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Abstract A probabilistic clustering technique is devel-

oped for classification of wintertime extratropical cyclone

(ETC) tracks over the North Atlantic. We use a regression

mixture model to describe the longitude-time and latitude-

time propagation of the ETCs. A simple tracking algorithm

is applied to 6-hourly mean sea-level pressure fields to

obtain the tracks from either a general circulation model

(GCM) or a reanalysis data set. Quadratic curves are found

to provide the best description of the data. We select a

three-cluster classification for both data sets, based on a

mix of objective and subjective criteria. The track orien-

tations in each of the clusters are broadly similar for the

GCM and reanalyzed data; they are characterized by pre-

dominantly south-to-north (S–N), west-to-east (W–E), and

southwest-to-northeast (SW–NE) tracking cyclones,

respectively. The reanalysis cyclone tracks, however, are

found to be much more tightly clustered geographically

than those of the GCM. For the reanalysis data, a link is

found between the occurrence of cyclones belonging to

different clusters of trajectory-shape, and the phase of the

North Atlantic Oscillation (NAO). The positive phase of

the NAO is associated with the SW–NE oriented cluster,

whose tracks are relatively straight and smooth (with cy-

clones that are typically faster, more intense, and of longer

duration). The negative NAO phase is associated with

more-erratic W–E tracks, with typically weaker and

slower-moving cyclones. The S–N cluster is accompanied

by a more transient geopotential trough over the western

North Atlantic. No clear associations are found in the case

of the GCM composites. The GCM is able to capture cy-

clone tracks of quite realistic orientation, as well as subtle

associated features of cyclone intensity, speed and life-

times. The clustering clearly highlights, though, the pres-

ence of serious systematic errors in the GCM’s simulation

of ETC behavior.

1 Introduction

1.1 Background and motivation

Wintertime extratropical cyclones (ETCs) are responsible

for severe-weather events with high winds and/or flooding

over North America and western Europe; they caused the

second largest insurance loss due to weather (after hurri-

canes) during the period 1990–1998 (Saunders 1999). On

the other hand they are also the primary source of win-
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tertime precipitation and total water resources for much of

the western United States.

ETCs play a special role as intermediaries between

large-scale climate dynamics and local impacts: they are

crucial dynamical ingredients of the atmospheric circula-

tion, while at the same time directly impacting local

weather. ETCs constitute an important nexus between the

potentially predictable large-scale components of climate,

such as certain hemispheric or sectorial atmospheric tele-

connection patterns associated with internal climate vari-

ability (Lau 1988; Robertson and Metz 1990) or with

global warming (Fyfe 2003), on the one hand, and socie-

tally important weather events (MunichRe 2002), on the

other. A better understanding of the behavior of ETCs in

the context of climate variability and change could have

important societal implications.

ETCs have localized coherent spatial structures that

generally propagate toward the east and go through a well-

defined lifecycle (Simmons and Hoskins 1978). Their

population is thus most naturally described as a set of

moving objects that follow various tracks and have dif-

fering individual lifecycle characteristics; this corresponds

to a Lagrangian description in fluid-dynamical terminol-

ogy. In contrast, most data analysis in the atmospheric

sciences has been based on calculating Eulerian statistics

on spatially fixed grids, often using principal component

analysis (Preisendorfer 1988; von Storch and Zwiers 1999)

to derive the leading patterns of spatio-temporal variability.

These methods are poorly suited to cyclone trajectories,

which are inherently localized in space in any given time-

frame.

The analysis of large sets of ETC trajectories, whether

from multi-decadal observed data sets or from potentially

much longer general circulation model (GCM) simulations

requires a different approach. Cluster analysis provides a

natural way to analyze sets of trajectories and their rela-

tionships with the larger-scale atmospheric circulation, by

decomposing large sets of trajectories into subgroups with

homogeneous spatio-temporal characteristics.

In this paper, we use curve-based mixture modeling

techniques to perform probabilistic clustering of ETC tra-

jectories in latitude–longitude space. Curve-based mixture

modeling can be viewed as a particular clustering tech-

nique within the broader statistical framework of functional

data analysis (Ramsay and Silverman 1997, 2002). An

identification and tracking methodology is developed to

produce cyclone trajectories; these trajectories are then

clustered using a novel probabilistic technique based on

mixtures of regression models.

We develop and test the tracking and clustering meth-

odology using a 15-winter GCM-generated mean sea level

pressure (MSLP) data set. We then apply the methodology

to a 44-year set of reanalysis data. Since the latter is a data

assimilation of both meteorological observations and

6-hourly model forecasts, there is no guarantee of tempo-

rally smooth behavior.

1.2 Related work

Prior work on cyclone tracking has focused specifically

on methods for automated identification and tracking of

cyclones, usually from sea-level pressure data. Identifi-

cation methods range from the relatively simple approach

of finding minima in the surface pressure field (Le Treut

and Kalnay 1990; König et al. 1993; Terry and Atlas

1996), or in the 5-point Laplacian thereof, to more

complex approaches such as the use of image processing

and computer vision techniques (Hodges 1994, 1998;

Mesrobian et al. 1995); the latter approaches often in-

volve other atmospheric fields such as vorticity (Hoskins

and Hodges 2002). These algorithms are usually then

coupled with a tracking scheme to produce a final set of

trajectories. Methods proposed for tracking so far include

a number of different schemes: nearest-neighbor search

(Blender et al. 1997; König et al 1993), numerical pre-

diction schemes with cost-minimizing optimizations

(Murray and Simmonds 1991), and feature tracking

methods from image analysis that are also based on a cost

minimization framework (Hodges 1994, 1995). Mailier

et al. (2006) combined the tracking algorithms of (Ho-

skins and Hodges 2002) with a Poisson-based modeling

approach to analyze clustering in time of extratropical

cyclone tracks in the Northern Hemisphere.

Blender et al. (1997) introduced the idea of using the

K-means clustering algorithm to cluster ETC trajectories

of fixed length. The K-means algorithm iteratively sear-

ches for compact clusters of multidimensional points in

d-dimensional Euclidean space (Hartigan and Wong

1978); this algorithm minimizes within-cluster variance

for a given number K of clusters. To apply the K-means

algorithm to cyclone trajectory data, one must first

convert the variable-length trajectories into fixed-dimen-

sional vectors. To do this Blender et al. (1997) con-

strained each of their storm trajectories to be exactly 3

days in length and then concatenated each of the latitude

and longitude measurements to form the vectors on

which the K-means algorithm operates. Elsner et al.

(2000) and Elsner (2003) used the K-means algorithm to

cluster tropical cyclone trajectories based on the latitude

and longitude locations of storms when they reach spe-

cific intensities.

This type of vector-based clustering has limitations

when applied directly to trajectories. For example, the

conversion of the time and space measurements into a

fixed-dimensional vector-space loses spatio-temporal

smoothness information related to the underlying
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dynamics of the ETC process, whereas the mixture-based

approach uses trajectory models (for each mixture com-

ponent) that are smooth as a function of time. Further-

more, the vector-based approach artificially constrains the

trajectories to have fixed lengths. The regression-based

clustering used in this paper has been shown to provide

systematically better fit and more accurate predictions

when used to cluster variable-length trajectory data,

compared to vector-based clustering (Gaffney and Smyth

1999; Gaffney 2004). Allowing for tracks of varying

lengths may be of particular significance; for example,

Simmons and Hoskins (1978) identified a lifecycle of

about 10 days, much longer than that assumed by Blender

et al. (1997). The approach we propose in this paper for

ETC clustering, namely mixtures of regression models,

directly incorporates spatio-temporal smoothness in the

trajectories in the modeling process, and accommodates

cyclone trajectories of different lengths.

Hierarchical clustering could also be used in this context

by defining a distance between pairs of trajectories. For

example, dynamic time-warping techniques could be used

to define a transformation distance between any curve and

another (Wang and Gasser 1997). Both hierarchical clus-

tering and K-means clustering, however, do not allow for a

consistent and systematic approach to problems such as

assessing the predictive performance of a cluster model,

model selection, or handling missing data. In contrast, the

probabilistic, regression-based approach to clustering pro-

vides a statistical basis to systematically address these is-

sues (Fraley and Raftery 1998, 2002; Smyth 2000;

McLachlan and Peel 2000).

1.3 Purpose and outline

Our purpose in this paper is threefold: (a) to develop fur-

ther the methodology for ETC tracking and classification;

(b) to apply this methodology to North Atlantic ETCs that

impact European climate; and (c) to evaluate the perfor-

mance of a typical GCM in simulating the observed ETC

clusters.

The paper is organized as follows. Section 2 presents

our cyclone identification and tracking methodology and

describes the data sets used in this paper. Section 3 intro-

duces a new curve-based methodology for ETC clustering

in two parts: (a) a brief introduction to finite mixture

models; and (b) their extension to regression mixture

models and the integration of cyclones into this framework.

Section 4 presents the clustering results for the GCM data,

while the corresponding results for the reanalysis data set

appear in Sect. 5. The ETC clusters are related to the large-

scale meteorological fields in Sect. 6, followed by con-

cluding remarks in Sect. 7.

2 Data and tracking methodology

2.1 Data

The GCM data set used for this work was generated by the

National Center for Atmospheric Research (NCAR)

Community Climate Model (CCM3) (Hack et al. 1998).

The model is discretized in spherical harmonics at a T42

resolution, and forced with observed sea surface tempera-

tures specified at the lower boundary over the 1980/1981–

1994/1995 period. For the tracking, we used 6-hourly

MSLP fields on the model’s approximate 2.8� · 2.8�
Gaussian grid for extended 6-month winter seasons (1

November to 30 April) from 1980 to 1995; in each winter

there are thus 181 days. In this paper we focus on North

Atlantic ETCs over the area (30�N–80�N, 80�W–30�E)

shown in Fig. 1.

The reanalysis data set used in Sect. 5 is the National

Centers for Environmental Prediction (NCEP)–NCAR data

assimilation of historical observations using a state-of-the-

art analysis/forecast system (Kalnay et al. 1996). We use 6-

hourly MSLP on a regular latitude–longitude grid of 2.5�
· 2.5�, over the same North Atlantic domain as for the

GCM, but for the 44 extended winter seasons 1958/1959–

2001/2002.

To cluster ETC trajectories we must first identify and

track them from the MSLP frames. Our identification and

tracking scheme is based on methods already used in this

context (Blender et al. 1997; König et al. 1993) and re-

quires relatively few parameters to implement. The track-

ing algorithm we use is quite simple and not intended as a

general-purpose tracking algorithm—nonetheless, we

found that it produced reliable results on the data sets used

in this paper. We only give a short description below; the

full details can be found in Gaffney (2004).

60° N 

45° N 

30° N 

 30° E  0°    30° W  60° W 

75° N 

Fig. 1 Random sample of 200 CCM3 cyclone trajectories tracked

over the North Atlantic domain of interest. The circles indicate initial

starting position
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2.2 Identifying and tracking cyclones

Cyclones are characterized as well-defined surface-pres-

sure minima and their trajectories have lengths of a few

thousand kilometers. We begin with a minimum-finding

procedure to locate candidate centers of cyclones within

each field. In order to distinguish these minima more easily

from larger-scale low-pressure areas, the gridded data were

spectrally filtered in space at each time so as to remove the

largest planetary-wave scales; these scales were defined as

the first five global spherical harmonics (Hoskins and

Hodges 2002; Anderson et al. 2003). Using bicubic inter-

polation, a cyclone center that may be off-grid is then

obtained.

Spurious minima can arise using this procedure, usually

in one of two situations: (1) in high-pressure regions not

associated with cyclonic activity; and (2) on the outskirts of

a single cyclonic system with an already located central

minimum. These spurious minima are automatically iden-

tified and removed from further analysis, by thresholding

the MSLP data at a particular pressure level to form indi-

vidual low-pressure regions within the data. This thres-

holding results in contiguous local pixel regions, where

each local region corresponds to the estimated spatial ex-

tent of a single candidate cyclone at a specific time. We

then reject minima that are located outside the low-pressure

regions and only keep the deepest minimum within each

individual local region. The threshold was defined via trial-

and-error to be –17 mb, a subjective choice that produced

intuitive results—the set of tracks obtained are relatively

insensitive to small variations in the value of the threshold

(Gaffney 2004). The same threshold value is used for all

times t.

Once the valid MSLP minima have been detected at

successive 6-hour time intervals, they are linked together

over time to form cyclone tracks. Each valid minimum at

time t is linked with the closest minimum that was detected

within a small neighborhood in the MSLP field from t–6

hours. This search is carried out within ±7� longitude and

±5� latitude. These bounds correspond to a maximum

velocity of approximately 92 km/h in longitude and lati-

tude, at 45�N; in practice such velocities are hardly, if ever,

reached. In the second step, we eliminate tracks shorter

than 2.5 days. This removes many short and noisy tracks

that correspond to local small-scale weather disturbances

not usually considered to be synoptic cyclones.

Application of this identification and tracking procedure

to the MSLP data from CCM3 produced 614 cyclones of

different durations, each with a minimum of 10 time-steps

(i.e., at least 2.5 days long). Figure 1 shows a sample of the

resulting cyclone tracks, with starting positions indicated

by circles. Figure 2 contains three summary histograms

describing the statistical characteristics of the entire set of

trajectories. The cyclone tracks have typical durations of

2.5–4 days, typical velocities of 30–60 km/h (i.e. 8–16 m/

s), and reach typical maximum intensities, defined as the

minimum MSLP reached, of –30 to –50 mb. These values

are of the same order as the statistics derived from tracking

observed cyclones in other studies (Hoskins and Hodges

2002). We use this set of trajectories as input to our clus-

tering algorithm in what follows.

3 Clustering methodology

3.1 Finite mixture models and model-based clustering

In the standard mixture model framework, we model the

probability density function (PDF) for a d-dimensional

vector x, as a function of model parameters u, by the

mixture density

pðxj/Þ ¼
XK

k

akpkðxjhkÞ; ð1Þ

in which u = {a1,...,aK; h1,...,hK}, ak is the kth component

weight, and pk is the kth component density with parameter

vector hk; for example, K Gaussian densities each with a d-

dimensional mean vector and a d · d covariance matrix.

The mixture weights ak sum to one and are nonnegative. In

this manner a finite mixture model is a PDF composed of a

weighted average of component density functions

(McLachlan and Peel 2000).

The mixture model framework can be used for data

clustering as follows. A data set of n vectors {x1,...,xn} is

observed and is assumed to be a random sample from the

underlying mixture model. Each data vector xi is generated

by one of the K components, but the identity of the gen-

erating component is not observed. The parameters for

each density component pk(x|hk), as well as the corre-

sponding weights ak, can be estimated from the data using

the Expectation-Maximization (EM) algorithm, a widely

used technique for maximum-likelihood parameter esti-

mation with mixture models (Dempster 1977a; McLachlan

and Krishnan 1997). From a clustering viewpoint, the

estimated component models, pk(x|hk), 1 £ k £ K, are

interpreted as K clusters, where each cluster is defined by a

PDF in the d-dimensional input space x.

Furthermore, using Bayes rule and Eq. (1), the proba-

bility that x was generated by the kth cluster (or compo-

nent) can be calculated (Eq. (A2) in Appendix A). These

membership probabilities reflect the a posteriori uncer-

tainty (given the data and the model) about which cluster

each data vector xi originated from. A ‘‘hard‘‘ clustering of

the original data {x1, ...,xn} can be inferred by assigning

each vector xi to the cluster fk with the highest membership
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probability, i.e., the cluster from which it was most likely

generated. Finite mixture models have been widely used

for clustering data in this manner in a variety of application

areas (e.g., McLachlan and Basford 1988) including

atmospheric sciences (e.g., Smyth et al. 1999; Hannachi

and O’Neill 2001; Vrac et al. 2005).

3.2 Cyclone regression mixture models

Regression mixture models are a direct extension of the

vector mixture models described above. For illustration,

consider a hypothetical trajectory zi with ni = 4 measure-

ments; the longitude and latitude measurements are in the

first and second column and their initial values have been

subtracted, while ti is the elapsed time from initiation of

tracking:

zi ¼

0 0

1 0:2
2:5 0:4
3:3 0:7

2
664

3
775; ti ¼

0

1

2

3

2
664

3
775:

Note that this example represents a cyclone moving mostly

in a zonal direction. The methodology below is developed

for the case where each trajectory zi is represented by two-

dimensional lat–lon measurements over time. However, the

framework can also handle additional dimensionality in zi,

e.g., 3-dimensional positional vectors could be used to

offset distortions introduced by lat–lon projections, and

additional non-positional attributes such as intensity as a

function of time could also be added.

We model longitudinal position with a polynomial

regression model of order p in which time ti is the inde-

pendent variable, e.g., z = bp tp + bp-1 tp-1 + ... + b1 t +

b0, and likewise for latitude. Both regression equations can

be defined succinctly in terms of the matrix Ti:

zi ¼ Tibþ �i; �i � Nð0;RÞ: ð2Þ

Here Ti is the standard ni · (p + 1) Vandermonde

regression matrix associated with the vector ti; b is a

(p + 1) · 2 matrix of regression coefficients, which con-

tains the longitude coefficients in the first column and the

latitude coefficients in the second column; and ei is an ni ·
2 matrix of multivariate normal errors, with a zero mean

and a 2 · 2 covariance matrix S. Assuming that the noise

term e is normal (Gaussian) is equivalent in effect to using

a least-squares loss function in regression fitting. Alterna-

tive noise models could also be considered—we used the

normal assumption here since it is the most straightforward

computationally and is a common choice for additive noise

in regression models.
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Fig. 2 Summary histograms for

GCM cyclone data set:

a cyclone duration, b average

velocity, and c maximum

intensity (MSLP)
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The Vandermonde regression matrix Ti consists of

(p + 1) columns of ti so that the components of ti in the mth

column are taken to the power of m for 0 £ m £ p. For

example, if p = 2 and ti = (0,1,2,3)¢, where ()¢ denotes the

transpose, then

Ti ¼

1 0 0

1 1 1

1 2 4

1 3 9

2
664

3
775:

The covariance matrix S contains three distinct elements:

the noise variances r1
2 and r2

2 for each longitude and lati-

tude measurement, respectively, and the cross-covariance

r12 = r21 between any two longitude and latitude mea-

surements. For simplicity, we make the assumption that

S = diag(r1
2, r2

2), so that latitude and longitude measure-

ment noise terms are treated as conditionally independent

given the model. While a non-diagonal covariance matrix

would allow for modeling of dependence between the

latitude and longitude measurement noise terms, this level

of detailed modeling did not appear necessary for the

purposes of clustering and, thus, we used a diagonal

covariance assumption as a simpler alternative.

The conditional density for the ith cyclone is thus de-

fined as

pðzijti; hÞ ¼ f ðzijTib;RÞ

¼ ð2pÞ�ni Rj j�ni=2
exp �1

2
tr ðzi � TibÞR�1ðzi � TibÞ0
� �� �

;

ð3Þ

where the parameter set h ¼ fb;Rg contains the regression

coefficients b and the noise covariance matrix S.

We can derive regression mixtures for the cyclones by

substitution of the unconditional multivariate density

components pk(x|hk) in Eq. (1) with the conditional

regression density components pk(z|t,hk), defined in Eq. (3).

This results in the following regression mixture model for

ETC trajectories:

pðzijti;/Þ ¼
XK

k

ak pkðzijti; hkÞ ¼
XK

k

ak fkðzijTibk;RkÞ:

ð4Þ

Note that in this model each ETC is assumed to be gen-

erated by one of K different regression models, and each

model has its own ‘‘shape’’ parameters hk ¼ fbk;Rkg: The

technique is quite general and can be adapted to many

types of regression models including linear (DeSarbo and

Cron 1988), binomial probit (Lwin and Martin 1989),

kernel (Gaffney and Smyth 1999), and random effects

(Lenk and DeSarbo 2000, Gaffney and Smyth 2003)

models.

3.3 Clustering trajectories via regression mixture

models

If we let Z = {z1, ...,zn} be the complete set of n cyclone

trajectories and T = {t1, ...,tn} be the set of associated

measurement times, then the full probability density of Z

given T, also known as the conditional likelihood, is

pðZjT;/Þ ¼
Yn

i

XK

k

ak fkðzijTibk;RkÞ: ð5Þ

The model can handle trajectories of variable length in a

natural fashion, since the likelihood equation (5) above

does not require the number of data points in each ETC zi

to be the same; there is no need, therefore, to truncate

trajectories to any predefined common length. This prob-

abilistic model can also be extended in a straightforward

manner to incorporate additional information into the

clustering (such as storm intensity as a function of time) by

augmenting the Z variable with additional dimensions.

The product form in Eq. (5) follows from assuming

conditional independence of the zi’s, given both the ti’s and

the mixture model, that is assuming ETCs do not influence

each other. Strictly speaking this is not necessarily true,

since multiple ETCs could be present at the same time and

there can be ‘‘clustering in time’’ effects for ETCs (Mailier

et al. 2006). However, for the purposes of clustering tra-

jectories based on their shape, the conditional indepen-

dence assumption in the likelihood above is quite

reasonable. The cluster membership of a particular ETC is

likely to primarily depend on how similar the shape of the

trajectory is to each of the clusters, and only much more

weakly on information from ETCs that come before or

after it in time.

Clustering is performed by (a) learning the parameters

of all K models given data; and then (b) inferring for each

ETC which of the K clusters it belongs to. Following

Blender et al. (1997), each cyclone trajectory is referred to

the origin in both space and time, so that each (zi, ti) begins

at the relative latitude–longitude position (0, 0) and at a

time t = 0. Clustering is thus performed using only the

shape of the trajectory, and initial starting positions are

eliminated as a source of variation.

An EM algorithm for learning the component regression

models and component weights for this conditional mixture

can be defined in a similar manner to the EM algorithm for

standard (unconditional) mixtures (McLachlan and Peel

2000; DeSarbo and Cron 1988; Gaffney and Smyth 1999).

The maximization (M) step consists of solving a weighted
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least-squares regression problem in which the weights are

the membership probabilities calculated in the expectation

(E) step. Complete details on implementing the EM algo-

rithm are described by Gaffney and Smyth (1999) and

Gaffney (2004), and an outline is provided in Appendix A.

A graphical example of using EM to estimate the

parameters of regression mixtures from simulated curve

data is shown in Fig. 3; a single space dimension is used

here for illustration purposes. Four curves were generated

from each of three underlying quadratic polynomials, for a

total of 12 curves (Fig. 3a); i.e., four samples (different line

types in Fig. 3a) were drawn from each of the clusters.

Note that the cluster ‘‘labels,’’ shown here using the x-es,

circles, and squares in Fig. 3a, were not given to the

algorithm. Figure 3b shows the initial, randomly chosen

starting trajectory of the algorithm for each of the three

regression models. The EM algorithm converges in 4

iterations and the final clustering is shown in Fig. 3c, along

with the classification of each curve resulting from the

clustering (shown by the x-es, circles, and squares,

respectively); the latter is 100% accurate in this simple

example (compare with the same symbols in Fig. 3a). The

underlying true polynomials that generated the data are the

dotted lines in Fig. 3c. The regression mixture methodol-

ogy recovers the true cluster structure from the data, even

though it is not visually apparent at all that the top two

clusters in Fig. 3a can be separated.

A quadratic polynomial is also used in our component

regression models for the ETC tracks. This choice was

based on visual inspection of fitted-versus-actual trajectory

data (see Fig. 4) as well as on a quantitative cross-valida-

tion analysis. In the latter (not shown), we fitted regression

mixture models with different orders of polynomial to

randomly selected training sets of trajectories, and then

computed the log-probability of unseen ‘‘test‘‘ trajectories

under each model. This calculation was repeated C = 10

times over multiple training-test partitions of the data to

generate average out-of-sample log-probability (or log-

likelihood) scores (Smyth 2000; Smyth et al. 1999).

The log-p score for a set of trajectories is defined as the

log of Eq. (5) for a model with parameters estimated from a

different (training) data set. The higher (i.e., more positive)

the out-of-sample log-p score the better a model is in terms

of capturing the structure of the true probability density

generating the data (Bernardo 1994; Gneiting 2004).

4 Clustering of cyclones in GCM simulations

This section describes the results obtained from applying

the clustering methodology of Sect. 3b to the 15 extended

winter seasons of GCM cyclone trajectories; see Sect. 2b.

An important question is the selection of the number of

cyclone clusters. Figure 5 shows the cluster-specific mean

curves of each regression mixture model fitted to the cy-

clone data for K = 2, 3, 4, 5 and 6 clusters. Each graph

plots the cluster mean in relative latitude–longitude space,

using trajectories referred to the origin. Blender et al.

(1997) set the number of clusters to three based on various

meteorological considerations. In a similar manner, the

three-cluster model in Fig. 5 provides a large-scale

description of the North Atlantic cyclones. As the number

of clusters is increased, the individual clusters tend to split

into smaller refinements of the simpler cluster models, as

seen in Fig. 5 for K = 4–6.

Objective goodness-of-fit measures can also be defined

to help in determining the ‘‘best’’ number of clusters. We

used both the cross-validated (or out-of-sample) log-like-

lihood and predicted sum of squared errors (SSE) to

investigate whether the data set itself could objectively

identify the number of clusters. Figure 6 shows both scores

as a function of the number of clusters K. The SSE is

calculated by predicting each point in the last half of the

curves given the first half; the predictions were made

sequentially so that the last point was predicted given the

entire rest of the curve. Since the predicted curve in each

cluster is just the cluster mean (when cluster membership is

close to 1), this is close to the spread of each cluster. Both

the measures of fit behave in a near-monotonic manner as

K is increased, so that it is not possible to objectively

identify an optimal value using these scores alone. Still,

from the MSE plot in particular, beyond a range of about

K = 3 to K = 7 clusters, there are diminishing returns from

further increasing K.

Even though the purely objective measures above pro-

vide limited guidance in choosing K, we will demonstrate

in the rest of the paper that K = 3 provides a meaningful

‘‘coarse-grained’’ description of ETC behavior in both the

GCM and reanalysis data; in particular, this number of

clusters provides the clearest comparison between the two

data sets. Similar plots were also obtained using the

reanalysis data (see Sect. 5).

The three clusters are named ‘‘south-to-north’’ (S–N),

‘‘southwest-to-northeast’’ (SW–NE), and ‘‘west-to-east’’

(W–E); they are labeled according to their latitude–longi-

tude orientation on the page: V (‘‘vertical’’), D (‘‘diago-

nal’’), and H (‘‘horizontal’’) in Fig. 7, which shows a

sample of 100 trajectories assigned to each cluster. The

number of trajectories in each cluster is 220 for V, 215 for

D, and 179 for H, out of a total of 614 cyclone tracks

identified in the CCM3 simulation.

The characteristics of each cluster are given in Table 1.

The velocity is based on the difference between two suc-

cessive positions, 6 h apart, along a given trajectory; the

average acceleration is then the difference between two

successive velocities, while the curvature of an ETC is
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based on the instantaneous curvature values obtained from

the quadratic polynomial fitted at each point multiplied by

1000. Averages of these quantities are then computed over

each cluster. The noisiness of a cyclone track estimates the

degree of ‘‘erratic‘‘ departure from a smooth path, which is

calculated by the standard deviation of instantaneous cur-

vature along the trajectory (also multiplied by 1000).

The V-cluster consists of relatively short, south-to-north

oriented cyclones with large curvature and noisiness. The

cyclones in this cluster are fairly slow with many exhibit-

ing relatively stationary behavior. The D-cluster consists of

a large group of diagonally oriented cyclones that generally

cross the Atlantic travelling from south-west to north-east.

These cyclones have the largest average velocity (59 km/

h), intensity (–40 mb), duration (4.1 days), and the smallest

noisiness (7.8), as compared to those in the other two

clusters. The H-cluster consists of cyclones that move west

to east, across the western coastlines of Europe. These

cyclones are the least intense on average (–34 mb) overall,

but have the largest acceleration values (19 km/h2) and

curvature (15); a large part of the curvature can be attrib-

uted to erratic behavior, as reflected by their large noisiness

of 23.

Figure 8 shows histograms of average speed, duration

and maximum intensity, stratified by cluster. Cluster D

contains the fastest cyclones in the overall set, with several

having average speeds greater than 80 km/h. Cluster V

contains the largest number of short-duration tracks, lasting

3 days or less, and only 6% of the cyclones in cluster V last

longer than 5 days, as opposed to 11 and 18% for clusters H

and D, respectively.

5 Clustering of cyclones in reanalysis data

In this section we apply our new clustering methodology to

reanalyzed cyclone trajectories over the 44 extended winter
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(b)Fig. 3 Performance of the EM

algorithm as applied to synthetic

trajectories, generated by a

polynomial-regression mixture

model: a set of synthetic

trajectories presented to the

algorithm (the x-es, circles, and

squares denote the three

generating models, and the

different line-types show the

four different sample curves for

each); b initial random starting

curves (solid) for the three

clusters, with all data points

shown as circles; c cluster

locations (solid) after EM

convergence (iteration 4), as

well as the locations of the true

data-generating trajectories

(dotted)
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seasons. These were tracked in the same manner as the

GCM trajectories, using the same region of 30�N–80�N

and 80�W–30�E as in the GCM analysis; the resulting set

contains 1,915 ETC trajectories. This number is about 3

times larger than the number found in the GCM data,

consistent with the reanalysis data covering about 3 times

as many seasons (44 versus 15). Cyclones are active on

approximately 75% of the days in the 44-winter data set.

Summary histograms (not shown) of average velocity and

maximum intensity are quite similar to those in Fig. 2 for

the GCM data.

We again selected K = 3 clusters for analysis, for ease

of comparison with the GCM case. Plots of log-likelihood

and SSE scores (not shown) exhibit similar features to

those in Fig. 6 for the GCM case. There is thus no clear

evidence that the appropriate value of K should be any

different, while selecting a common value of K = 3 in

both analyses allows for a straightforward comparison of

ETC behavior in the two datasets. This choice was found

in Sect. 6 to yield clusters related to distinct physical

phenomena, including the North Atlantic Oscillation

(NAO).
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Fig. 5 GCM cyclone cluster models when K = 2, 3, 4, 5, and 6
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The trajectories were first referred to their initial posi-

tions, as for the GCM data, but not otherwise normalized.

Figure 9 shows the tracks from each of the three clusters.

As in the GCM data set (Fig. 7), the clusters show

predominantly vertical (V), diagonal (D), and horizontal

(H) track orientations. The three reanalysis clusters are

almost equally populated, with 680, 604 and 631 trajecto-

ries, respectively. The V-cluster has meridional, recurving

tracks, as in CCM3, but is much more heavily concentrated

over the western North Atlantic than in the GCM; it con-

tains the largest number of members. The reanalysis D-

cluster also forms a much narrower diagonal, SW–NE

swath of tracks across the Atlantic. Indeed, the GCM’s

cyclones are generally too zonal in their spatial distribu-

tion, extending excessively into Europe. The H-cluster has

predominantly eastward oriented tracks but its track dis-

tribution is more erratic than in the GCM.

Compared to the three clusters of Blender et al. (1997,

Fig. 3 there), who used a higher-resolution data set, based

on operational analyses of the European Centre for Med-

ium-Range Weather Forecasts (ECMWF) for 1990–1994,

our results do not include the ‘‘stationary’’ cyclones over

Greenland and the Mediterranean. Our D-cluster can be

equated with the ‘‘northeastward’’ cluster of these authors,

and our H-cluster with their ‘‘zonal’’ one. The largest

difference between the results of Blender and colleagues

and those reported here is our heavily populated V-cluster,

with most trajectories close to the coastline of North

America.

Figure 10 shows histograms of average speed, duration

and maximum intensity for the reanalysis trajectories,

stratified by cluster, with summary statistics given in

Table 2; these display items are analogous to Fig. 8 and

Table 1 for the GCM trajectories. The overall statistical

results for the reanalysis are generally quite consistent with

the GCM case (Table 2 vs. Table 1), while some discrep-

ancies appear in the detailed distribution of the ETC tracks

(Fig. 10 vs. Fig. 8). The D-cluster again contains markedly

faster moving cyclones (mean velocity of 63 km/h), with

the H-cluster containing the slowest (mean of 38 km/h).

The durations are more similarly distributed between the

clusters than in the GCM. The reanalysis H-cluster contains

less intense cyclones, qualitatively similar to the GCM.

The reanalysis accelerations are slightly larger in all three

cases, and lifetimes are slightly shorter and differ little

between the reanalysis clusters (3.5–3.6 days). In addition,

the reanalysis data set shows relatively fewer D-cluster

cyclones, but relatively more D and H tracks of short

duration.

The largest differences between reanalysis and GCM-

simulated cyclones are in the curvature and smoothness of

the tracks. The reanalysis cyclones exhibit much smaller

curvature and noisiness, across all three clusters. Our re-

sults thus indicate that the data assimilation scheme used in

the NCEP–NCAR reanalysis produces fairly smooth ETC

trajectories. As in the GCM case, the D-cluster cyclones in

the reanalysis tend to have tracks that are straighter and less

noisy.

6 Meteorological composites

Storm-track activity associated with ETCs is typically

examined in terms of Eulerian eddy statistics (e.g.,

Blackmon et al. 1977; Hurrell et al. 2003), so that it is of

interest to compare our Lagrangian track-based clusters

with composites of sub-weekly variance for each cluster. A

simple compositing approach follows naturally from the

a)

b)

Fig. 6 Objective test scores of model fit as a function of K for GCM

cyclone cluster models: a cross-validated log-likelihood; and b cross-

validated sum of squared errors (SSE). See text for details
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discrete nature of the clustering, which can be contrasted

with the regression approach of Mailier et al. (2006). To

construct the composites, a day is assigned to a cluster if a

cyclone from that cluster is active on that day. If no cy-

clones are active, the day is assigned to a fourth, ‘‘quies-

cent’’ regime. For days with overlap, the regime

corresponding to the cluster with the largest number of

active cyclones on that day is chosen. In the case of a tie

between two or more active clusters, the regime which was

most recently selected corresponding to one of the ‘‘tied’’

clusters is chosen; this criterion can be thought of as a type

of ‘‘inertial bias’’. In the GCM (reanalysis) data, overlap

occurs on 15.5% (18.4%) of days.

Composites of anomalous storm-track activity are plot-

ted in Fig. 12 for each cluster, as anomalies in the high-

pass filtered MSLP variance; these anomalies are defined

with respect to the climatological averages of high-pass

variance displayed in Fig. 11. A 7-point high-pass filter

with a 6.4-day cut-off was used to isolate the ETC vari-

ability (Trenberth 1986). The climatological storm tracks

exhibit broadly similar geographical distributions in the

reanalysis and GCM MSLP fields (Figs. 11a, b), with

maxima near Newfoundland and Iceland.

The composites of anomalous variance tend to be con-

sistent with the geographical track distributions of the

respective clusters in Figs. 7 and 9. They show some broad

similarities between the two data sets, but with some

important differences. In general, the reanalysis composites

are much more spatially coherent, which is consistent with

the larger degree of geographical localization seen in the

corresponding trajectory clusters. In both cases, the

‘‘Quiescent’’ cluster, which comprises days when no cy-

clones are active, shows decreased variance over much of

the North Atlantic. The H-cluster also shows a decreased

variance over most of the North Atlantic, with slight

enhancement of variance off the coasts of western Europe.

The V and D clusters differ the most between reanalysis

and GCM, with the former showing very marked increases

in cyclone activity in the regions expected from Fig. 9. The

GCM’s V and D clusters show enhanced variance near

60�N, consistent with Fig. 7. In summary, while the clus-

tering is based soley on trajectory shape, the resulting

clusters exhibit distictively differing geographical distri-

butions of high-pass MSLP variance, and this is especially

clear in the reanalysis data.

One of the motivations for clustering cyclone trajecto-

ries is to relate differing cyclone types to the larger-scale

background flow. To this end, we have low-pass filtered

700-mb geopotential heights in the reanalysis data, with a

10-day cut-off, and composited the resulting fields for each

cluster. The low frequencies are selected so as to focus on

the component of the circulation that is not directly asso-

ciated with the cyclones themselves. Maps of the four

composites, based on departures from the grand mean of

the 44 winters, are plotted in Fig. 13. All four composites
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Fig. 7 Clusters derived from

GCM data: (V) south-to-north,

(D) southwest-to-northeast, and

(H) west-to-east oriented tracks.

For each cluster only 100

random tracks are shown for

clarity

Table 1 Cluster-wide average measures for various GCM cyclone

statistics

Cluster-specific statistics V D H

l r l r l r

Maximum intensity (mb) –39.9 8.9 –40.0 8.2 –33.8 7.4

Average velocity (km/h) 42.5 11.5 59.4 13.8 42.8 15.9

Average acceleration (km/

h2)

15.4 5.7 16.5 5.6 18.8 7.5

Lifetime (days) 3.6 0.10 4.1 1.2 3.8 1.2

Curvature 12.1 22.0 4.8 5.2 15.2 17.8

Noisiness 19.1 48.4 7.8 13.1 23.5 35.8

Both means (l) and standard deviations (r) are given for each cluster
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are characterized by geopotential height anomalies that

closely mirror the distributions of ETC tracks and sub-

weekly MSLP variance. The quiescent composite shows a

ridge over the climatological position of the storm track,

consistent with reduced cyclone activity, and a weak trough

west of Greenland. The V-cluster is accompanied by a

dipole, with a trough centered over Nova Scotia, and a

ridge centered over Iceland. The trough coincides with

anomalously high ETC activity.

The D-cluster and H-cluster are accompanied by oppo-

site phases of the NAO (e.g., Hurrell et al. 2003), with

north–south dipoles in geopotential height over the North

Atlantic. The D-cluster corresponds to the positive phase of

the NAO, with a trough over Greenland and a ridge to the
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Fig. 8 Histograms stratified by

GCM cluster: a average

velocity, b cyclone duration,

and c maximum intensity

(MSLP). The histograms are

plotted as line graphs for clarity
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Fig. 9 Clusters derived from reanalysis data: (V) south-to-north, (D) southwest-to-northeast, and (H) west-to-east. For each cluster 100 random

tracks are shown for clarity
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south. In this phase, the NAO anomaly amplifies the cli-

matological pressure gradients, leading to an intensified

storm track over the North Atlantic and steering cyclones

to the northeast. In the NAO’s negative phase, the clima-

tological gradients are weakened, so that cyclones tend to

be weaker and track more zonally. Our results are consis-

tent with the NAO index regressed onto root-mean-square

transient geopotential height in the 2–8-day band (Hurrell

et al. 2003, Fig. 15), which closely resembles our MSLP

sub-weekly variance composites in Figs. 12g, h.

The most-populated cluster in both the reanalysis and the

GCM data is the V-cluster; it is associated with a large-scale

wave pattern that is less familiar from studies of low-fre-

quency variability than the NAO. This pattern is indeed

more transitory than those associated with the D and H

clusters, with a larger number of run-lengths shorter than 5

days (not shown). It shares certain features with the Reverse

W3 (RW3) wave train of Mo and Ghil (1988), the eastern

Atlantic ridge (AR) of Vautard (1990), and ATL regime A2

of Kimoto and Ghil (1993). The differences consist mainly

in a zonal shift of the main features and might be due to

differences in the domain of analysis and data set, even

more so than to the difference in the compositing. Vautard

(1990) notes, in fact, that the storm track is both shortened

and displaced northward for his AR regime.
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Fig. 10 Histograms of reanalysis trajectories stratified by cluster: a average velocity, b cyclone duration, and c maximum intensity (MSLP). The

histograms are plotted as line graphs for clarity

Table 2 Cluster-wide average measures for various reanalysis cy-

clone statistics

Reanalysis cluster-specific

statistics

V D H

l r l r l r

Maximum intensity (mb) –39.1 8.5 –39.2 8.1 –35.4 7.8

Average velocity (km/h) 43.9 10.5 62.6 12.9 37.8 12.76

Average acceleration (km/

h2)

18.0 7.1 19.6 6.9 19.5 8.0

Lifetime (days) 3.5 0.9 3.6 1.1 3.5 1.2

Curvature 2.9 3.1 1.8 1.9 6.2 5.5

Noisiness 4.6 6.9 3.2 3.8 8.6 9.6

Both means (l) and standard deviations (r) are given for each cluster

column
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7 Summary and concluding remarks

Curve-based mixture models were used to perform proba-

bilistic clustering of wintertime North Atlantic extratropi-

cal cyclone (ETC) trajectories in latitude–longitude space.

In contrast to previous clustering methods, trajectories have

varying durations and the clustering is performed directly

in ‘‘trajectory-space’’ rather than in a fixed-dimensional

vector space. Quadratic polynomials were found to provide

the best fits among the regression models we considered

(Fig. 4).

An identification and tracking procedure using mean sea

level pressure (MSLP) fields was developed and applied

both to an NCAR CCM3 simulation and the NCEP–NCAR

reanalysis, over the North Atlantic. The resulting cyclone

trajectories (e.g., Fig. 1) were used as input to the clus-

tering algorithm. The objective performance measures of

log-likelihood and the sum of squared errors (Fig. 6) sug-

gested that K = 3 is a reasonable choice for the number of

clusters, in both the GCM data and the reanalysis, resulting

in both cases in groups of tracks oriented predominantly

south-to-north (‘‘V’’), southwest-to-northeast (‘‘D’’), and

west-to-east (‘‘H’’), respectively (Figs. 7, 9). These three

categories of tracks were found to share several attributes

in both the GCM and reanalysis data (Figs. 8, 10; Tables 1

and 2). The V-cluster consists of relatively short, slow-

moving cyclones with S–N tracks, and intermediate cur-

vature and noisiness. The D-cluster cyclones have the

largest average velocity, intensity, and duration; their

tracks are the straightest and smoothest of all cyclones. The

H-cluster cyclones are relatively slow-moving and are the

least intense on average, but have relatively large accel-

eration values, and the largest values of curvature and

noisiness in both data sets.

The main distinction between the GCM and reanalysis

cyclones was found to be in their geographic distribution,

with the reanalysis cyclones being much more geographi-

cally localized: the V-cluster cyclones over the eastern

seaboard of North America, the D-cyclones in a narrower

cross-Atlantic swath, and the H-cluster more confined to

the Atlantic and northwest Europe (Figs. 7 and 9). Com-

posite maps of sub-weekly ‘‘storm track’’ MSLP variance

anomalies were found to be quite consistent with the track

distributions, again with the maps being much more spa-

tially coherent in the reanalysis case (Fig. 12).

The clustering was performed solely by trajectory shape.

Additional experiments (not shown) indicate that including

initial position in the characterization of each ETC yields

clusters with clearly defined geographical centers of grav-

ity, but that the associated cluster composites of geopo-

tential height are less amenable to physical interpretation.

Using K-mean analysis of 3-day-long tracks derived

from five winters of higher-resolution ECMWF analysis,

Blender et al. (1997) also obtained a total of three clusters.

Of these, a cluster of near-stationary cyclones, concen-

trated over the Mediterranean and near Greenland, is lar-

gely absent from our analysis; these cyclones are probably

missed in our lower-resolution data set. Of these authors’

two other clusters, the north-eastward one resembles our D-

cluster, and their zonal cluster is quite similar to our H-

cluster. Our heavily populated V-cluster, with most tra-

jectories close to the coastline of North America in the

reanalysis data, differs from the results of Blender and

colleagues.

The D and H clusters in the reanalysis were found to be

closely related to the opposite phases of the well-known

NAO teleconnection pattern (Fig. 13c, d). The positive

phase of the NAO is associated with diagonally oriented

tracks with cyclones that are typically faster, more intense,

of longer duration, and with the straightest and smoothest

tracks. This contrasts with the horizontally oriented tracks

that characterize the NAO’s negative phase, which are

typically weaker, moving more slowly, and fairly erratic.

This association with the phases of the NAO arises out of

our clustering that is based purely on trajectory shape. We

conclude that this statistical association does have a

physical explanation in terms of the dynamical features of

the opposite NAO phases.

The most highly populated V-cluster was found to be

associated in the reanalysis with a trough over the western

and a ridge over the eastern North Atlantic (Fig. 13b). This

large-scale feature has been identified by various names in

different studies: RW3 in Mo and Ghil (1988), AR in

Vautard (1990), and A2 in Kimoto and Ghil (1993). The
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the a GCM and b reanalysis data sets. Contour interval: 5 hPa2
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ridge blocks the eastward propagation of the ETCs, while

the trough favors their northward evolution. To summarize,

the ease of comparison between GCM clusters and those in

the reanalysis, as well as the physical interpretation of the

latter, support the choice of three clusters as a good coarse-

grained description of ETC behavior over the North

Atlantic. We note, furthermore, that these three clusters

also agree with three of the four regimes obtained by Yiou

and Nogaj GRL (2004) in classifying extremes of precip-

itation and temperature over a similar area.

Having demonstrated that, in reanalysis data, the cy-

clone-track clusters are associated with well-defined

anomalies in sub-weekly storm track variance and well-

known low-frequency teleconnection patterns, we argue

that further analysis of ETC track behavior from the

Lagrangian perspective used in this paper could enable a

more fundamental interpretation of these features. Unlike

in the case of the reanalysis data, meteorological com-

posites constructed from the 15-winter GCM simulation

did not provide conclusive evidence for associations be-

tween ETC track behavior and large-scale circulation pat-

terns in the simulation. The methodology clearly highlights

the limitations of the GCM, while the GCM is shown

nonetheless to capture cyclone tracks of quite realistic

orientation, as well as several associated features of cy-

clone intensity, speed and lifetimes. Lagrangian diagnos-
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Fig. 12 Composites of high-pass filtered MSLP variance anomalies

over the days assigned to each cluster, for the GCM (a–d) and

reanalysis (e–h) data sets. In each case the respective climatological

time average of variance has been subtracted. Positive contours are

solid and negative ones are dashed; contour interval: 1 hPa2
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tics could thus provide important tools in assessing GCM

performance for studies of climate variability and change.

The method has, therefore, also been applied to clustering

of tropical cyclone tracks over the western tropical North

Pacific (Camargo et al. (2007a, b)). The software devel-

oped and used in this study is freely available to other

investigators from http://www.datalab.uci.edu/resources/

CCT. We hope that the methodology will prove useful in

further studies of ETC behavior in models and observa-

tions.
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8 Appendix A: Expectation maximization algorithm

The EM algorithm is an iterative maximum likelihood

(ML) procedure that provides a general and efficient

framework for parameter estimation. At a base level, EM is

an approximate root-finding procedure used to seek the

root of the likelihood equation by iteratively searching for a

set of parameters that maximize the probability of the

observed data. EM is primarily used for finding ML

parameter estimates in missing- or hidden-data problems.

Parameter estimation in hidden-data problems is difficult

because the likelihood equation takes on a complex form,

often involving an integral or a sum over the hidden data

itself.

For example, Eq. (5) in Sect. 3.3 gives the likelihood of

u given both Z and T (repeated here):
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Fig. 13 Composites of low-

pass filtered 700-mb

geopotential height anomalies

for the days assigned into each

reanalysis cluster. In each case

the 44-winter time average has

been subtracted. The shaded

regions are significant at the

99% level according to a two-

sided Student t-test with 120

degrees of freedom; this number

is smaller than the number of

days in each composite divided

by 10. Contour interval: 5 m
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Lð/jZ;TÞ ¼ pðZjT;/Þ ¼
Yn

i

XK

k

ak fkðzijTibk;RkÞ: ðA1Þ

Notice that the hidden data in this case are the unknown

cluster memberships which must be summed-out of the

likelihood to arrive at L(u|Z,T). It is understood in hid-

den-data problems that this operation cannot be easily

carried out. The EM algorithm is an iterative two-step

procedure used to circumvent this integration (or sum) by

(1) indirectly estimating values for the unobserved data,

and (2) finding the ML parameter estimates that corre-

spond to the now completely observed data. The new ML

estimates from step (2) are then used to re-estimate the

hidden data in step (1), and these iterations are continued

until some stopping criterion is reached (typically this

involves stopping when the change in log-likelihood falls

below a particular threshold, and thus the iterations have

stabilized).

In the first step, the E-step, we estimate the hidden

cluster memberships by forming the ratio of the likelihood

of trajectory i under cluster k, to the sum-total likelihood of

trajectory i under all clusters:

wik ¼
akfkðzijTibk;RkÞPK

j ajfjðzijTibj;RjÞ
: ðA2Þ

These wik give the probabilities that the ith trajectory was

generated from cluster k. They represent a posterior

expectation for the value of the actual binary cluster

memberships (i.e., the ith trajectory was either generated

by the kth cluster or it was not).

In the second step, the M-step, the expected cluster

memberships from the E-step are used to form the

weighted log-likelihood function:

Lð/jZ;TÞ ¼
Xn

i

XK

k

wik log ak fkðzijTibk;RkÞ: ðA3Þ

The membership probabilities weight the contribution

that the kth density component adds to the overall like-

lihood. In the case where the wik are binary, and thus

cluster membership is perfectly known, this reduces to the

usual fully-observed log-likelihood. This weighted log-

likelihood is then maximized with respect to the param-

eter set u.

For the sake of completeness, we give each of the re-

estimation equations below. Let wik ¼ wikIni
; where Ini

is

an ni-vector of ones, and let Wk = diag(w¢1k, ..., w¢nk) be an

N · N diagonal matrix. Then, in the M-step we use Wk to

calculate the mixture parameters

b̂k ¼ ðT0WkTÞ�1T0WkZ; ðA4Þ

R̂k ¼
ðZ� Tb̂kÞ0WkðZ� Tb̂kÞPn

i wik
; ðA5Þ

and the mixture weights

âk ¼
1

n

Xn

i

wik ðA6Þ

for k = 1,...,K. These update equations are equivalent to

the well-known weighted least-squares solution in regres-

sion (Draper and Smith 1981). The diagonal elements of

Wk represent the weights to be applied to Z and T during

the weighted regression.

Because most of the difficult work is carried out in

estimating the cluster memberships, the maximization

carried out in the M-step is straightforward. This is a

common attribute of the EM algorithm. Dempster et al.

(1977b) showed that under fairly general conditions, the

likelihood will never decrease during the E- and M-step

iterations. Due to the presence of local maxima on the

likelihood surface, the solution is not guaranteed to cor-

respond to a global maximum. However, we can increase

the chances of finding the global maximum by running the

EM algorithm multiple times from different starting points

in parameter space and selecting the parameters that result

in the highest overall likelihood.
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