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Abstract 

Resistive drift-wave turbulence is studied by high-resolution numerical simulation in the limit of small viscosity (high Reynolds 
numbers), such that the adiabaticity parameter V is the only relevant parameter. Energy spectra exhibit a maximum at some 
wave-number kc, and a power law behavior for k> k+ Statistics in this range are non-Gaussian indicating strong intermittency, 
but are perfectly Gaussian for kg k+,. 

Drift-wave turbulence is generally believed to cause 
anomalous transport in magnetically confined plas- 
mas such as those in tokamaks and stellarators. Den- 
sity and potential fluctuations are particularly strong 
in the cool plasma edge region, where collisional ef- 
fects are most important to drift-waves. A simple two- 
dimensional model to describe drift-wave turbulence 
in this regime is due to Hasegawa and Wakatani 
[ 1,2]. It consists of two equations for the potential 
and density fluctuations v, (x, v) , n (x, y ) in a plasma 
with a constant mean density gradient dnJdx in the 
x direction and a magnetic field essentially in the z 
direction, 

a,w+miksf(p-n)+9y 

a,n+~vn+a,~=u(~-n)+~n, 

v=ixva,, 

co= v=p ) 

(1) 

(2) 

written in the usual dimensionless form: x, y+ 
x/~s, Y/P,, t+ (tfh) (A/J%), F+ (edT&,lP,, II-+ 
(n/no) (L/P,), L=~o/ IdnolW; A and Qi are the 

ion Larmor radius and frequency, respectively. V is 

called the adiabaticity parameter due to the electron 
parallel friction, i.e. resistivity q, %= ( Te/noq)k~, 

and 9”, 9” are the viscous and diffusive dissipation 
terms to be specified below. Apart from its potential 
application to anomalous plasma transport, the 
Hasegawa-Wakatani model is also interesting in its 
own right as an autonomous (i.e. self-exciting) sys- 
tem of 2-D turbulence. For VK 1 Eq. ( 1) decouples 
to the 2-D Navier-Stokes equation, while n is essen- 
tially a passive scalar. In the opposite limit V>> 1, 
the electrons are almost adiabatic n-v, C+Z n, and Eqs. 
( 1) and (2) are essentially equivalent to the 
Hasegawa-Mima equation [ 3 1. For the Hasegawa- 
Wakatani model, the energy E = $$ d2x ( v2 + n ‘) and 
the generalized enstrophy IV= f J d2x (n-w) ‘, which 
are the invariants of the Hasegawa-Mima equation, 
follow the equations 

dE 
- = - 
dt s 

- d2x (@V-nV) , 
s (3) 
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dW 
-=- 
dt 

d*x nd,q+ d*x (w-n) ( gU- ZV) . 

(4) 

The linear stability properties can be easily derived 
(see e.g. Ref. [ 3 ] ). It can then be shown that neglect- 
ing dissipation all modes are linearly unstable, 
whereas with finite dissipation terms GB”‘, g”, high-k 
and small-k modes are damped. Eqs. ( 1)) (2) have 
recently been studied by numerical simulation with 
the emphasis on statistical equilibrium ensembles [ 41 
and coherent structures [ 51 (the latter well-known 
from 2-D Navier-Stokes turbulence [ 7,8] ). In con- 
trast to Ref. [ 5 1, where the dissipation terms have a 
strong influence on the turbulence, we are interested 
in what we call the non-viscous limit: that of small 
P’, Q”, such that their contribution to the energy 
dissipation in Eq. ( 3 ) is negligible. As has been shown 
by the statistical equilibria [ 6 ] and confirmed via 
numerical simulation [4], if dissipation is entirely 
absent then the enstrophy spectrum rises according 
to W,cc k so that it is unbounded. This situation is 
avoided in this paper by retaining finite P’, gn and 
arranging their effect to be confined to the smallest 
scales by choosing high-order dissipation operators, 

gw=v,A3w, g”=vnA3n, v~=v,=v. (5) 

In the non-viscous limit V is the only relevant pa- 
rameter and the sole effect of v is to determine the 
extent of the inertial range. 

Our numerical simulations are performed on a 
square box of size 2xL x 2nL with periodic boundary 
conditions using a pseudo-spectral method with grid- 
size varying from 256* to 1024* grid-points. The al- 
gorithm is similar to the one described in Ref. [ 9 1. 
The numerical simulations are performed for 1 O*- 1 O3 
time units after a stationary turbulence is achieved, 
in order to allow good statistical averages. Three val- 
ues of %? are considered, %?=O. 1, 1, 5; respectively 
corresponding to the hydrodynamic, intermediate and 
adiabatic limits. The box size parameter is chosen 
Lc6.7 and L=26.7 to concentrate on primarily high- 
k and small-k behavior, respectively. The dissipation 
parameter v varies from 1 x 10P4, for L= 26.7 and 
256* grid-points, to 5~ 10-lo, for L=6.7 and 1024* 
grid-points. The aim of this work is the analysis of the 

spectral properties of the turbulence, their relation to 
the linear instability properties and the statistics of 
the turbulence. 

The angle integrated energy spectrum Ek, E= 
J dkE,, shows a maximum at some wave-number 
k=k,. For %?-K 1 one has k,,=k,,,, where k= (0, &) 
is the most unstable linear mode, while for %?> 1, 
where k,,, becomes constant, lc,,,- 1.3, ko decreases 
with increasing V owing to the inverse energy cas- 
cade well-known for the Hasegawa-Mima equation, 
e.g. b=O.4 for V= 5. While for k<k, the spectral 
distribution is anisotropic reflecting the properties for 
the linear growth rate, it is isotropic for k> k+ In the 
inertial range, ko < k < k,, where k, indicates the vis- 
cous cutoff, Ek exhibits a clear power law (Fig. 1 a). 
The energy spectrum Ek is composed of El, the ki- 
netic energy spectrum and EF, the density spectrum. 
Let us first analyse the kinetic energy spectrum (Fig. 
1 b ) . Since the effect of the collisional term is small in 
the inertial range (also for ‘+??> 1 where nk is approx- 
imately adiabatic, nk” V)k), Eq. ( 1) essentially re- 
duces to the 2-D Navier-Stokes equation, where the 
spectrum El -k-3(lnkL)-1/3ispredicted [lo]. We 

find El - k-*, a= 3.1-3.5, rather independently of 
V, which is only slightly steeper than the effective 

theoretical value (Y,~= 3.1 and closer to the latter than 
observed in simulations of 2-D Navier-Stokes tur- 
bulence [ 8,111. On the other hand, the density spec- 
trum depends on V. For w K 1, where the density be- 
haves essentially as a passively advected scalar, 
analogy with the 2-D Euler equation for the vorticity 
suggests a spectrum EF - k*Ex, which is in fact ob- 

served, EF - k-1.6 for %?=O.l. Since EN> E”, the 

energy spectrum is primarily given by the density 
spectrum, Ek2: Ep. In the opposite case V>> 1, where 
nk”pk, the density contribution to the energy spec- 
trum is small, Ek% Ez B Ep. 

Let us compare the nonlinear turbulent behavior 
with the quasilinear prediction, considering in par- 
ticular the turbulent flux r, 

r= (v,n> =i 
s 

d2k k,n,p; . (6) 

It has previously been noted [ 51 that r-Tsi, the 
quasilinear expression, for %Y> 1, while r<r,, for 
V< 1, r/r,, decreasing with decreasing V. In the non- 
viscous limit we find approximately r/r,, N %?1/3 for 
%‘< 1. Considering the spectral properties rk of the 
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Fig. 1. (a) Energy spectrum for V~0.1 (full line) and V= 5 (dashed line). (b) Kinetic energy spectrum for the cases as in (a). 

flux, r= I dk r,, we observe that r, agrees precisely 
with CT,,>, for kc b, while the latter exceeds the for- 
mer for k>k, by about a constant value increasing 
with decreasing V (Fig. 2). For %?= 5 we have 
r,= (r,,), over the entire spectrum. This agreement 
may be somewhat surprising, since for S’S+ 1 the en- 
ergy spectrum is more strongly influenced by the 

.06 

10-l loo 10’ 
k 

nonlinear inverse cascade process than by the linear 
stability properties. However, in this range nonlinear 
fluctuations behave essentially as linear drift-waves, 
such that weak turbulence theory is approximately 
valid. 

The statistical properties are conveniently de- 
scribed by the normalized structure functions, in par- 
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Fig. 2. Spectral distributions of the nonlinear (full lines) and quasi-linear (dashed lines) fluxes, r, and (r,,), respectively. (a) Q=O. 1; 
(b) 0=5. 
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Fig. 3. Fp, Gp, j=2,3,4, for L~6.7 emphasizing the small-scale statistics ltkg’. V=O. 1 (full lines), V= 1 (short dashes), V=S (long 

dashes). For Gaussian statistics, the normalized moments have the values 3, 15, 105 for j= 2, 3,4, respectively. 

titular of the density and the vorticity increments 
&q=n(x+Z)-n(x), &_+=o(n+l)-o(x), with 
I= .E or 19, 

Fjzj) = < (6nl)2j> 

<(~~lY>j' 

Gfzj)= < (6w1)2j> 

((SW2>" 

(7) 

The results are illustrated in Figs. 3, 4, where 
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Fig. 4. FF, G?, j= 2, 3,4, for large box size (~5~26.7) emphasizing the large-scale statistics I> kc’, with increments in the x-direction. 
W=O.l (full lines), Q= 1 (&shed lines). For Gaussian statistics, the normalized moments have the values 3, 15, 105 for j=2, 3, 4, 
respectively. 

fmin=2XL/(N/2) (N2 is the number of grid-points) 
and I max= 21cL/2. Fig. 3 gives the structure functions 
for L= 6.7 and high spatial resolution ( 1024’), em- 

phasizing the small-scale statistics. Since the turbu- 
lence is isotropic at small scales, moments are aver- 
aged over both x and y directions. While the large- 
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scale statistics (12 k, ’ ) are essentially Gaussian (it 
is in fact perfectly Gaussian as discussed below), we 
see that for I< kg ’ statistics become increasingly non- 
Gaussian indicating small-scale intermittency of the 

law (or scaling) behavior, FfJ’mlb, Gfj-P. BothP, 
turbulence. In fact F:’ and G, show a clear power- 

and yj are found to increase withj more strongly than 
linearly, which can be described in the framework of 
multifractality (well-known from hydrodynamic tur- 
bulence, see e.g. Ref. [ 121). While yj is independent 
of ‘8 as is the kinetic energy spectrum (Fig. 1 b), pj 
varies with %?. We find &N yj for small Y?, increasing 
slightly for ‘+Z-+ 1, where pj N 1.5 yj, and becoming very 
small Ip’Z0 for large %?, where &$&ok. The statistics 
of the potential increments 6qr, are found to be Gauss- 
ian for all scales I independently of %‘. 

In order to determine if the large-scale statistics, 
1~ k,y ’ , were accurate, simulations with larger box 
size Ls26.7 with a grid-size 256* are followed over 
many large-eddy turnover times e.g. t N 50~ for %?= 5, 
where ~~-10, ro=(&,,)-’ and u2=Ev/(2n)*. As 
seen in Fig. 4, the large-scale statistics are almost per- 
fectly Gaussian. Only the case with I = Ii is shown, 
but for I= 19 results are virtually identical in spite of 
the anisotropy of the spectrum for ZR kc’. The 
Gaussian statistics are consistent with the absence of 
conspicuous coherent structures, which is in contrast 
to the behavior found for more strongly viscous con- 
ditions [ 5 1. A possible reason for this difference is 
the higher level of small-scale fluctuations in our case, 
which seems to destroy long-living structures. By 
considering dissipation terms of the form 

P=v,A3w, 9”=v,An, v~=v,=O.Ol , (8) 

we were able to reproduce the results of Ref. [ 5 1, ob- 
taining long-living coherent structures and statistics 
far from Gaussian behavior. However, these coher- 
ent structures disappear for smaller dissipation coef- 
ficients and a higher order operator for the density 

dissipation allowing an extended range of small-scale 

turbulence. 
In summary, we have presented important features 

of resistive drift-wave turbulence, which serves as a 
paradigm of an autonomous (i.e. not externally dri- 
ven) 2-D turbulence system with one inherent spa- 
tial scale kc ‘, where k. is the position of the maxi- 
mum of the energy spectrum, which depends on the 
adiabacity parameter %?. The turbulence is aniso- 
tropic at large scales k-c k,, reflecting the linear insta- 
bility properties, but isotropic in the inertial range 
(k> ko), where the spectra follow simple power laws. 
The statistics of the density and vorticity increments 
are non-Gaussian in the inertial range indicating in- 
creasing intermittency of small-scale fluctuations, but 
are perfectly Gaussian at the larger scales. The latter 
feature is consistent with the absence of isolated co- 
herent structures, and is in contrast to the behavior 
of the simpler system of 2-D Navier-Stokes turbu- 
lence, which is dominated by large-scale self- 
organization. 
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