Self-Similar Statistics in MHD Turbulence
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The fully developed decaying turbulence of 3-d resistive, viscous, incompressible magnetohydro-
dynamics is investigated using Elsasser variables and Hopf equation for probability distributions.
The method is an extension of a previous work for Navier Stokes equations done by Foias et al.
based on a suggestion by Hopf. It uses essentially self-similar properties of the statistics, which
“almost” determine the turbulence spectrum up to a mild assumption on an unknown function. This

spectrum is the well known Kolmogorov spectrum.

1. Introduction

Fully developed 3-d turbulence in Navier-Stokes
fluids at high Reynolds numbers has a long history
(see for example [1]). One of the milestones is the
Kolmogorov spectrum [2], which was proposed in
1941 mainly on dimensional arguments. Hopf [3] in-
troduced a general functional equation for the statisti-
cal description of turbulence and was the first author
to sketch a “rigorous derivation” program of the Kol-
mogorov spectrum based on a two-parameter group
of similarity transformations (see [3], page 120). An
explicit accomplishment of this program, with proofs,
can be found in [4] and [5], where from the self-similar-
ity of the Hopf probability measure scaling properties
of correlation functions and the energy spectrum are
derived. Addition of appropriate “mild” physical as-
sumptions to the mathematical scaling relationships
leads to the well known E, = C&?* k™3 spectrum of
Kolmogorov. This kind of “rigorous derivation” does
not close the topic because, for instance, observed
intermittency even at rather high Reynolds numbers
(see for example [6]) could escape to a “smooth” statis-
tical treatment.

In this paper, we extend the derivation mentioned
above to resistive viscous incompressible magnetohy-
drodynamics (MHD). It has been suggested a long
time ago by Elsasser [7] to use variables bearing his
name in a general context to describe MHD. This will
be the first time, however, at least to our knowledge,
that these variables are introduced together with an
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exact statistical derivation of the energy spectrum of
3-d MHD. As shown in this paper, the energy spec-
trum turns out to be essentially the Kolmogorov
spectrum, as for the Navier-Stokes equation, up to an
appropriate change of definition of E; and &. The miss-
ing rigor in the cited papers and in ours is the proof
of global existence and uniqueness theorems for 3-d
solutions of Navier-Stokes and MHD equations. For
an account of that problem see [8].

The paper is organized as follows. In Section 2 the
MHD system and its energy equation are given. The
Hopf-Liouville equation and the averages are de-
scribed in Section 3. We choose the probability distri-
bution families and define the scale transformation in
Section 4. In Section 5 we obtain the transformed
MHD system. The correlation function and the energy
spectrum are calculated in Section 6. The conclusion
and the appendix are in Sections 7 and 8, respectively.

2. MHD System and Its Energy Equation

The MHD equations used in this paper describe a
resistive, viscous, incompressible magnetofluid of unit
density. They are given by

d 1

D W V)o=—Vp+— (VXBxB+vV2, ()
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aa—l:=V><(va)+nVZB, 2

where 5, v and p, are the magnetic diffusivity, the
kinematic viscosity and the magnetic susceptibility. As
usual, v is the velocity of the fluid, B the magnetic field
and p the pressure. As the fluid is incompressible,

V=0, 3)
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as well as
V-B=0. “

Using vector formulas and the Elsasser variables [7]
1
V b
1
Q=v———2B8, (©)

V b
the MHD equations can be rewritten in the following
symmetric way:

P=v+ Bs (5)

oP
§+(Q'V)P=—VCI+V1V2PilvlezQ, ™

0
V= Vat VP, ®
which is very closely analogous to the Navier-Stokes

equation. In (7) and (8)

vi=3(+n), ©
v,=3(v—1) (10

and B? )
q = —+ . 11
p 2 (11)

The plus and the minus signs correspond respectively
tov>nandv<y.
The energy of the system is

v> B2
E=|(Z d
J (5 ) o

where the volume of integration is the whole space.

The energy time-dependence can be found employ-
ing (1) and (2) and assuming appropriate boundary
conditions at infinities, so that

0 vz+ B? d
o J\2 T2 )

- _I{v(va)2+i(VxB)2} dx,

Hm

(12)

(13)
which can also be written using Elsasser variables:
S ar 14

== [{{VxP+ O} +n{Vx(P-0)}*} dx.
3. Hopf-Liouville Equation and Averages

The probability distribution function of the system
(7) and (8), ,, is defined as a homogeneous statistical
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solution of the Hopf-Liouville equation as given in [3]:

d
) 2P Q) du (P, Q)
= = [du {v (P, @) £ [v,] (@, 2})
+({Q -V} P, @) £[v:] (P, ) +v1(Q, Pp))

+({P-V} Q )}, (15)
where
(a,b) =[a-bdx, (16)
(a, b)) = % | Va;- Vb, dx, (W)
i=1

and @} is the functional derivative of the functional @
with respect to P.
In some volume V we introduce:

1

|P|12/Emi£|P(x)|2 dx (18)
and

1
Pl2=—(|VP(x)]*d
1Py Ilejfl (x)|* dx

1 2 :

=m‘_['VXP| dx, (19)

where the last equality is due to the fact that both v
and B are divergence free fields and thus also P and Q.
The ensemble averaged energy is then

e(u)=[{IPI; +1QI}} du, .

In the same way, the ensemble averaged energy
dissipation terms can be written as

(20)

Ei(w)=[1P+QI}du,, @1
E,(w) =[Pl dp,. (22)
The associated energy equation is
Oe(u,)
o VEs () + 1 E; () = 0. 23)
Defining the dissipation rate ¢ as
e(t) =vE; () +nE; (1), (24)
the energy equation (23) is
Oe ()
=0. 25
o te=0 (25)

This equation tells us that the flow will be decaying as
well as the turbulence we are studying.
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4. Choice of Probability Distributions
and Scale Transformations

Following Hopf’s idea [3] to choose of all possible
probability distributions the ones that depend only on
the parameters v,, |v,|, &(t), we define the family

W= ILLVI,IVZLE(” . (26)

Similarly to [3, 4, 5], we demand this family to be
preserved by change of scales of the MHD variables
given by

0: ; P(x) =EP(Ax), 27
g, Q%) = £ Q(Ax), (28)
This means that
[d(oe 1 Pyoe,, Q) du, (P, Q)
=[¢P.Qd{o, m(P.Q}.  (29)

Accordingly, the average energy transforms with
o, , in the following way:

e(0g 3 ) = f{1P1z+ [Q13} d(og, 2 1)

=& [{|P5y +1Qy} du,. (30)
So ’

6(0":, p) .ut) = 52 e(ﬂz)-

Similarly, the average dissipation terms transform as

Ei(og 1) =J P+ Q17 d(og 5 1)

=82 [1P+Q |5y du,. (32
Then
E, (O'f:, A M) = e a? E; (1) (33)
and
Ey (06, 14) =E* A2 Es(u,) . (34

Equations (15) and (29) lead to

d d
E,f o (P, Q)d(o'g,z ”‘)=E§ ‘15(0'5,1 P,o; Q) du,

1
= a5 e = 2 (0 2)
e vy Py 2 (2 0y)
XA P AL 69

It can be noticed then, that for fi,, defined as

b= g2 lys (36)

(1)

605
transformed “viscosities” can be introduced:

s _Nig

37
Vi i H ( )
~ [v,] €
=—— 38
72l =2 (38)
as well as a new energy rate &:
EO)=VE (L) + TE, (&), 39
so that
By =¢E0¢(0). (40)
Then
. g’ [v2l & e
Op (™ ) = 7 AT (41)

To fix a reference distribution function we choose

(v IV2|)1/2 ¢ _

l 1, 42)
eAEd=1. (43)
Then (31) can be written as
e(u™ %) = (v v ) 62, (44)
where
y=e {M<ﬁ> ()" 1}. (45)

Using (44) and the energy equation (25) one finds

for e:
124 20
<1 PR L. 1/4>
A\ZIAPY))
where

g, =¢(0).

e(t)=

(46)

@

The following probability distribution turns out
to be stationary for the modified MHD system (see
Appendix):

(L)IIZ (M)l/l 2
w=pu\val/) T\ v

where y is given by (45).
To connect p with other members of the self-similar
family, we choose

E=yT 2 (v v, )Y,
A=y

mi2 81/4("1| V2|)_3/8 s

, (48)

(49)
(50)
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so that, applying (41) we have
preivbe = Oy=11251/4 (v, |3 )18, y= /2 1/ (vy v,y =378 s (51)

or, defining 9 as

3= VS—I/Z(VﬂVleMa (52)
we have
'th ale = Oy lva /4, 8- 12, (vilva)-1/49-12 K. (53)

5. The Transformed MHD Syste:m

The above considerations and (49), (50) and (52)
lead to the following change of variables of the MHD
equations (7) and (8):

P <&'VZT|1):83l> M, (54)
x - (ﬂ%) ” (56)
t = (%) T, (57

where M, N, y and 1 are the new variables.
Using &() given by (46), the new system of equa-
tions is

oM
(1—1)*—~{M+(y VYM}+(N- V)M
1z 2 |v2| vz 2
=—=Vr+ VM + V>N, (58)
|V2| V1
ON 1 ,
(1—1)———{N+(y-WN}+(M-V)N
P2 (121} s
=—Vr+ | VN + VM, (59)
) Vz| V1
where
B g
" )R (©0)
Or, letting

T=1-¢7"%, ) (61)
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we have the following system of equations:

oM 1
1/2 I I 1/2
—-—Vr+< ) V2M+< 2) VN, (62
[v,] Vi
oN 1

1/2 I I 1/2
:—Vr+<| l) V2N+< 2) ViM. (63)
2

Vi

Now, that we have the transformed dynamics, we
can for completeness relate back their statistics with
the statistics of the MHD system. It will be proved in
the Appendix that u given by (48) is a stationary prob-
ability of the modified MHD system (62), (63).

6. Correlation Matrix and Energy Spectrum

The correlation matrix is defined as

1
R, (»)= fm i[ Xj(x+y) X, (x) dx dy,, (64)

where

X= <P> . (65)
o
It is easily seen that
e(n,) =tr R(0) (66)
and that
VE{tr RO} -0 = — 5 {E1 (1) + Ex ()} . (67)

If the scale transformation 0., is applied to R; ,

then
vi¢ [v,|¢
Rj,k<y; IT, I i s 6328>

JIVI IX (x+y) X (x) dx d(oy ; p,)

1
"‘EZJNVI [ X,(x+49) X, (0 dx dp,

=R, 4 (Ay; vi, 2], 9). (68)
Replacing y for y/i: ©9)
| L (¥ 0E Il
R vy, [val, 6)=¢ ZRj,k(I? —Z“ f ,53/18).
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Letting for example:

Slre=1 (70)
and
=yl (71)
then
e P L, L
R, (y; vy, |v I,s)=<—) R, <1 =2 1)
RETE T 102 Iyl Pl Il
(72)
where y
L, = ;1/% (73)
[v5]
L,= 8173. (74)

At this point, we have to assume that in the limit of
v,n = 0,01 vy, |v,| = 0:

lim R; (1 Li L 1>—const,
.m0 1™ Iyl
in which case, the correlations (72) agree with those
derived in conjunction with the Kolmogorov spec-
trum (see [3, 4, 5]).

To a certain extent, this spectrum can be derived by
doing a Fourier transformation of the trace of the
correlation matrix (64) (see [4]) to obtain

S(k)=¢2* k=53 F <k£>

. d
with

(75)

(76)

81/4»

kyj=——— .
! (V1|V2|)3/8

We are now very near to the spectrum of Kolmo-
gorov [2]. However, a last “mild” assumption F (k/k,)
~ Cis necessary at least for the range k/k,; < 1 in order
to justify the exponent of k, the exponent of & being
naturally obtained. Though our function F(k/k,) is
slightly different from the one obtained in [4], we can
closely follow [4] for the discussion of our function F,
in order to help in the justification of our assumption.

(77)

7. Conclusion

This work extends the kind of derivation of the
Kolmogorov spectrum done in [4] and [5] based on a
Hopf suggestion (see [3], page 120). It uses the mathe-
matical description initiated in [3] without selving the
Hopf equation explicitly. In fact, a self-similar family
of probability distributions is established in conjunc-
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tion with the scaling properties of the MHD equa-
tions, written in Elsasser variables [7]. This allows to
relate the correlation matrix and spectrum of MHD
systems having different values of resistivities and vis-
cosities. Already this fact gives the correct exponent
2/3 in the energy rate appearing in the Kolmogorov
spectrum E, = Ce?* k™53, C and the exponent of k
can only be obtained after accepting some assumption
on an unknown function (see Section 6).

The boundary conditions on the fluid are such that
the solutions of the MHD system as well as the turbu-
lence have to decay. The self-similar family of proba-
bility distributions allows, however, to find properties
of the correlation matrix and the energy spectrum. A
complete determination of the spectrum cannot be
found without a knowledge of the explicit solutions of
the Hopf equation. From the self-similarity condition,
however, it is already possible to “almost” derive the
Kolmogorov spectrum for 3-d MHD turbulence.

8. Appendix

It is now shown that any homogeneous statistical
solution of the MHD equations (7), (8), y,, trans-
formed in accordance with (54)—(57); is a homoge-
neous statistical solution of (62) and (63). In order to
show this, let us take

1/2

_ v
(Y

'VI/Z (vil v, |)3/8>
1/4 >

A:
&

s =—log(l—1).
Taking into account the dependence of the linear
transformation with time, then for any functional &:

~ d
%f & (M, N) dji, =$f¢’(M5 Nyd(og, ; 1)

dtd
= ds dr

- { [, {vl((M v, 8{Z, W)

+ v, (V. Vi @{Z, W}))
+({M -V} N,V &{Z, W})

j@(o'é M, o, N)dp,

91 (N, Vy @ {Z, W}) + |v, | (M, Vy & {Z, W})




608 S. J. Camargo and H. Tasso - Self-Similar Statistics in MHD Turbulence

+({N- VI M, Vy@{Z W})

d
_<“‘d~t‘6§’1M, @’Z{Z, W})

dt

Z=0.,M,W=o0, AN}}

It must be noticed that the scalar transformation
used here is the inverse transformation of (49), (50),
and thus Z, W can be identified with P and Q, respec-

- <i e 1 N, Py {Z, W}>

tively.

As

d 1/2

a (0g . M) = 200y (Z+{y -V} Dz-0,,m
and

dt _ (valva )y

ds &2
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