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Abstract—An average invariant which describes average magnetic surfaces for a system without symmetry
is obtained. The system is a Tokamak toroidal equilibrium perturbed by resonant helical windings. The
magnetic field is a superposition of the magnetic fields of the equilibrium and the helical windings, and the
corresponding vector potential is determined. An average veclor potential is defined to obtain the average
invariant. Analysis of the average surfaces showed that the magnetic islands move towards the plasma
centre and decrease in width as the pressure increases.

. INTRODUCTION

THE INVESTIGATION of three-dimensional MHD equilibria is much more complicated
than that of axisymmetric equilibria. Because of the lack of symmetry, no exact Grad—
Shafranov-like equation can be derived (FrempprrG, 1982), and the equilibrivm
investigations have relied on asymptotic studies or numerical computations. The
problem, thus, is very hard and has been the object of great interest, see, for instance,
Morozov and SoLovEv (1966), FREIDBERG (1982), REmMaN and Boozer (1984),
SHAFRANOV (1966) and Cary (1984Db).

The equilibrium of a Tokamak can be improved using resonant helical windings
with the same helicity as the magnetic field (The Pursator TEam, 1985 ; ROBINSON,
1985). These helical windings, however, may destroy the magnetic surfaces. This
happens, because when the magnetic field has a symmetry, there are magnetic surfaces
that can confine the plasma and perturbing fields, that break the symmetry, can lead
to large changes in the topological structure of these magnetic surfaces (GrRAD, 1985).

The magnetic surfaces of a plasma are studied in a Tokamak, where the toroidal
equilibrium is modified by resonant helical windings. As the amplitude of the current
in the helical windings is much smaller than that of the plasma current, the helical
windings are regarded as a perturbation of the equilibrium. The magnetic field is thus
considered as a superposition of the magnetic fields of the equilibrium and the helical
windings.

The field lines can be described by means of a variational principle (CaRyY and
LITTLEJOHN, 1982) using the vector potential of the system. Applying Nocther’s
theorem to the Lagrangian of the problem. one can conclude that, if all components
of the vector potential are independent of one of the coordinates, the component of
the vector potential corresponding to this coordinate is an invariant (CaRry and
LITTLRIOHN, 1982).

Our problem has no symmetry, since the equilibrium has a toroidal symmetry and
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the windings depend on a helical variable. Then Neether’s theorem cannot be applied
directly because there is a dependence on all three coerdinates.

An average vector potential is then defined, independent of the poloidal angle. Using
a suitabte coordinate system, an approximate invariant is obtained, corresponding to
the poloidal component of the average vector potential, Using this invariant, the
average surfaces can be determined, describing approximately the problem.

The method used to obtain the average surfaces is explained in Section 2 (Cary,
1984a). Its application requires that the vector potentials of the equilibrium (Section
3) and of the toroidal helical windings (Section 4) are calculated. In Section 5 the
superposition of the helical windings on the equilibrium is analyzed and the con-
clusions are given is Section 6.

2. AVERAGING METHOD
As the current in the helical windings 1s much smaller than the plasma current, the
vector potential of the system A is the superposition of the vector potential of the
equilibrium A® and that of the perturbation &:

A(p,0,9) = A%(p,)+a(p, 0, p), (1)

where p, 0, o are the local coordinates shown in Fig. 1.
The helical windings are described by the following equations:

u = mf—np = constant (2)

p=h 3)

where m and # are the number of periods of the helical field in the toroidal and
poloidal directions, respectively, and b is the minor radius of the Tokamak.

The average vector potential is defined as the average over the poloidal angle § on
a line where u is constant (Cary, 1984a):

- | i mb —u
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The average vector potential is of the form:
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Alp,u) = A,(p,w)é, + Ap{p, e+ A,(p,1)é, . (5)

It is natural to use the variable u instead of ¢. The average vector potential can then
be written as (Cary, 1984a)

A(p! M) = A'P(p’ u)ép+ (z‘fg(p,u)- i::_gw(p’ u))éﬁd ’1?4&'@(9, u)éu' (6)

It is possible to describe the magnetic field lines through a variational principle in
an arbitrary coordinate system (CAry and LITTLEJOHN, 1982):
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where A is an arbitrary parameter and can be taken as one of the coordinates x;. The
- cooresponding Lagrangian is then

dx,
L= a2t )

Application of Noether’s theorem (Cary and LitTLEIONN, 1982 ; HiLk, 1951) 10
this Lagrangian can imply that one of the components is an invariant, if all the
components of the vector potential are independent of the corresponding coordinate.

In the coordinaie system considered in equation lU), the average vector potential
does not depend on the poloidal angle 8. Therefore, in accordance with Noether’s
theorem (Cary and LiTTLEIOHN, 1982), the component § of the average vector

potential is an invariant:
- m -
Yip,u) = Ag(p,u)— ;Aw(p, &) = constant, {9

The theorem cannot be applied directly to the exact vector potential, as it depends
on all three coordinates.

Although ¥ is an exact invariant, it is not the exact invariant of the problem,
Following the same reasoning developed by Cary (1984a), for small values of p/R,,
the averaged vector p\'hﬁ'ﬁuai is close to the actual vector potential. Therefore, the
exact invariant of the approximate flow is an approximate invariant of the exact fiow.

The validity of the method derives from this fact.

3. TOROIDAL EQUILIBRIUM
Shafranov analyzed a plasma confined in a toroidal apparatus, using toroidal
coordinates (SHAFRANOV, 1960). It is possible to transform these coordinates to local
coordinates ; it must be mentioned, however, that this transformation is not valid near
the magnetic axis. The invariant which describes the equilibrium is (CAMARGO, 1989)
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g_uﬂlpRO _hP_Z _;EL
Yo == ( )\ g A+ Deos ), (10)

where the major and minor radii of the plasma are Ry and 4, respectively (see Fig. 1),
I, is the plasmu current, y, is the magnetic susceptibility and A is defined by (La Have
et al., 1981)

A=,Bp+%—l. (11)

In equation (11), §, is the ratio of the kinetic pressure to the magnetic poloidal
pressure of the plasma and / its internal inductance.

Figure 2 shows the magnetic surfaces described by curves of constant ", on the
basis of the parameters of the TBR-1 Tokamak (VanNucct et alf., 1988 ; KUCINSKT et
al., 1990):

s qg=8cm;
.R”=30Cm;
ol =I18kA;

_ A NNAD
® /A = U0,

The function I, related to the invariant ¢°, is
RZ 2
12=I§+2—§1§(3—A)(1—‘33) (l—~p—(A+l)c056), (12)
a a Ro

where 1, is the current in the Tokamak coils, with a typical value of 600 kA.
The magnetic field can be obtained from the expression
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FIG. 2.—Surfaces of constant " for A = 0.28, major Tokamak radius R, = 30 cm, minor
Tokamak radius @ = 8 cm. The scales are normalized to the minor Tokamik radius.
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_1 0 - #ol(d’n)-
B—E(V:Jz X &+~ ew), (13)

.4
where Ris given by (Fig. 1)
R=Ry—pcosil (14)

The vector potential can be calculated from the following expression (BOOZER,
1986):

A = yV0—TVop, (15)

where y is the toroidal flux of the magnetic field,

1
75:% JB-dSl, (l6)

and I the poloidal flux of the magnetic field,
I' = ! B-dS 17
2n B an

Using expressions (100, (12), (13), (15), (16} and (17), it is possible to calculate the
vector potential of the equilibriom, making some approximations and keeping terms
to the order of (p/Ry)%. Averaging the expression obtained, employing definition (4),
the average vector potential is finaily found to be:

4y =0, (18)
3 5 4 3 s
=t (o8 fa 1) 20 Doy (2 o))
Ag_‘m (C(2+8R5+ ]6R3) 8C o’ ZC(A+ ) 8R5+ 124R) )’ (%
cestl 2
A, = yp (1 . ! AR% , (20)
where
2r
D:‘it(gff\) 2n
a
and

2
C= \/D+~%. (22)
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4. TOROIDAL HELICAL WINDINGS
A npumber of equidistant thin conductors wound on a circular torus carrying
currents [ in alternating directions is considered. The torus has a minor radius b and
the toroidal helical windings are characterized by the number of periods m and » of
the helical field in the poloidal and toroidal directions, respectively.
The scalar potential for this system is known (KuUciNsk1 and CaLDas, 1987):

~ ]y ' P mitod, HE‘M" . _
¢ ~(=1) (1+7R0C0 9) ~ ((b) sin N(mb —np)

b p Yt Nm+2
——{{Z i 1
4R, ((b) N, 0 sin ((Nm— 1)8 — Nnue)

0 Nir— | Nt i
+ (5) Nt sin ((Nm+ I)B—Nm(p))) (23)

where N is the harmonic considered and m the number of current pairs. Each term
of the scalar potential corresponds to a certain resonance. The first term relates to
the resonance mj/n and the other two to the secondary resonances (m—I)/n and
(m+ 1)/n. Only the most important resonance is considered, since near the rational
surfaces the contribution of the other rational surfaces is negligible. The expression
taken for the scalar potential is then

I Nm
¢~ (=1t (l + mc 9) m:‘;,, (%) sin N(mf — ne). (24)

The magnetic field can be obtained by means of
b=vg. (25)

The same procedure adopted for the equilibrium is used to obtain the vector
potential by means of the magnetic fleld fluxes. The vector potential is then calculated
from equations (15), (16), (17), (24) and (25). Using the definition of the average
vector potential (4), one obtains

i, =0, (26)
Wic)
= v Fodun AN 0 5
4= (=D SN Am T 2) b) RQS‘“N(’” ne), 27
- polm { p N
&, = (=)™ ;’d’v (—5) cos N(mb—ne). (28)

£ OAVTET AMLD WA CRTIETIO (‘]TD AT
J., AVERAUL MAWUNLCIIW AURLI ACVL
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As the superposition of the vector potential is of concern here, the average vector
potential is now known from equations (1}, (18}, (19}, {20}, (26), (27) and (28). An
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approximate invariant (9) can therefore be obtained by the method described in
Section 1 (Cary, 1984a):

3 5 3
] AL A W
V=% (C (2 TRt I6R3) C 8
3 $ 2 2
p m p p
A LAY
( i )( taR )+ Ip(l az)(l Amg))

)!L()Ih p 1] mz
l N [l - 2
+(=1) N (b) (ZWZ(N ! Ro sin Nu+ - cos Nu), (29)

where u was defined in equation (2),

Two values of A are considered, the typical value of the TBR-1 Tokamak (A = 0.28)
and the limit of zero ratio of the kinetic to the magnetic pressures of the plasma
(A = —1), which also corresponds to [, = (0. This last case is studied in order to
evaluate the effect of the pressure on the position and the width of the magnetic
islands.

Figures 3 and 4 show curves of constant ¥ using the parameters of TBR-1 and
m=3n=1, N=1 In Fig. 3 we use A =0.28 and in Fig. 4 we employ the limit
A=—1

From the figures, it can be scen that in the limit of zero pressures, the average
magnetic islands are bigger and nearer the plasma boundary. The effect of the pressure
on the island width can be wverified by calculating the island width using usual
expressions.

The changing of the pressure changes the basic equilibrium, as v and 7 depend on
A, and therefore on the pressure. This causes a change in the g-profile and thus of the
location and size of the islands.
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FiG. 3.—Surfaces of constant W for m=3, n=1, N=1, I, =18 kA, /.=0600 kA,

I,=100A, a=8cm, Ry=30cm, b= 11 cmand A = 0.28,



S80 S. J. CAMARGO and 1. L. CaLDaS

407

0.5

-0.51

-10 r oy
-10 -05 0 05 10

FiG. 4—Surfaces of constant ¥ for m=3, n=1, N=1, I, =18 kA, I.= 600 kA,
L, =100A,a=8cm, Ry=30cm,p=11ecmand A= —1.

It should be stated that considering the pressure of the plasma is equivalent to a
displacement of the magnetic axis, because when the pressure is not considered,
the magnetic axis coincides with the geometric axis. The effect of the island width
has already been observed by considering the displacement of the magnetic axis
analytically and numerically (ZHENG and WOOTON, 1987).

6. CONCLUSIONS

The magnetic surfaces of a Tokamak perturbed by resonant helical windings were
analyzed, although the system has no symmetry. An average invariant which approxi-
mately describes the problem was obtained. The average magnetic surfaces which
form average magnelic islands were studied using the parameters of the TBR-1
Tokamak (CaMaRGO and CaLDAsS, 1990).

It was found that the positions and widths of the islands depend on the plasma
pressure. As the pressure increases, the islands become smaller and shift to the centre
of the plasma.

The same analysis was made using an expression for the helical windings without
the toroidal effect (CaMarGo, 1989). It was concluded that the toroidal effect results
in magnetic islands which are slightly smaller than that obtained from the cylindrical
approximation (CAMARGO, 1989).
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