〉
〈B2〉 I (ρ)

dL

dρ
= µ0

(2π)2
Vloop

∫ a

0
σNCI

2(ρ)
〈1/R2〉
〈B2〉

dL

dρ
dρ (A.6)

and may be written in terms of the q(ρ) profile similarly to (A.5).
The toroidal diamagnetic and Pfirsch–Schlüter currents are obtained from the integration,

over the plasma cross section, of the toroidal component of the third and fourth terms in
equation (3), leading to

I(dia+ps) =
∫

K(ρ)

IT(ρ)

dp

dρ

(
µ0I

BT

〈B2〉 − 2πhζ

) √
g

hζ
dρ dθ (A.7)
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or, in terms of the inductance L(ρ), and the volume V (ρ) = 2π
∫ √

g dρ dθ :

I(dia+ps) =
∫ a

0

K(ρ)

IT(ρ)

dp

dρ

(
µ0I

2

〈B2〉
dL

dρ
− dV

dρ

)
dρ. (A.8)

Appendix B

B.1. Friction coefficients

The friction coefficients, used in the description of the friction forces in the momentum balance
equations (26) and (27), are defined as:

labij =
(∑

k

nama

τak
M

i−1,j−1
ak

)
δab +

nama

τab
N
i−1,j−1
ab (B.1)

where the element matrices Mi,j

ab and Ni,j

ab are given below:

M00
ab = −

(
1 +

ma

mb

)
(1 + x2

ab)
−3/2 = −N00

ab (B.2)

M01
ab = −3

2

(
1 +

ma

mb

)
(1 + x2

ab)
−5/2 = −N10

ab (B.3)

M11
ab = −

(
13

4
+ 4x2

ab +
15

2
x4
ab

)
(1 + x2

ab)
−5/2 (B.4)

N11
ab = 27

4

Ta

Tb
x2
ab(1 + x2

ab)
−5/2 (B.5)

with δab being the Kronecker delta. We may also make use of the following relations:

M
ij

ab = M
ji

ab (B.6)

N
ij

ab = Ta

Tb

vtha

vthb
N
ji

ba. (B.7)

The summation in equation (B.1) is made over all species, including a. However, it will only
be evaluated when a = b. Still, in equation (B.1), τab = 12π3/2ε2

0m
2
av

3
tha/(4nbZ

2
bZ

2
ae

4 ln-)
is the collision time between species a and b, ma is the mass of species a, e is the electron
charge and ln- is the Coulomb logarithm. xab = vthb/vtha , with vtha = √

2Ta/ma being the
thermal velocity of species a and Ta is the temperature related to species a.

B.2. Collision frequencies

The collision frequencies used in (31) and (32) are given by

νaD(v) = 3
√
π

4

∑
b

1

τab

(

(xa/xab)−G(xa/xab)

x3
a

)
(B.8)

νaT(v) = 3
√
π

4

∑
b

1

τab

[(

(xa/xab)− 3G(xa/xab)

x3
a

)
+ 4

(
Ta

Tb
+

1

x2
ab

)
G(xa/xab)

xa

]
(B.9)

where 
(x) is the error function and G(x) = [
(x) − x
′(x)]/(2x2) is the Chandrasekhar
function. The summations in (B.8) and (B.9) are made over all species, including a.

The flux surface averaged collisionality parameter, shown in figure 7, is defined as

ν̄a∗ (v) = 8ftωTa〈B2〉1
3πv2

tha〈(n̂ · ∇B)2〉τaa
(B.10)
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where ft is the trapped particle fraction, τaa is given in appendix A,ωTa is the transit frequency
(ωTa = vtha/L

∗
c ) and L∗

c is the connection length, which represents the distance along the field
line from the inside to the outside of the torus. It is given by [15]:

L∗
c = 〈B2〉2〈(n̂ · ∇B)2〉−1〈 �B · ∇θ〉−1

∑
k

2

k
〈sin k6(n̂ · ∇B)/B〉〈sin k6(n̂ · ∇B)/B2〉 (B.11)

with 6 = γ (
P)
∫ �

0 B d�θ/BP and 1/γ (
P) = 1/(2π)
∮
B d�θ/BP.

The trapped particle fraction was calculated according to the Lin-Liu and Miller
formulation [27], considering the lower and upper approximations to the full integral given by
equation (23):

ftlow = 1 − 〈B2〉
〈
B−2

[
1 −

(
1 − B

Bmax

)1/2 (
1 +

B

2Bmax

)]〉
(B.12)

ftup = 1 − 〈B2〉
〈B〉2

[
1 −

(
1 − 〈B〉

Bmax

)1/2 (
1 +

〈B〉
2Bmax

)]
(B.13)

and, finally,

ft = 0.75ftup + 0.25ftlow. (B.14)
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