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Summary. — A general sufficient condition for nonlinear stability of steady and
unsteady flows in hydrodynamics and magnetohydrodynamies is derived. It leads to
strong limitations in the Reynolds and magnetic Reynolds numbers. It is applied to
the stability of generalized time-dependent planar Couette flows in magneto-
hydrodynamics. Reynolds and magnetic Reynolds numbers have to be typically less
than 272 for stability.

PACS 47.10 — General theory.
PACS 47.20 — Hydrodynamic stability.
PACS 47.65 — Magnetohydrodynamics and electrohydrodynamics.

For incompressible fluids and in particular in hydrodynamics (HD) and
magnetohydrodynamics (MHD) the nonlinear terms in the equation of motion are of
the quasi-linear type and dissipation is present in the form of material viscosity or
resistivity. More precisely if % is a many-component vector field in an L? function
space representing the frame of the fluid motion, » will obey an equation of the
form ‘

® uw=Awu + Du,

where A(u) is a nonlinear operator depending linearly upon % and D is a linear
negative definite operator if « =0 at the boundary. A simple example is

@ ’ - Awu=u-Vu, Du=Vu.
We assume further that
B (u, Aw)w) =0,

(*) The authors of this paper have agreed to not receive the proofs for correction.
(**) Partially supported by DAAD and CAPES.
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where the scalar product is given by
4) @b = [abds,

the integration being done over the volume occupied by the fluid.
To study the nonlinear stability we split « in

®) U= U+ U
where u, is a finite perturbation zero at the boundary and u, satisfies
(6) o = A(ug) uo + D -

The equation for u, is then

) o = A(uy ) uy + Ly,
with |
® Ly = A(ug) ty + Ay ) g + Dy -

L is a linear operator on u; which, in cases like (2), will remain negative definite if
A(uy) and u, are small enough. Taking the scalar product of u; with eq. (7) we
obtain

©) %(@1, w) = (u, Loy

by virtue of (3). Since all considered quantities are real we have
(10) (ﬂl ’ L%l) = (%l ’ Ls Uy ) ’

where L, is the symmetric part of L. Nonlinear stability is then warranted by
Lyapunov methods if

(11) (ﬂl, Ls%l) < 07

for all u, satisfying (u;, ;) finite and u; = 0 at the boundary. Expression (11) is a
sufficient condition for nonlinear stability. The stability problem is now reduced to
the minimization of the Hermitian form (u;, Lyu;). This can always be done
ultimately for any flow, numerically using standard Hermitian eigenvalues tech-

niques.
This procedure is known (see[1-4]) for steady HD and MHD flows satisfying
12 Alwg) o + Dug =0,

which is equivalent to (6) for time-dependent flows. Though we did not find it in this
general form in the literature, it is likely that it has also been used (see [56]) for
unsteady HD flows. We are not aware, however, of the derivation and application of
(11) for MHD unsteady flows. The MHD equations are

Jv

(13) 5;:—=—U-Vv+(VXB)XB—Vp+vV20,

(14) V-v=0,
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oB

(15) —a—t—=V><(v X B) + nV’B,
(16) V-B=0.
If u is defined as
v
17 =
amn u (B),

then A(u) and D are the matrix operators

18) Aw) = —@-V) (VXB)X
(18) (w) = B-V) @V
(19) D= w2 0 )’

0 V2

with A(u) verifying condition (3), for normal component of % zero at the boundary,
and D being negative definite if u is zero at the boundary.

Let us illustrate the procedure by studying the nonlinear stability of a
time-dependent MHD flow generalizing the time-dependent planar Couette flow. It
consists of a fluid bounded by two horizontal plates, the first plate at z = 0 and the
second at z = h, with velocity parallel to the magnetic field and both depending only
on one coordinate (z) and the time (¢):

20) v=ov(1te,,
(21) B =Bz t)e,,
satisfying the equations
v Fv
22 — —y— =
22) el
9B B
2 _ g8 -
(23) 5 "1oe =0
@4 P 3B _y,
% &

For simplicity special solutions of these equations can be taken as

(25) exp [~ atlsin% 2z, ,

sm\/7h
 (26) o 3 Sm\[(h exp[— at]sm\/%zéy,

2
@7 p= - %f(t),
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with the following boundary conditions:

(28) 20, 1) = B, t) =0,
@9 v, t) = v, exp[—atl,
(30) B(h, t) = B, exp [ —at]

and f(¢) fixed by the boundary conditions on p. In the limit « — 0 this system reduces
to a stationary MHD flow. For B, — 0 we have the time-dependent Couette flow and
when both o and By, — 0 we obtain the stationary Couette flow. After calculating L
(see eq. (8)) for this case, we obtain its symmetric part L,

(272 0 0 0 2 0 ]
o
0 2V 0 0 -po 0
oy
2 o] 3B
a1 4LS=% 0 0 2V 0 B2 - £ N
0 0 0 2,V 0 0
9 9 9 2
By, By, By 0 2,V 0
L o 0 0 0 0 2,V
0 0 0o 0 0 0
_ v oB
0 0 20 0 2
0o -2 o o 2B
L1 oz oz
2o o 0 0 0 0
_9B v
0 0 B0 o -
3B w
SB o o &
kO oz oz J

In order toi examine stability, we célculate I given by

32) I=(w,Lyuy) = fdr(v(leVzle + vy, V2oy, + v, V2oy,) +

+7(By, V2By, + By, V*By, + B, V*By,) +

+( 2 (oo, + By B+ L 0, B, - vlzBly)) .

We suppose for convenience that vy, By >0, 0 < & < \/v/ax/2 and 0 < h < \/n/ax/2,
which guarantees that (3v/3z) > 0 and (3B/3z) > 0. To satisfy condition (11) for all u,
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we make a first estimate of / using

@3) (2 oo < ()5 08+ ok < (1), G0+ o),

where (3v/3z2),, is the maximum of (3v/3z) with respect to z and ¢, which occurs at ¢ =
=0, z = 0. Similar estimates can be done for the other cross terms so that

(34) I< Im = J dr (V ('le VZ V1 + vly V2 vly + V1, V2 ,vlz) +

+77(B1w VzBlw + Bly VzBly + Blz VzBlz) + Cm (vlzy + 7)122 + Blzy + BIQz )) ’

with
oe(2], (2.
32 | 2 /m
) v\ _ Yo o
%0 (&) - —

@37 (%f—)m=—39-—\/§.

. 1 h
sin/
Now we look for the extremum of I, subject to the condition (uy, ;)=
= finite.
(38) sl =8, — My, uy)) =0,

where ) is the Lagrange multiplier. This leads to the following system of
equations:

(39) Vo, — 2y, =0,
1 2
40) V2v1y+(ECm— 7)vly=0,
2 1 _ A _
(41) \% vlz""(ECm V)vlz—()’
2 A _
(42) \% Blm - EBlac = 0’
’ ’ 1 A
(43) v231y+(2—ncm— 5)51y=0,
(44) V2B, + (icm - A)Blz: 0.
27 7




738 H. TASSO and S. J. CAMARGO

Fourier analysing in 2 and y

(45) Uy = %Ak () explik-r],
where

(46) k=kye, +kye,,
47 r =uxe, + ye,

and calling each component of the vector A, (z) as

the system of eqs. (38)-(43) can be reduced to

(49) d;:il (2 +k2)a, =0,
(50) d;:f + (%cm -2 —kz)A2=0,
51) dj:f ; (%cm A —kz)Ag—O,
(52) d;;“ - (% +k2)A4_ 0,
(53) d;:f + (%Cm— : —k2)A5= 0,
(54) d;‘t“ + (%Cm— 2 —kz)A6=0.

Since the boundary conditions for the perturbations are

(55) vl (xy ?/, 0’ t) = Bl (90, ?/9 0, t) = 09

(56) vl (x, ?/, h’ t) = Bl (x, ?/, h/y t) = 0’

the nontrivial solutions of this system which satisfy the boundary conditions (54) are
sine solutions. To satisfy also the other boundary conditions (55) we obtain some
restrictions on A. When the maximum value of 2 is negative, the system is stable, this

can occur in two ways.

For v <y the system is stable if

B7) Re \/gh +S \/%h <2r?,
sin\/%'h sin\/%h
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where
59) Re = 2t
h
_ 0
(59) S = vl

For » < v the system is stable if

fh

(60) Re,, <272,
s1nf h sin f h

where
61) Re, = 21

’ N

Byh
62) Sw=——
N

In the limit « — 0 (steady MHD flow) we obtain
(63) Re+S<2r:2, for v<7),
and
(64) Re,, + 8,, < 2x? 5 for n <v.

For the time-dependent Couette flow (B, — 0), we have

fh
smfh

and for the stationary Couette flow («, By— 0)

(65)

(66) ~Re< 272 .

It should be mentioned that for the stationary Couette flow the last condition is also
obtained without introducing the estimate I < I,,.

The critical value 2x2 = 19.7 for the Reynolds number calls for some comments as
indirectly suggested by one of the referees. The extremalization of I for the Couette
flow in HD has been done in the literature by constraining the variations to be
divergence-free (see, e.g.[6]). As a consequence of that, the critical value of 20.7 is
found. This gain of 5% in the critical value is paid by a very sophisticated derivation

~which would not be tractable in the case of the generalized unsteady MHD Couette
flow considered here. This justifies our procedure.

The sufficient condition (11) is general and robust, but also too stringent. It is
fulfilled in HD and MHD only if the Reynolds and magnetic Reynolds numbers are
small enough. Since viscosity and resistivity especially for hot plasmas are small,
condition (11) would allow only a very low level of electrical currents and flows.
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Linear stability analysis and experimental evidence, however, seem to show that, in
some cases, values for currents and flows far beyond those allowed by condition (11)
occur without any sign of gross instabilities. It will be, however, much more difficult
to do the nonlinear stability theory for such situations and, in contrast with the
present method, it is likely that it may have to be done differently for each case.
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