
Renormalization group in magnetohydrodynamic turbulence 
S. J. Camargo and H. Tasso 
Max-Planck-Institutf iir Plasmaphysik, Euratom Association, D-8046 Garching bei Miinchen, Germany 

(Received 24 September 199 1; accepted 15 January 1992) 

The renormalization group (RNG) theory is applied to magnetohydrodynamic (MHD) 
equations written in Elshser variables, as done by Yakhot and Orszag for Navier-Stokes 
equations. As a result, a system of coupled nonlinear differential equations for the “effective” 
or turbulent “viscosities” is obtained. Without solving this system, it is possible to prove their 
exponential behavior at the “fixed point” and also determine the effective viscosity and 
resistivity. Strictly speaking, the results do not allow negative effective viscosity or resistivity, 
but in certain cases the effective resistivity can be continued to negative values, but not the 
effective viscosity. In other cases, the system tends to zero effective viscosity or resistivity. The 
range of possible values of the turbulent Prandtl number is also determined; the system tends 
to different values of this number, depending on the initial values of the viscosity and resistivity 
and the way the system is excited. 

I. INTRODUCTION 

Turbulence is one of the most challenging and least un- 
derstood problems in classical physics. Fluid turbulence is 
usually studied by considering Navier-Stokes equations. 
Electrically conducting fluids, however, can contain mag- 
netic fields and are described by magnetohydrodynamic 
(MHD) equations. MHD turbulence occurs in laboratory 
settings such as fusion confinement devices (e.g., reversed- 
field pinch) and astrophysical systems (e.g., solar corona). 
Many theories and tools used to study Navier-Stokes turbu- 
lence were adapted to MHD turbulence in view of their simi- 
larity. 

The renormalization group (RNG) ideas first appeared 
in the 1950s in field theory.’ Wilson’s work’ on phase transi- 
tions is the most successful application of RNG and led to 
numerous other papers in many different fields. Foster ef 
ai.’ adapted the work of Ma and Mazenko on nonlinear spin 
dynamics4 to study fluid turbulence. They considered Na- 
vier-Stokes equations driven by a random stirring force, 
with correlations increasing with the wave number k, and 
analyzed the long-term long-distance behavior of velocity 
correlations. More recently, Yakhot and Orszagsp6 modified 
this work, reversing the wave-number dependence for the 
force correlations, but, in order to go further, they made 
controversial assumptions on the expansions about the 
“fixed-point” Navier-Stokes equations, which have been 
discussed in Refs. 7-12. 

The basic idea in applying RNG to study fluid turbu- 
lence is to eliminate the smaller-scale modes, including their 
effect in the effective viscosity, so that only the largest scales 
remain. This is interesting since for high Reynolds numbers 
the range of scales present in Navier-Stokes turbulence is so 
wide that a direct numerical solution is, at present, impossi- 
ble. In the case of MHD turbulence, the smaller scales are 
also eliminated, but their effect is incorporated in the effec- 
tive viscosity and effective resistivity since there is a magnet- 
ic field present. 

An application of RNG to MHD, in the manner of Fos- 
ter et al.,3 was reported in 1982 by Fournier et aLI3 Conse- 

quently, in their calculation they weighted the inertial non- 
linearity and Lorentz force differently. Longcope and 
Sudan14 extended the work of Yakhot and Orszag’ to re- 
duced MHD. 

In our study we treat the full MHD equations in the 
manner of Yakhot and Orszag,’ using Elslsser variables,15 
and, in contrast to Fournier et &,I3 we weight all nonlineari- 
ties in the same way. Since the MHD equations contain resis- 
tivity and viscosity, both must be simultaneously renormal- 
ized and the turbulent or renormalized Prandtl number 
deserves special attention. In fact, its range of values can be 
determined by the RNG technique, which is the main result 
of the paper. 

In the next section the MHD equations and their Four- 
ier transform are described. Section III is devoted to the 
splitting into high and low wave numbers for the physical 
quantities and the averaging over the high wave numbers. 
The resealing of the averaged equations is discussed in Sec. 
IV. Section V is devoted to the results of the RNG iteration 
and the RNG differential equations. Finally, the conclusions 
are presented in Sec. VI and some details of the calculations 
are given in the Appendices. 

II. MHD EQUATIONS 
The equations describing a resistive, viscous, incom- 

pressible magnetofluid are the well-known MHD equations. 
Stationary, isotropic MHD turbulence requires energy input 
to compensate for the losses due to the viscosity and resistiv- 
ity. One way to do this is to add stirring random forces to the 
MHD equations, which, as will be seen later, allows the re- 
normalization group (RNG) technique to be applied. The 
MHD equations then considered are 

$ + (v.V>v = - Vp + (VxB)xB + ye V’v + f,, (1) 

z = Vx (vXB) + rlo V*B + fB, (2) 

v-v = 0, (3) 
V*B = 0, (4) 

1199 Phys. Fluids B 4(5),May 1992 0899-8221/92/051199-14$04.00 @  1992 Americanlnstituteof Physics 1199 



where v. is the viscosity, q. is the resistivity and f,, fn are 
the random forces. As usual, v is the velocity of the fluid, B is 
the magnetic field, and p is the pressure. For the sake of 
simplicity, the density and magnetic susceptibility are taken 
as units and the random forces are chosen divergence-free: 

V*f, = 0, 
V-f, = 0. 

Using Elsbser variables,‘” 

P=v+B, (5) 
Q=v-B, (6) 

we can rewrite the MHD equations as 

$$+(QV)P= -Vp*+a, V2P+~oVzQ+f, (7) 

dQ -+ WV)Q= --~*+a, V'Q+& V2P+g, 
at 

(8) 

with 

a0 =p(vo +yo), (9) 

PO =tcvo -ao), (10) 
f=f, ffB, 

g=f* -fB, 
p*=p+B2/2. 

We introduce the Fourier decompositions of P, Q, f, g, 
andp* with an ultraviolet cutoff A to apply the RNG tech- 
nique to Eqs. (7) and (8). In the case of P, we have 

where d is the spatial dimension and our expressions are 
valid for d>2. 

As P and Q, by virtue of definitions (5 ) and (6), have 
zero divergences, the Fourier transformed equations can be 
simplified. Indeed, if the divergence of the Fourier-decom- 
posed MHD system is taken, p* can be expressed in terms of 
P and Q. With the definitions 

$5 (w,k), 

g= Gq), 

Jd+J-w+m* $s,<*$p’ 

J,,,m(k) =k,(& -%) =k,J,,W, 

the I component of the MHD equations is 

(11) 

G, ‘(I%, 

where A0 is the expansion parameter of the RNG technique, 
which at the end can be taken equal to one, and Go (k) is the 
Green function of system ( 12) as defined by its inverse, 

As in Refs. 3-5, the random forces are specified by their 
two-point correlations: 

(f, G4wl G;t4)) 
=2k -YAo(2r)dt’Jmn(k)S(~+~)S(k+q), (13) 

Vm (wkk, (5;s)) 
= 2k -yBo (ZT#+ ‘Jmn (k)S(w + <)S(k + q), (14) 

km (akk, Gq)) 
= 2k -yAo(2~) ‘+‘Jmn(k)S(w+5)S(k+q). (15) 

We consider the amplitude of the correlation (fg) to be 
B. and the amplitudes of the autocorrelations offandg to be 
equal (A, ), which corresponds to (&& ) = 0 as in Ref. 13. 
Otherwise, it turns out that the RNG technique leads to a 
system of equations that has more terms than the original 
one, e.g., a V2B term in Eq. ( 1) and a V2v term in Eq. (2), 
which means that the RNG technique breaks down. This 
situation may be due to the fact that a finite VlfB) could 
create coherent structures via cross helicities. 

III. RENORMALIZATION GROUP APPLIED TO MHD 
Our approach is the same as that applied by Yakhot and 

OrszagsB6 to the Navier-Stokes equation on the basis of Fos- 
ter-Nelson-Stephen theory.3 Detailed accounts of the RNG 
technique can be found in Refs. 7 and 16. The functions P 
and Q and the forces f and g are first divided into low-wave- 
number and high-wave-number components: 

Pt(i;, = 
Pr<(fh O<k<Ae-‘, 

PI” ch Aeer<k<A, 
r>O. (16) 

Here(J,“,Q,?,f;,f,‘,gf<,andgTcanbedefinedina 
similar way. The MHD system is then decomposed into 

(E;s;) = GG(k)Gtii) -iA,G,‘(k)Jl<m,,(k) 
4[QrX~-;i) +Q;&-@)][Pn<@) +P,“(~J] 

, (17) 
d@[G(~+) +P,Z(k-@][Q;(@ +Q,>(@] 
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where the superscript of G, (k) and JI,,, (k) means division into low- and high-wave-number components. 
Our aim (with the use of compact notation) is to eliminate the P > and Q > from Eq. ( 17) by solving Eq. ( 18). The 

procedure can be done by expanding P ’ and Q ’ in powers of ,I, : 

(19) 

Substituting JZq. ( 19) on both sides of Eq. ( 18) and equating the terms in powers of&, we obtain up to the second order in 
20 

(;$;) = G;(k)($), (20) 

p:, cb ( 1 I 
( 

4[QXk?, +QL,&@][P,‘(ij) +P,>(~)I 1) 
Qy, (R, = - jJln W%’ W  

I 

(21) 
~WGxha +P;di-@][P,‘(ij) +Q$(ij)] 

pr; & 

( ) 

d6[QZd-s) +QLo(k-i,]P;,(& +Q;,(i-cj)[~;(ij) +p,z(~)] A 
Q;2 cL, = - iJ/Lt(WG,> (k) 

s 

i I d+[prd--) +P;o&+)]Q,:(+, +P;,(i-@)[Q;($ +Q,>($)] 1. 
(22) 

Substituting P ’ and Q ’ for their perturbation series ( 19) in Eq. ( 17), we have 

(;$;) = G,,+)(;;;;) 

j&Jh,(k)G,‘(k) 
s - 

( 

4[QrX~-@ +QUi-@][P;(g) +P,>@)] 

s @[P;(h) +P;o(~-@)][Q;(g, +Q;,(ij)] 1 

s 4[QG(h) +Q;o(i-WY-J@) +Q;,(i-@[p,‘(i) +p,‘(ij)] 
- 2 ZJ;,, WG,‘(@> 

s d@[pG(i--) +P;o(~-@)]Q,:(@, +P;,(i-ij)[Q;(@) +Q;o(ij)] 

where P ; and Q : can be expressed in terms of P,> and Q 2 
by means of Eq. (21). 

The next step is to average out the effect of the high wave 
numbers in the shell he - r < k < A. The procedure is as fol- 
lows. 

(i) The low-wave-number components (P <,Q <, 
f < ,g’ ) are not affected by the averaging process, i.e., 

(Pi> =Pi, <Qi> =Qi, Vi) =f?t (g;) =g;. 
(ii) The matrix G,’ and its elements are statistically 

sharp, and so the averages involving P,> and Q,j’ are calcu- 
lated by means of F& (20) and the statistical properties of 
f Is andg” . Then, as the stirring forces have a Gaussian prob- 
ability distribution, we obtain 

I 

(f?) = (g?) =o, 
(f?f IQ-,‘) = Wf ;s,‘> = (f:gx 1 = w&c,‘> = 0, 
and 

(f’,‘o) = <Qr,> = 0, 

(P;oP;oP,>o) = (P,V;oQn>o) = 0, 

(P,>,Q;oQ,>) = <Q;,QL,QZ,:,> =O. 

(iii) The random forces are statistically homogeneous 
[see Eqs. (13)-( 15)], the zeroth-order high-wave-number 
terms depend only on the statistics of the random forces and 
J&,, (0) = 0. Therefore all terms of the form 
Jk, (q)(P,> (B)P,’ (4 -B)> are m-o. 
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(iv) The third-order low-wave-number components are 
disregarded because they vanish as the iteration goes to the 
“fixed point.‘f3V5*7 

The result of this averaging process is 

(;$;) = G;h($;;) -i;l,J&,(k)Go<(,&) 

--R;G,‘(i) (23) 

We call the matrix 

M(L) = 
the “correction matrix” and describe in Appendix A how it 
is calculated, the procedure is analogous to that of Navier- 
Stokes.5F7 Equation (23) can be rewritten as 

G; e’(k)(ii$:) = c$:) -i&J&,(k) 

(24) 

where the “new” Green’s function is 

- 
with 

A;: t% 1 A-’ a, =a0 +qA,Ao y-- 
a0 4’6 E 

; P, =Po +$AdA,, $---&= 
E 

X(e”- 1)F2(ao,Po), (26) 

Sd A, =- 1 
(2%-y d(d + 2) ’ (27) 

4 = (2[d2 - 31 + [d-YIS) ai 
p2 0 

+([2y+2-d]- [3~d*-88]S)~ 4 
0 

+ (2- [y+d-4lS)ag 

+ (d+2)(1- [d-21S)ao~o, (28) 

which is formally identical to system ( 12), showing that we 
can apply the RNG technique. 

Using Eqs. (30)-( 35)) it is possible to obtain the invar- 
iance relation for the spectral energy, which is the sum of the 
kinetic and magnetic energies. This leads to the spectrum3*’ 

E(k)& -55/3fZ(d-y)/3 
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4 P&=(2-[y+d+4lS)-p- 
0 

+ (12y+d+61 -d2S) p 
0 

-t (2[d* - 31 + [d -ylS)aZ 

-(d-f-2)(1 + [d-2lSboPo, (29) 
andS=B,/A,,e=y-d++. 

It should be noted that this result was obtained based on 
the assumption that the effective viscosity and resistivity re- 
main positive. 

IV. RESCALING 

System (24), obtained after averaging in the shell 
Ae - ’ < k < A, is very similar to the original one ( 12 ), but 
with k defined in the interval 0 < k c Ae - ‘. By introducing a 
new variable i such that 

I? =i ke’, (30) 
the system is again defined in the original interval, To com- 
pensate, the following general scalings are considered: 

i;, = mea(‘), (31) 
;fi(Z,h) = P;(co,k)e-““, (32) 
g,(iS,i;) = Q;(w,k)ePc”‘, (33) 

where the functions a(r) and c(r) are still to be determined. 
In order to prevent system (24) from being modified by the 
resealing, we must also have 

x (Z&k) = f; (w,k)eatrl - ‘(‘), 

&(Z,&) = g; (w,k)eacr) -C(‘f, 
a(r) = a,e”(“-2r, 
p( f+) = p, eacr) - *: 
X(r) = jloecw - cd+ l,r+ 

(34) 
(35) 

The way the stirring forces work on the system must be unaf- 
fected by this procedure, and therefore the correlation of the 
resealed stirring forces must be kept equal to the old ones. 
This requirement is only met if’ 

2c = 3a + (y + d)r. 
Then, the resealed system is 

G~‘(Z)(~~~) = f& - j;i(r))lm,(i;) 
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We determine y by requiring that this spectrum fit energy 
spectra expected for MHD turbulence, such as the Kolmo- 
gorov spectrum,” 

E(k)-k --‘3, 

which was obtained analytically for decaying MHD turbu- 
lence,‘* i.e., y = d. The phenomenological spectrum of 
Kraichnan,” 

E(k)zk -3’2, 

is also considered fory = d - t. The choice y = d + 2 need- 
ed to obtain the spectrum E(k) -k - 3, which appears in 
some cases in two dimensions,” is not be considered. 

Fournier et aLI considered two different coefficients 
for the correlations of the forces (y, and y2 ), but this is not 
possible in our case, because the resealing of P and Q would 
have to be different from each other, and, by virtue of their 
definitions [ Eqs. (5) and (6) 1, this does not make sense. 

V. RNG EQUATIONS AND RESULTS 

In order to eliminate a finite band of modes and be able 
to take the infrared limit, we iterate the procedure, eliminat- 
ing an infinitesimal wave-number band at each step. With 
the iteration being performed as in Yakhot and Orszag,’ 
Eqs. (25) and (26) can be taken as recursion relations for a, 
and ,0, . By using a general procedure (see, for example, 
Reichi** ) these recursion relations can be turned into differ- 
ential equations: 

da 5 A,A, - B*(r) 1 -= 
dr 4 

E14 [dd,P(r)l, d(r) S(r)$(r) A’ 
(36) 

db’ A: -=,A,A,PZ(r) 1 
dr 

cF, [a(r),P(r)l. 
a*(r) y2(r)v2(r) A’ 

(37) 

A particular solution of this system of a nonlinear differ- 
ential equation is 

I 

a, = X, e”j3, 

j3, = X2er”3. 

Here X, and X2 are such that 

7=x,/x2 

(38) 

(39) 

is the constant that satisfies 

(2- Ey+d+41S)r4+ ([ -2d*+d+2y+ 121 
- [d*+d-y]S)?+ ([ -2y+2d*+d-81 

+ [3d2+d-y-8]S)?+ (- [d+4] + [-d* 

+y+d]S)T- (d+2)(1 - [d--IS) =O. 

It can be proved that as r+ 00 the ratio a/P goes asymptoti- 
cally to 7, so that the exponential behavior in Eqs. (38) and 
(39) is not only a particular solution, but also the behavior of 
the system at the “fixed point.” The exponential behavior of 
the effective viscosity and resistivity at the “fixed point” is 
easily obtained by means of Eqs. (9) and ( 10). By analogy 
with RNG applied to Navier-Stokes,6 the effective viscosity 
and resistivity are, respectively, 

vc=k --E/3, 

7-k --j3. 

From Eqs. (36) and (37), it is possible to construct 
another differential equation, which is easier to analyze. De- 
fining 

x=%=-9 V-7 
we obtain 

dx 1 da 
( 

a dP 
z=p z-pzf > 

(40) 

Substituting Eqs. (36) and (37) into (40), we obtain 

dx A; AdA, er’ P*(d 1 
dr- 4 A’ a(r) ti(r)v*(r) 

z(x), (41) 

with 

z(x) = ( -2+++d+4}S)x4+ (2d*-d-2y- 12+{d*+d-yy)S)x3+ (2y-2d*-d++ 

-{3d2+d-y-8}S)x*+ (d+4-{-d*+d+yy)S)x+ (d+2)[1 + (d-2)Sl. 
The sign of dx/dr is determined by the polynomial z(x) since we are considering positive effective viscosity and resistivity. 
Therefore we look for the zeros of z(x) given by 

s= 2x4- (2d*-d-2y- 12)x3- (2y-2d2-d+8)x2- (d+4)x-d-2 
(y+d+4)x4+ (d*+d-y)x3- (3dZ+d-y-8)x2+ (d2-d-y)x+d’-4. 

We restrict ourselves to analysis of the region (f&, ) = 0 we have S = - 1. Typical plots for S(x) are 
- 1 <S< 1. This restriction can be shown to be due to the shown in Figs. 1 and 2. In Fig. 1, we have d = y = 3 and in 

assumption (f,fB) = 0. On the other hand, when the auto- Fig. 2 d = y = 2. Since the plots for y = d - 4 are very simi- 
correlations off, and fB have the same amplitude, it follows lar to those for y = d for every d, they are not shown here. 
that S = 0. In the case vvfv ) = 0, we obtain S = 1, and for For a certain d, the plot for y = d - 4 differs from that of 
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FIG. 1. Plot of S(n) ford = y = 3. 

> 

i ‘,“s 
- .. 

+ 

> d=y=2 

> 

-----y 12: ;pwl +-- .- 
;, SOL : 

j -.. < 

1 0 ' % 5 
x 

I( 

>: c-->. < 

FIG. 2. Plot of S(x) for d = y = 2. 
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y = d by just the numerical values of x in the plot, e.g., the 
value of x,,, depends ony, but their form is exactly the same. 

For a given value of Sand a initial value ofx, , we obtain 
the direction in which the renormalized value changes as the 
RNG iterations proceed, using the plotsS(x) and the sign of 
z(x), which gives the arrows in the plots of S(x). From the 
arrows we are able to localize the attracting regions of the 
plots, which are indicated in Table I. Ford = 3 (Fig. 1 ), the 
parameter space that tends to x = 1 (zero resistivity) is 
much larger than that leading to x = - 1 (zero viscosity). 
For x0 > 1, we have essentially the same behavior for d = 3 
and d = 2 (Fig. 2). For x0 < - 1, there are differences be- 
tween the behaviors of d = 2 and d = 3. For d = 3 (Fig. 1) 
there is an attracting region between the minimum of the 
curve at the left side (not shown in Fig. 1) and the point 
(x,,S = 1) . This region does not appear for d = 2 and it is 
rather easy, in this case, to reach x = - 1 since the whole 
curve is repelling. This does not happen for d = 3, because 
there is only a small area of the parameter space that leads to 
x= -1. 

The next step is an analysis of the system, considering 
the possibility of negative viscosity or resistivity. In order to 

I 

obtain negative values, the effective viscosity or resistivity 
must crossx = 1 (zero resistivity) orx = - 1 (zero viscos- 
ity). When we have exactly zero resistivity (or viscosity), 
there is a divergence in dx/dr [see Eq. (4 1) ] and the RNG 
calculation is, strictly speaking, not valid. For certain values 
of S and x0, the system tends to the region of negative effec- 
tive viscosity or resistivity (see Figs. 1 and 2) and we are 
interested in the behavior of the system once it crosses x = 1 
or x = - 1 and is inside this region. We then suppose that 
the corrected resistivity (or viscosity) is negative after a cer- 
tain number of iterations (finite r) and the calculations must 
be redone after that owing to the change of sign, which leads 
to changes in the result of the integration. In Appendix B, we 
give more details of these calculations. The differential equa- 
tion obtained for negative effective viscosity and positive ef- 
fective resistivity is 

1 
A’ x3(r) d(r)#(r) 

R(x), (42) 

where 

R(x) =4[d2+2d+8+S(d+3)]x7+4[d2-5d-y-32-SS(3d+ 14)x6+4[ -3dZ+4d+y+361 

+S( -2d2+7d+2y+36)]x5+4[d2-4d-y-29+S(2d2-7d-2y-37)]x4 

+ 2[8d + 2y + 50 + S(4d + 9) lx3 - (4d + 23 - 8S)x2 + 2(2 - S)x - 19. 

In the case of negative effective resistivity and positive effec- 
tive viscosity, we have 

dx -= 
dr 

R(x). (43) 

The plot ofS(x) in the region - 1 <x < 1 (Figs. 1 and 2) is 
given by equaling R (x) to zero. The arrows of Figs. 1 and 2 
in this region are again given by the sign of dx/dr, which is 
determined by R (x). In the regions where the system tends 
to negative effective viscosity or resistivity, the function 
R (x) is mainly negative, except in a small region for negative 
Sand x > 0.7. The tendency of the system is to return to the 
region of positive viscosity ( 1x1 > 1) owing to the sign of 
dx/dr near x = - 1. This tendency is shown by the arrows 
in the region - 1 <x < 0 in Figs. 1 and 2. However, once in 
the ( [xl> 1) region, it tends to the negative viscosity region 

TABLE I. Regions of attraction for x. 

d=3y=3 d=3y=2.75 d=2y=2 d=2y=1.75 

l<x<1.5 l<x<1.5 l<x<l.S 1~~~1.8 
x=1 x=1 x=1 x=1 
- 18.4<x< - 2.3 - 38.4~~~ - 2.4 

x= -1 x= -1 x= -1 x= -1 
0.7<x< 1 0.7<x< 1 0.7<x< 1 0.7<X$l 
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I 
again, and then the system is trapped in the region of zero 
viscosity (x = - 1) . For 0 XX < 1, as shown in Figs. 1 and 
2, there are two possibilities for the system, for 
- 0.2 <S < 0, the system is trapped in the region of zero 

resistivity (x = 1). For - 1 <SC - 0.2 there is an attrac- 
tive region for 0.7 <x < 1, which means that the system can 
achieve a negative resistivity. Therefore we obtained nega- 
tive effective resistivity with RNG calculations, as closure 
theories for two-dimensional MHD23 and reduced MHD.24 
Negative effective resistivity occurred for negative values of 
S (see Figs. 1 and 2)) corresponding to the magnetic regime, 
where negative effective resistivity also appears in closure 
theories.24 It must be clear that it is not possible to have 
initial viscosity and resistivity such that - 1 <x0 < 1. The 
arrows in this region just show the behavior of the system if it 
enters this region after a finite value of r, and we accept that it 
can cross in some way the divergence of dx/dr at x = 1 or 
x = - 1. The fact that the system is attracted to zero effec- 
tive viscosity or zero effective resistivity in some regions 
shows perhaps a way of annihilating the viscosity or the re- 
sistivity of the system, depending on the way the system is 
excited and the initial conditions. This could be interesting 
in some practical situations. 

One physically interesting quantity being the Prandtl 
number 

P, = v/q 
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we can relate it to x, where 

and obtain the possible values for the turbulent or effective 
Prandtl number. From Eq. (41) we obtain the correspond- 
ing differential equation for P, > 0, 

z*(P,) =2SP:- [ -d*++d+y+ 12+ (d2-2d-y 

-S,S]P:- [ -d*--2d-ty+4( -3d2 

-2d-y+4)S]P:- [d2-y-4+ (d2-y 

-8)S]P, - [d2-y-4+ (d’-y-2)5]. 
dpt 2; -= 
dr 

-TA”Aozz l Az*v,), (44) 
A” (P, + 1) p:?#l3 

Using Eqs. (42) and (43) we obtain the differential equations valid for the negative effective PrandtI number, respective- 
ly,for - l<P,<OandP,< -1 wehave 

1 OR*, 
A’ (P, + 1)3(P, - 1) Ph3 

1 
LR*(P,), 

A’ (P, + 1)3(P, - 1) P:q3 

(45) 

(46) 

where 

R*(P,) = -3(1 +4S)P;+ [8d*-8d-8y-9-4(2d2-2d-Zy-7)S]P:+ [48d2- 16y-337 

- 8(2d2--d--y- 17)S]P:+ [104d2+88d-8y+469-t8(d2+3d-y-22)SlP:+ [96d*+ 16Od 

+2fl +4(8d2-8y-55)S]P;‘+ [24d2+ 136d+8y+889+4(2d2+ 14d-2y+47)SlP:+ [ - 16d2 

+96d+l6y+545-16(d*-6d-y-30)S]P,+[ -8d2i-4Od+8y+283-8(d2-5d-y-23)Sl. 

In analogy with the procedure we did before, we make the 
plots of S(P,), equaling z*( P,) and R *(P, ) to zero and 
analyzing the sign of dP,/dr. These plots are given in Figs. 3- 
6. In Figs. 3 and 4 we consider d = y = 3 and in Figs. 5 and 6, 
d = y = 2. Figures 4 and 6 show in detail the region 
- 10 <P, < 10, which is not seen easily in Figs. 3 and 5. 

Essentially, these figures show the same result as Figs. 1 and 
2, but their physical interpretation is much easier. For a cer- 
tain initial Prandtl number Pro, it is possible to obtain the 
value to which the renormalized Prandtl number tends in a 
way similar to that used for x. Table II shows the attractive 
regions of P,. Each region of attraction of P, shown in Table 
II corresponds to a region of attraction ofx shown in Table I. 
In Figs. 3-6 we can see that P, = 1 is not a fixed point, al- 
though Figs. 1 and 2 suggest so. However, P, =: 1 (value con- 
sidered “experimentally”) is also possible in our results, de- 
pending on the initial conditions and how the system is 
excited. In the cases that P, -, 00, the next step is to go to the 
negative region through - CO, this occurs as the effective 
resistivity must cross zero before being negative. 
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VI. CONCLUSION 

The application of the RNG technique to MHD has 
brought several new features that were absent in the case of 
Navier-Stokes equations. First of all, the magnetic field is 
not a “passive vector,” as noted in Ref. 13, which obliges us 
to renormalize simultaneously both the resistivity and vis- 
cosity. In Ref. 13, where the correlations of the stochastic 
stirring forces were assumed to increase toward large k, the 
authors had to weight the magnetic and kinetic nonlineari- 
ties in a different way. In our work the k behavior of the 
correlations is reversed according to Yakhot and Orszag,5 
and to the physical expectation. This leads us to weight the 
magnetic and kinetic nonlinearities in the same way. This 
circumstance makes the ordinary differential equations of 
RNG [see Eqs. (36) and (37) ] much more involved than 
the Navier-Stokes case.5 

Despite this mathematical difficulty, which prevents an 
explicit general solution of Eqs. (36) and (37) in closed 
form, as in Ref. 5, we are able to make statements about the 
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d=y=3 

FIG. 3. Plot of S(P,) for d = y = 3. 
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FIG. 4. Plot of .S(P, ) for d = y = 3. 
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FIG. 5. Plot of S(f’, ) for d = y = 2. 
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FIG. 6. Plot of S( P, ) for d = y = 2. 
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TABLE II. Regions of attraction for the Prandtl number P,. 

d=3y=3 d=3y=2.15 d=2y=2 d=2y= 1.75 

4.9<P,< m  4.9-&P,< m  3.4<P* < co 3.4<P,S a, 
P, = cc P, = m  P, = m  P, = m  
0.4<P, GO.9 0*4<P, GO.9 
P, =o P, =o P, =o P, =o 
- oJ<P, - CO<P, - CO<Pt - oO<p, 

< - 6.4 < - 6.4 < - 5.7 ( - 5.7 

asymptotic behavior in r of the solution and determine the 
effective resistivity and viscosity. In particular, it is possible 
to determine the attracting values of the turbulent Prandtl 
number (see Table II) as a function of the parameter S, 
which characterizes the relative correlation strength of the 
kinetic and magnetic stirring forces. 

Note that the values of the Prandtl number do not de- 
pend upon the absolute values of the stirring forces and their 
correlations. Therefore statements about the turbulent 
Prandtl number are more likely to be representative of real 
turbulence, which is usually maintained by boundary condi- 
tions and not by volumetric stirring forces. This aspect is 
obviously absent in Navier-Stokes turbulence. 

From the figures it is possible for any given Sand initial 
values of x0 = (v. + r],)/(vo - vo), with [x0] > 1 (or 
Pl, > 0) to see in which direction the renormalized value is 
going to change with the iterations of the RNG. 

I 

Negative effective viscosity is not possible in our results; 
instead, the tendency is to have zero effective viscosity. In 
certain cases, with an extended interpretation of the calcula- 
tions we obtain negative effective resistivity and in others 
zero effective resistivity. 

APPENDIX A: CALCULATION OF THE CORRECTION 
MATRIX 

Since the calculations are very lengthy, the details will 
be given elsewhere. We limit ourselves here to considering 
two typical terms of M, and M2 as follows: 

T, =J;,,(k) 4 
s s 

d~J,:,q)z,>(~)[Q:(s-a, 

x<ea&~)P~(j)> 

+P,‘(B)(e~o(s-s,e~(~-a,)], (AlI 

T2 = -J;n,(k) 4 
s s 

dfiJ,Ls(k-q) 

xu,‘(rb@ [Q:C~+-$1 
x (Pz3 (G)P$ (8)) + p,’ (B) 

x(P,‘o(B>Q;(~-G-N]. (A21 
The integration over j can be performed by using the 

two-point correlations of the forces [ Eqs. ( 13)~( 15) 1. After 
this integration, T, and T2 are 

T, =2J;,,(k) s 
d~J,:,(q)z,‘(~)lk-qql-Y(Q:(~)J~,(k-q)C--o[z,’(~--)u,‘(~--) 

+u,‘(6-hz;(i-@ )] +&[Izo>(b+)l’+ Iuo’(i-@ )12]}+J;r(k-q)P,‘:(h) 

xCAo[I&-4)12+ lu;(i-@ )12] -B,[z,‘(i+b,>(l;-4) +u,>+L)z;(L+)]}), (A31 

r, = -~/L,(k) WXk-q)~,>(~-4)q-y(Q:(bJ,:(q)CAo[~z,>(@)~2+ Iuo’(@I”] s 

--~o[zm)G( -6) +GcBm( -s,]}+P~(~)J,:(q)C--A,[z,‘(~)u,‘( -4, +u,‘(ij)zo’( -@I 

+Bo[lGm12+ lGC&l’]B. (A41 

The next step is to perform the 8 integration. It should 
be noted that, owing to the definition of the functions of 
high-wave numbers (16) in the integrands, the integration 
over q must be performed at the intersection of the intervals 
Ae - r < q < A and Ae - ’ < (k - qj < A. This is expressed 
with a greater-than sign over the integral of the q integration, 

First the integration over [is calculated by the residue meth- 
od. In order to have a tractable contour in the complex plane, 
we have to assume definite signs for both the effective viscos- 
ity and resistivity. First we take positive effective resistivity 
and viscosity since their initial values are always positive. 
Calculations that consider the possibility of negative renor- 

I 

malized resistivity or viscosity are explained in Appendix B. 
We have a total of 16 different integrals in c to perform, e.g., 

I, = 
s 

- d&,(@)Iu,(~-@)12 
--m 

7T PO 1 =--- 
4 ao b--l2 

x 
- iw -I- a,q2 + v,,lk - q12 

- [(aoq2+voVgk-q~2-i~)2-~~q4]vo 

- iw + aoq2 + 70 Ik - q12 
+ [(aoq2+~OIk-qq12-i~)2-~~q4]770 
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s 
-f-m 

r, = d!c uo 4 - 6,zo ($)u, ( - 6, --m 
- 7r PQ P-d2 

4 “0 q2 

X 
2a. +L% 

[ (aoIk ---I’+ voq2 --f~)*--P~lk-~141~o 

2a. -PO 

with I, and 1, parts of T, and T, , respectively. 
We are ultimately interested in terms of order k *, which 

contribute to the renormalized “viscosities.” Since JI,,, (k) 
is of order k, we only need to consider the terms of the inte- 
grand up to the first order in k. In the infrared limit of inter- 
est o-0, an expansion in k is performed and we obtain for 
the integrals above 

These calculations lead to typical terms for 44, and M2, 
given by 

T ,la' ' J' (k)P'(j& II -- 
8ag$T;J Im" ' 

X 
f 

'&+-ql-y~-4Jn,o 

xJ,n,(k-q) D, +E, 5 
q2 

, 

T &a; 1 
21 --J&,W?:h 

8 4 &i 

X 
s 

’ dq - -‘-“J,,(k - q) 
(21r)d4 

xJ,,,(q) 02 + E2 5 
q2 

, 

where T,, and T,, are parts of T, and T2, respectively, and 
Di and E, are functions of a, and PO. 

With the definitions of J,,,,, and Jr3 ( 1 1 ), the following 
products of the integrands are calculated up to the first order 
in k: 

J,,(q)J,,,,(k - 9) = km - kr 

Jr,, (q)Jm, (k - q) 

=qr a,, -%$ 
> 

+&!!$.+ qmq;pqs, 

J,,s (k - q,J,, (q) = k, - k, f%. 
q2 >( 

S,, - %!L 
4* > 

, 

J,n,(k--@J,,(q) = (k, -4,) S,, -= 
4* > 

Simplifying further the “correction matrix” and noting that 
Jl,,,,, S,, = 0, we can calculate the whole expression by using 
four different types of integrals over q: 

1, =k,S,, 
s 

‘A --y-4 

(2@d4 ’ 

’ 

I,= -- 
s 

’ dq qmqtiqr q-y-4 
(2ny q* ’ 

’ I4 = k, s 
dq qmqnqrqs q-y-4 - 

(2nld q4 ’ 

WI 

(AS) 

(A7) 

(Ag) 

As mentioned before, the integration must be performed 
at the intersection of the intervals he-‘< q < A and 
Ae- ‘< Ik - ql <A. Up to the first order in k, the last in- 
equality can be written as Ae - ’ + k cos y< q < A 
+ k cos y, where y is the angle between k and q. The inter- 

section of these intervals is then 

Ae-‘<q<h+kcosy, COSY<O, 

he-‘+kcosy<q<A, cosy>O. 
Then we have for Eq. (AS) 

s 
> ds --Y-4- km6ns &, 

s s 
A 

(27T)dq 
dqq-Y-4 

mv Ae-’ 

dqq-y-4 

km 4,s -- dfl, 
cwd s s 

dq q-*-‘, 
v 

(.‘-I 

and similar expressions for Eqs. (A6)-( As), where the do- 
main Z=CAe-‘<q<Ae-‘+kcosy} is valid for 
cos y > 0 and the domain Y = {A + k cos y < q < A} is valid 
for cos y< 0. The first domain of integration in Eq. (A9) 
makes no contribution to the k power of the integrand, but Z 
and Y? do. The integrals I,, 12, and I4 are already of first 
order in k, and so when calculating these integrals we only 
need to consider the interval he - r < q < A since the other 
two domains make contributions to the second order in k. 
However, 1, is of order zero in k and it must be calculated in 
the three domains, but in the first domain this integral turns 
out to be zero, so that only X and 9 contribute to the calcula- 
tion The result for the integrals5 is 

s, A-’ I, = k,S, -- 
(2ny E 

(es’- I), 

1 s, A-” 1, = k,S,, --- 
d (2~)~ E 

(efr- l), 
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I,=- l Sd -A-c(eGr- 1) 
2d(d + 2) (27+ 

x (k,S,, + k,L + k,rAr), 

z4 = k xi A-’ -- 
d(d + 2) a-v E 

(P- 1) 

x (S,,,,S,s + &,~“S + L4lr )* 

The result for Z3 is exact ford = 2, while for d = 3 it can be 
proved only for certain values of y. We did not manage to 
prove that it is valid for any angle ‘y, but due to isotropy it can 
be expected to be true. In the expressions above, we have 
E = y + 4 - d and S, is the area of the sphere in d dimen- 
sions, S, = 2nd”/I’( d) .5*7 

Applying the result of the integrals in our expression 
and keeping in mind that J[,,,, S,, = 0, we obtain an expres- 
sion that can be further simplified by using 

J&n Wk,,P;h = 0, 
JA, Wk,Q;(b = 0, 
J;,,(k)k,P,+) = k*P;(i), 

J&,,Wk,Q,Xb =k2Q;(b 

The overall result for the “correction matrix” is 

44, Pi 1 A-’ z---p 
4 ai 47; 6 

x(tf’-- 1Ik’c 2) (;$;), 

with 

F, = -D, + -$+y+ 1 
( > 

D, + (dZ--3P, 

+(-;+l)Dz,+&+E,, 

F2 = -(d2-3)D, + 5-l 
( > 

D2 

-E2 +D, +&y-lJDc+-Eb. 

Using the expressions for Di and Ei, we obtain Eqs. (28) and 
(29). 

APPENDIX B: CORRECTION MATRIX FOR NEGATIVE 
EFFECTIVE VISCOSITY OR RESISTIVITY 

Our task is to obtain an expression for the correction 
matrix valid for negative viscosity and positive resistivity 
and another valid for negative resistivity and positive viscos- 
ity. 

Let us take the same typical terms of the matrix M(R) 
calculated in Appendix A and then analyze the changes they 
have for negative viscosity and positive resistivity. The case 
of negative resistivity and positive viscosity is considered 
afterward. 

If we choose certain initial conditions and S, then after a 
certain number of iterations we have zero viscosity. At this 
point an infinite discontinuity occurs in Eq. (41). The sys- 
tem would enter the region of negative viscosity, and we 
want to know what will happen to the effective viscosity and 
resistivity once we are inside this region. Therefore in this 
region the “initial” values of our iteration are not the molec- 
ular (initial) values, but a “corrected” positive value for the 
resistivity vC and a very small negative value for the viscosity 
vC and all the old initial functions are now written as func- 
tions of these “corrected” values. 

The expressions for T, and T2 are the same up to the fi 
integration [ (A 1 )-( A4) 1, with just the initial values being 
substituted for the “corrected” values, e.g., z: (Q) is now 
zp (6). However, the calculations change when the 6 inte- 
gration is performed, owing to the different positions of the 
poles in the residue integration. 

For the integrals Z, and I,,, for negative viscosity, for 
instance, we obtain after expanding in k, keeping terms up to 
the first order and considering the infrared limit w -0, 

z, = s = d~z,(~)Iu,(~--)1*=-~- 77 B q-4 
-0c 16 a: $7: 

4crf _ (24 -2aA ;PZ)(ac -PC)’ z 
. c 

+ (2at + 8a,‘pc - 36a:flz + 26aaB: - 19affif + 8a,Pz -Pz) k-q 

aJf 

Ib = 
I 

+m 
d@,(i-#z,(G)u,( -B) 

-m 

7T PC q-4 =--- 
( 

8a3 -4 a: I (a, +P,)*Ck -P,)C% -2a,& +flf) k2 - 
16 af <VI ' DC Pf k-q 
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The typical terms T,, and T,, , parts of r, and T, , re- 
spectively, are then 

T--la: LI 1 -- J,&(k)Pd(b 
16 Bf yfd 

X 
s 

’ dq Ik - 41 -yq-4J,v.s(q) 
(2371d 

xJ,,(k-q) D; SE; 3+R, z 
q2 l 

, 

T, ,  =La: ’ -JJn(k>Q:(b 
16 0: <r/f 

-y-4J,,,,(k - q) 

t-E; 5+R, g 
q2 l 

, 

with D ;, E I, and Ri being functions of a,, /?, . 

I 

F; =4[(d2-2d- 16) +S(d+2)1$ 
c 

The integration follows the process described in Appen- 
dix A, the only difference being that now we have one more 
type of integral to calculate, in addition to the integrals I1 to 
I4 [ (A5HA8) 1: 

k2 1 & ii-” =---- 
k, d (2aId E 

(ecr - 1) (LAr + 4dL, 

+ 4Jmn - Gun Ll& ) * 
The correction matrix obtained for negative viscosity is 

with 

+4[(d+y+ 12) +W -d2-t-2d+ 1411 $+4[(d’-3d- 16) -S(5d+2y++O)] $ 
c c 

+4[(3d+y+17)+2S(d+6)la~-(4d+~9+8S~ac~c+481-~9~~ 
e 

F;=4[-(dz+2d+8)+S(d+3)]$ 
c 

+q(sd+y+ ‘6) +4S(d+4)l$+4[3(d2-d-8) -S(3d+2y+8)1$ 
c c 

+4[(d+y+ 13) +S( -2dZ+2d+7)la~+2[-2(d+8f+15Sla,~cC4(~-~~~~C2S~~ 
a, 

Following the same procedure as described in Sec. V, we 
then obtain the differential equation for n (42). 

The calculations for negative resistivity and positive vis- 
cosity are completely analogous to those of negative viscos- 
ity and positive resistivity. Owing to the symmetry of the 
poles, the results can be obtained from the above results. The 
poles are just reflected on the real axis, as compared with the 
case of negative viscosity and resistivity. Therefore the 
expression for the correction matrix is just changed by a 
minus sign, and so this change of sign is present in the differ- 
ential equation for X, as shown in Eq. (43 1. 
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