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ABSTRACT

A Poisson regression between the observed climatology of tropical cyclogenesis (TCG) and large-scale

climate variables is used to construct a TCG index. The regression methodology is objective and provides

a framework for the selection of the climate variables in the index. Broadly following earlier work, four

climate variables appear in the index: low-level absolute vorticity, relative humidity, relative sea surface

temperature (SST), and vertical shear. Several variants in the choice of predictors are explored, including

relative SST versus potential intensity and satellite-based column-integrated relative humidity versus re-

analysis relative humidity at a single level; these choices lead to modest differences in the performance of the

index. The feature of the new index that leads to the greatest improvement is a functional dependence on low-

level absolute vorticity that causes the index response to absolute vorticity to saturate when absolute vorticity

exceeds a threshold. This feature reduces some biases of the index and improves the fidelity of its spatial

distribution. Physically, this result suggests that once low-level environmental vorticity reaches a sufficiently

large value, other factors become rate limiting so that further increases in vorticity (at least on a monthly mean

basis) do not increase the probability of genesis.

Although the index is fit to climatological data, it reproduces some aspects of interannual variability when

applied to interannually varying data. Overall, the new index compares positively to the genesis potential

index (GPI), whose derivation, computation, and analysis is more complex in part because of its dependence

on potential intensity.

1. Introduction

We are interested in the relationship between the

statistical distribution of tropical cyclone genesis (TCG)

and the large-scale climate. If the climate changes, either

because of natural or anthropogenic causes, will there be

more or fewer tropical cyclones in a given basin? Will

their spatial distribution within the basin change? If the

distribution of tropical cyclone genesis does change,

what climate factors are most important in producing

that change and why?

At present, we lack a solid theoretical foundation with

which to answer these questions from first principles.

Numerical models are becoming able to provide plau-

sible answers as available computational power now

permits the use of global high-resolution models that

simulate both the global climate and tropical cyclones

with some fidelity (e.g., Oouchi et al. 2006; Bengtsson

et al. 2007; Gualdi et al. 2008; Zhao et al. 2009). These

models are expensive, however, and are subject to all

the normal limitations of numerical models: they may be

biased, and simulations with them do not automatically
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provide understanding. Empirical study of the problem

using the observational record remains relevant.

Gray (1979) first developed an empirical ‘‘index’’

for tropical cyclogenesis. Gray’s index, and those that

have been developed later, are functions of a set of

predictors—physical fields to which genesis is believed

to be sensitive, usually computed from large-scale data

and often averaged over a month or some comparable

duration—weighted in such a way that larger values of

the index are indicative of a greater probability of gen-

esis. Later investigators, following the same basic ap-

proach, have modified Gray’s index by changing either

the predictors or the functional dependence of the index

on them (e.g., DeMaria et al. 2001; Royer et al. 1998;

Emanuel and Nolan 2004; Camargo et al. 2007a; Sall et al.

2006; Bye and Keay 2008; Kotal et al. 2009; Murakami

and Wang 2010).

The present study follows the same general approach,

with some incremental improvements. We aim to im-

prove both the performance of the index and the degree

to which its derivation can be understood and repro-

duced. To motivate this work, we describe some limi-

tations of the Emanuel and Nolan genesis potential

index (GPI; as described in more detail by Camargo

et al. 2007a), which we take to be more or less repre-

sentative of the state-of-the-art. The GPI has been ap-

plied widely and successfully to study variations of

genesis frequency on various time scales in reanalysis

and models (e.g., Camargo et al. 2007a,b; Vecchi and

Soden 2007b; Nolan et al. 2007; Camargo et al. 2009;

Lyon and Camargo 2009; Yokoi et al. 2009; Yokoi and

Takayuba 2009). However, the GPI has the following

limitations:

(i) Its derivation was partly subjective and thus cannot

be easily reproduced.

(ii) One of its thermodynamical predictors, potential

intensity (PI), is a highly derived quantity whose

computation requires use of a sophisticated algo-

rithm. It is not clear whether this degree of technical

difficulty and theoretical complexity is necessary, or

whether equal performance can be obtained with a

simpler predictor.

(iii) The choice of relative humidity (RH) at a single

level as the other thermodynamic predictor, though

reasonable, is not precisely justified and in practice

generally requires use of assimilated humidity

fields that are not strongly constrained by obser-

vations.

(iv) The GPI itself compared to the observed genesis

climatology has some systematic biases. For ex-

ample, in the seasons when no tropical cyclones are

observed, it continues to predict a nonnegligible

probability of genesis, and in some regions of par-

ticular interest, such as the tropical Atlantic Main

Development Region, the GPI underpredicts the

rate of genesis during the peak season.

Of these limitations, the first is perhaps the most sig-

nificant. The importance of the problem warrants de-

velopment of an index by a process that is clear, objective,

and reproducible. The procedure should make apparent

the consequences of the choices made, so that the pro-

cedure can be easily varied and adapted because of the

requirements of some particular application, to make use

of new observations of the predictors (or different pre-

dictors) or for other unforeseen reasons.

The second and third limitations are more minor but

still worthy of consideration. PI was chosen by Emanuel

and Nolan (2004) to replace the thermodynamic param-

eter used by Gray. Gray’s thermodynamic parameter is

proportional to the difference between upper-ocean heat

content [sometimes replaced in later work by sea surface

temperature (SST)] and a fixed-threshold value, below

which genesis is assumed impossible (Gray 1979). While

deep convection does seem to be very roughly param-

eterizable as depending on SST above some threshold

(e.g., Gadgil et al. 1984; Graham and Barnett 1987;

Fu et al. 1990; Zhang 1993; Fu et al. 1994; Back and

Bretherton 2009), our current understanding is that this

threshold should not be fixed but should vary with the

mean climate (whether because of anthropogenic or

natural causes) because stability arguments show that the

threshold is a function of tropical tropospheric temper-

ature (e.g., Sobel et al. 2002; Chiang and Sobel 2002; Su

et al. 2003). In particular, Yoshimura et al. (2006) and

Knutson et al. (2008) show that the SST threshold for

tropical cyclone formation rises in global warming simu-

lations with high-resolution models. PI depends on the

mean climate in a way that may be plausibly assumed to

capture this dependence, and this is an improvement on

Gray’s SST predictor for studying the influence of large-

scale climate variability and change on genesis frequency.

However, the computation of PI involves a complex

algorithm, which increases the difficulty of computing

the index and understanding its behavior. Moreover, the

use of PI does not add a great deal of theoretical justifi-

cation since PI is a theoretical prediction of the maximum

tropical cyclone intensity rather than the likelihood of

genesis (at which point, by definition, tropical cyclone

intensity is at a minimum). It is not clear that simpler

predictors could not provide comparable performance. In

particular, relative SST(T)—the difference between the

local SST and the mean tropical SST—has been shown to

be highly correlated with PI (Vecchi and Soden 2007a;

Swanson 2008) as can be explained by straightforward
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physical arguments (Ramsay and Sobel 2011). Relative

SST is similar to Gray’s original SST parameter but is a

linear function of SST (no Heaviside function) and allows

for change in the mean climate by using tropical mean

SST in place of a fixed threshold value.

There is little doubt that free-tropospheric relative

humidity is a factor in tropical cyclogenesis (e.g., Gray

1979; Emanuel 1989; Cheung 2004), but the comparative

influence of different parts of the vertical profile of rel-

ative humidity is not precisely known. Therefore, the

choice of level or levels to use as predictors in an index is

somewhat arbitrary. Since microwave satellite retrievals

of column-integrated water vapor are available, it seems

reasonable to consider this quantity as a predictor in

place of reanalysis products. Given the possible biases in

either satellite retrievals or reanalysis products, it should

be noted that the regression can implicitly correct sys-

tematic errors in its inputs.

In this study, we address the first three limitations and

examine the extent to which choices we make in the

development of the index influence its performance (the

fourth). It turns out that the change that leads to the most

significant improvement in performance is not related to

any of the first three issues above but rather involves the

vorticity parameter. This result in turn has implications

about the physics of genesis. While the presence of en-

vironmental vorticity is required for TCG, we find that

the sensitivity of TCG to climatological absolute vor-

ticity (AV) is nonlinear. When the climatological abso-

lute vorticity exceeds a threshold, further increase does

not increase the climatological likelihood of TCG. In-

clusion of this functional dependence in the index sig-

nificantly improves the index performance.

The paper is organized as follows. Section 2 addresses

the data used and the Poisson regression methodology

used to construct the index. Section 3 details the con-

struction of the index. Section 4 examines the properties

of the index, including spatial distribution; and basin-

scale quantities, dependence on climate variables, sea-

sonal cycle, and interannual variability. Summary and

conclusions are given in section 5.

2. Data and methodology

a. Data

All data are represented on a 2.58 3 2.58 longitude–

latitude grid extending from 608S to 608N. Values of

850-hPa absolute vorticity, 600-hPa relative humidity, and

vertical shear (V) between the 850- and 200-hPa levels

come from the monthly mean values of the National

Centers for Environmental Prediction (NCEP)–National

Center for Atmospheric Research (NCAR) reanalysis

(Kalnay et al. 1996; Kistler et al. 2001) and the 40-year

European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40) (Uppala et al. 2005)

datasets. Climatological means of the variables for both

datasets were computed using the common 40-yr period

1961–2000.

The column-integrated relative humidity was calcu-

lated following the procedure developed in Bretherton

et al. (2004). We obtained the retrievals of column-

integrated water vapor W from the Remote Sensing Sys-

tems Inc. (see http://www.remss.com) for all available

Special Sensor Microwave Imager (SSM/I; satellites

F08, F10, F11, F12, F14, and F15) in the period 1987–

2008. Details of the SSM/I retrieval algorithms are given

in Wentz and Spencer (1998). The data are provided on

a 0.258 3 0.258 grid and are suitable for use over the

ocean only. First, the daily average over each ocean grid

point was calculated based on all valid data, then these

averaged daily data were rescaled to a 2.58 3 2.58 grid for

the region 608S–608N. Following Bretherton et al. (2004),

we calculated the daily averaged saturation water vapor

path W*, using the daily temperature data and surface

pressure from the ERA-40 and NCEP reanalysis. The

saturation specific humidity was calculated at each pres-

sure level and grid point and then vertically integrated

for each day of the common period when each reanalysis

and SSM/I data were available (NCEPNCEP: 1987–2008,

ERAERA: 1987–August 2002). The daily column-relative

humidity is then defined as the ratio W/W*. Then monthly

means and climatological values are calculated.

The relative SST is defined as the SST at each grid point

minus the mean SST of the 208S–208N region (Vecchi and

Soden 2007a; Vecchi et al. 2008). The SST product used

was version 2 of the National Oceanic and Atmospheric

Administration (NOAA) National Climatic Data Center

(NCDC) extended reconstruction sea surface tempera-

ture (ERSST2; Smith and Reynolds 2004).

The PI was obtained from monthly means of ERSST2,

sea level pressure, and vertical profiles of atmospheric

temperature and humidity for both NCEP and ERA

reanalysis datasets. The algorithm developed by Kerry

Emanuel is a generalization of the procedure described

in Emanuel (1995) taking into account dissipative heating

(Bister and Emanuel 1998, 2002a,b).

The GPI was developed by Emanuel and Nolan (2004)

and discussed in detail in Camargo et al. (2007a) and was

also used in Camargo et al. (2007b), Nolan et al. (2007),

Vecchi and Soden (2007a), and Camargo et al. (2009).

The genesis potential index is defined as

GPI 5 105h
�� ��3/2 H

50

� �3 PI

70

� �3

(1 1 0.1V)�2, (1)
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where h is the absolute vorticity at 850 hPa in s21, H is

the relative humidity at 600 hPa in percent, PI is the

potential intensity in m s21, and V is the magnitude of the

vertical wind shear between 850 and 200 hPa in m s21.

The tropical cyclone genesis data comes from release

v02r01 of the International Best Track Archive for Cli-

mate Stewardship (IBTrACS; Knapp et al. 2010) for the

period 1961–2000. We define genesis locations as the first

positions of those storms that eventually reach maximum

sustained wind speed of 15 m s21. Storms without maxi-

mum sustained wind speed data are not included. The

exclusion of storms with missing maximum sustained wind

speed data has the largest impact on the North Indian

Basin.

b. Poisson regression

Poisson regression is typically used for the modeling

of count data such as TCG occurrence (Solow and Nicholls

1990; Elsner and Schmertmann 1993; McDonnell and

Holbrook 2004; Mestre and Hallegatte 2009; Villarini et al.

2010). A random variable N has a Poisson distribution with

expected value m if N takes on the values n 5 0, 1, 2, . . . ,

with probability

P(N 5 n) 5
e�mmn

n!
. (2)

Here, for each 2.58 3 2.58 grid cell and calendar month,

N is the number of TCG events during a 40-yr climato-

logical period. Our goal is to predict the expected value

m from a vector x of climate variables. A model in which

the expected value m depends linearly on the climate

variables x is unsatisfactory since negative values of m

may result. A solution is to use a log-linear model where

logm is linearly related to x, that is,

logm 5 bTx, (3)

where b is a vector of coefficients, or equivalently,

m 5 exp(bTx). (4)

A constant term (intercept) is included in the model by

taking one of the elements of x to be unity. This model,

where the number N of TCG events has a Poisson dis-

tribution and the logarithm of its expected value is a lin-

ear combination of predictors, is a Poisson regression

model—a special case of a generalized linear model.

The climate variables and the observed number of TCG

events are defined on a 2.58 3 2.58 latitude–longitude grid.

To account for the differing area associated with grid

points at different latitudes we modify (4) to become

m 5 exp(bTx 1 log cosf), (5)

where f is the latitude. The offset term log cosf is

a predictor with coefficient one and serves to make the

units of exp(bTx) be the number of TCG events per area.

The log-likelihood L of k independent observations

N1, N2, . . . , Nk drawn from Poisson distributions with

means m1, m2, . . . , mk is from (2):

L 5 �
i51

k

N
i
logm

i
� m

i
� log(N

i
!). (6)

The mean mi depends on the associated climate variables

xi and the coefficients b through the relation in (5).

Therefore, for specified observations Ni and climate

variables xi, the log-likelihood L is a function only of the

unknown coefficients b. The coefficients are found by

maximizing the log-likelihood L defined in (6).

Here, we fit a single Poisson regression model to cli-

matological data for all ocean grid points and months of

the year; the subscript i indexes grid points and months.

Moreover, we include both the NCEP and ERA data

in (6), thus allowing the estimation of a single Poisson

regression model relating the expected number of TCG

events with climate variables. However, fitting both NCEP

and ERA data means the observations in (6) are obviously

not independent. Therefore, we deflate the number of

observations by a factor of 2. This scaling reduces the log

likelihood and increases the standard errors of the co-

efficient estimates.

The maximized log likelihood is one measure of how

well the model fits the data. However, since the maxi-

mized log likelihood is the result of an optimization, it is

positively biased and this bias increases as the number of

predictors increases. This bias is reflected in the fact that

the maximized log likelihood always improves as the

number of predictors increases, regardless of whether the

additional predictors would prove useful on independent

data. The Akaike information criterion (AIC) corrects

for that bias and attempts to avoid selection of useless

predictors and overfitting (Akaike 1973). The AIC is

defined as

AIC 5�2L 1 2p, (7)

where p is the number of parameters in the model. The

AIC is oriented so that models with lower AIC are con-

sidered superior. The first term rewards model fit while

the second term penalizes models with many parameters.

However, AIC is a function of the data and therefore

random, and as such, should only be used as a guide in

predictor selection.

The variance of a Poisson distribution is equal to its

mean. In practice, data often exhibits greater variability,

a property denoted as overdispersion. The dispersion
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parameter s measures the ratio of variance to mean with

s . 1 corresponding to overdispersion. The dispersion

parameter s is estimated from

s2 5
1

k� p
�
i51

k
(N

i
� m

i
)2

m
i

. (8)

A common way to deal with overdispersion, and the

approach taken here, is the so-called quasi-Poisson

method, in which the coefficient estimates are same as in

Poisson regression, but their standard errors are inflated

to reflect the overdispersion.

3. Construction of a TCG index

Our goal is to construct an index that reflects the de-

pendence of TCG on large-scale climate variables. Neces-

sary conditions for TCG include sufficient environmental

vorticity, humidity, ocean thermal energy, and lack of

vertical shear. There are several questions regarding how to

include these factors in a TCG index. Here, we consider the

following:

d Is reanalysis relative humidity adequate given that

there are relatively few humidity measurements in the

oceanic troposphere (Kistler et al. 2001)? Is there any

benefit from using column-integrated relative humid-

ity from satellite microwave retrievals?
d Should relative SST or PI be used to represent the

availability of ocean thermal energy?
d To what extent is the dependence of the number of

TCG events on the climate variables log linear?

We first broadly address these questions in the frame-

work of predictor selection, using the AIC to assess how

well the index fits the observations. Later, in section 4,

we examine these questions in terms of basin-integrated

quantities and spatial distributions.

First, we consider the Poisson regression based on four

climate variables: absolute vorticity, reanalysis midlevel

relative humidity, relative SST, and vertical shear. The

simplest Poisson regression model assumes no interac-

tions between the predictor variables, that is, no powers

or products of the predictors are included in the model,

and it has the form

m 5 exp(b 1 b
h
h 1 bHH1 b

T
T 1 b

V
V 1 log cosf),

(9)

where m is the expected number of tropical cyclone

genesis events per month in a 40-yr period, and h, H, T

and V are, respectively, the absolute vorticity at 850 hPa

in 105s21, the relative humidity at 600 hPa in percent,

relative SST in 8C, and vertical shear between the 850-

and 200-hPa levels in m s21; b is the constant (intercept)

term. We adopt the convention that the coefficient

subscript indicates the quantity it multiplies, in the

notation of (5), b 5 (b, bh, bH, bT, bV) and x 5 (1, h,H,

T, V )—maximizing the likelihood (6) of the observed

number of TCG events given the NCEP and ERA cli-

matological data leads to the coefficient values shown in

line 1 of the Table 1 estimates. Standard errors for the

coefficient estimates are computed from regression sta-

tistics and from 1000 bootstrap samples and are shown in

Table 1, confirming the significance of the coefficients.

The form of the Poisson regression model means that

the coefficients can be directly interpreted as sensitivities.

Specifically, for a small change dx in the climate variables,

the change dm in the expected number of TCG events is

dm

m
’ bTdx. (10)

That is, for a 0.01 unit change in one of the climate var-

iables, the corresponding coefficient is the percent change

in m. For instance, an increase of 1 cm s21 in vertical

shear reduces the expected number of TCG events by

about 0.15% in this index.

Addressing the first question regarding the choice of

humidity variable, we find that using the SSM/I column-

integrated relative humidity rather than the reanalysis

relative humidity gives a lower AIC value (line 2 of

Table 1), indicating a better fit to observations. How-

ever, fitting the NCEP and ERA data separately reveals

that using the SSM/I column-integrated relative hu-

midity improves the fit for NCEP data but not for ERA

data. Figure 1 shows that overall the ERA relative hu-

midity has a stronger seasonal cycle than NCEP in the

Northern Hemisphere. NCEP relative humidity differs

considerably from ERA in the Southern Hemisphere

during austral winter. The difference between the NCEP

and ERA relative humidity does not facilitate the use of

a single Poisson regression model. The hemisphere- and

basin-averaged column-integrated relative humidities

computed using SSM/I water vapor path divided by satu-

ration values derived from NCEP and ERA temperatures

are more similar to each other (not shown), indicating

better agreement in temperature than humidity, as might

be expected.

SST and PI are both variables that can be used to

quantify the availability of ocean heat for TCG and ei-

ther could conceivably be used in the index in place of

relative SST. For the purpose of fitting the spatial dis-

tribution of genesis probability from the present clima-

tology, SST contains nearly the same information as

relative SST; they differ only by the annual cycle of

mean tropical SST. As the climate varies (because of

either anthropogenic or natural causes), we expect the
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threshold for deep convection to vary roughly with the

tropical mean SST (Sobel et al. 2002, e.g.,) and the SST

threshold for genesis (to the extent that such a thing

exists) to vary similarly; thus, we expect relative SST to

be more appropriate than absolute SST for capturing the

influence of climate variability on the probability of

genesis. Recent studies show a strong empirical relation

between relative SST and PI (Vecchi and Soden 2007a;

Swanson 2008; Vecchi et al. 2008). PI, on the other hand,

has the advantage that it includes atmospheric in-

formation in addition to SST that may influence the

probability of TCG. However, being the theoretical

maximum tropical cyclone intensity, PI was not defined

with the purpose of characterizing TCG, and while it is

plausible to use it as a predictor, there is no strong the-

oretical basis for doing so. PI also has the disadvantage

that it is a highly derived quantity whose computation,

compared to relative SST, is more complex and requires

more data. From a practical point of view, we find that

using PI in place of relative SST in the Poisson regression

gives a higher AIC value (line 3 of of Table 1).1

We examine the log-linear dependence assumption by

adding powers and products of the climate variables to

the regression. Adding the 10 possible quadratic powers

and products of the four climate variables one at a time

to the Poisson regression, we find that including the

square of the absolute vorticity reduces AIC the most

(line 4 of Table 1). The resulting negative coefficient

(20.16) for the square of absolute vorticity (line 4 of

Table 1) means that in this index, increases in absolute

vorticity reduce the expected number of TCG events

for sufficiently large values of absolute vorticity. This

behavior can be understood as the regression attempting

to accommodate the lack of TCG events at higher lati-

tudes where values of absolute vorticity are high on

average. However, while such a dependence may fit the

TABLE 1. Estimate of the coefficients of the Poisson regression between number of TCG events per area per 40 years and climate variables.

The coefficient subscripts indicate the quantities they multiply. Entries with ‘‘—’’ indicate variables not included in the index.

Vorticity Humidity Heat Shear

b bh b
h2 bmin(h,3.7) bH bHSSM/I

bT bPI bV AIC s2

Estimates

1 24.47 0.50 — — 0.05 — 0.63 — 20.17 13208.32 3.46

2 211.15 0.56 — — — 0.13 0.57 — 20.15 12895.37 2.76

3 216.25 0.60 — — — 0.08 — 0.19 20.14 13685.06 5.05

4 212.73 1.80 20.16 — — 0.12 0.43 — 20.14 12316.44 13.75

5 211.96 — — 1.12 — 0.12 0.46 — 20.13 12213.35 2.90

6 25.80 — — 1.03 0.05 — 0.56 — 20.15 12486.84 5.00

Standard errors (regression statistics)

1 0.25 0.021 — — 0.0034 — 0.035 — 0.01

2 0.54 0.02 — — — 0.0069 0.03 — 0.01

3 0.72 0.029 — — — 0.0053 — 0.0082 0.02

4 1.2 0.23 0.03 — — 0.015 0.085 — 0.02

5 0.54 — — 0.044 — 0.0067 0.037 — 0.01

6 0.33 — — 0.055 0.004 — 0.047 — 0.01

Standard errors (bootstrap statistics)

1 0.19 0.011 — — 0.0033 — 0.016 — 0.01

2 0.44 0.013 — — — 0.0055 0.016 — 0.01

3 0.5 0.015 — — — 0.0046 — 0.0041 0.01

4 0.41 0.086 0.012 — — 0.0051 0.028 — 0.01

5 0.37 — — 0.031 — 0.0046 0.024 — 0.01

6 0.19 — — 0.026 0.0031 — 0.021 — 0.01

FIG. 1. Hemispheric (ocean grid points) averaged 600-hPa

relative humidity from the NCEP reanalysis and ERA: (a) NH

and (b) SH.

1 We note that ERA PI is systemically larger than NCEP PI by

about 38%; to fit NCEP PI and ERA PI simultaneously in the

Poisson regression, we scale ERA PI by the factor 0.72.
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data, it would not appear to have a physical basis; we do

not have a physical reason for associating the reduction

in TCG occurrence at higher latitudes with increased

absolute vorticity. Rather, a physical explanation would

be that the lack of TCG events at high latitudes is due

to insufficient ocean thermal energy there. A more at-

tractive explanation of the results is that logm has a non-

linear dependence on absolute vorticity, and including the

square of the absolute vorticity in the regression approx-

imates that dependence. Including additional powers of

absolute vorticity, as in a series expansion, could give a

more physically satisfying dependence. However, includ-

ing more powers of absolute vorticity in the index would

increase its complexity and make the estimation of its

parameters less robust. Note also, there is a substantial

increase in the dispersion parameter s2 (line 4 of Table 1).

To examine further the functional dependence of the

number of TCG events on absolute vorticity, we fit the

Poisson regression for different ranges of absolute vor-

ticity values. Specifically, for a given value h9 of the

absolute vorticity, we fit the Poisson regression using

data in the range (h9 2 dh) # h # (h9 1 dh) and thus

obtain regression coefficients that depend on h9. To the

extent that the coefficient bh depends on h9, the sensi-

tivity of TCG events to changes in absolute vorticity

depends on the value of absolute vorticity, and logm has

a nonlinear dependence on absolute vorticity. This pro-

cedure is essentially equivalent to computing the partial

logarithmic derivative of the number of TCG events with

respect to absolute vorticity. The dependence of bh on

absolute vorticity is shown in Fig. 2, computed using

dh 5 0.5; the coefficient error bars are based on the es-

timated errors inflated by dispersion. For modest values

of the absolute vorticity, bh has significant positive

values indicating that TCG increases with increasing

absolute vorticity. For larger values of the absolute

vorticity, bh is not significantly different from zero, in-

dicating that for this range of values, TCG is insensitive

to further increases in absolute vorticity. Specifically, for

absolute vorticity greater than about 4 3 1025 s21, fur-

ther increases in absolute vorticity do not increase the

expected number of TCG events. The value of bh obtained

using all values of the absolute vorticity (light dashed line)

is roughly the average of the values of bh conditioned

on h. This observed dependence of bh on the value of

h motivates our decision to use the quantity minimum

(h, 3.7) rather than absolute vorticity in the index; we

refer to this quantity as the ‘‘clipped’’ absolute vorticity.

Generalized additive models provide a systematic method

for including more complex functional dependence

(Mestre and Hallegatte 2009; Villarini et al. 2010). The

threshold value 3.7 was chosen to maximize the likeli-

hood of the observations and therefore counts in the

AIC as a parameter. Although the number of parameters

is increased, AIC is smaller (line 5 of Table 1) for the

Poisson regression based on the quantity minimum

(h, 3.7). The coefficient of min (h, 3.7) is 1.12 which is

larger than that of h (0.56; line 2 of Table 1). We will see

later that this feature means that the index based on

clipped absolute vorticity responds more strongly to the

near-equatorial latitudinal gradient in absolute vorticity

without the undesired side effect of generating too many

TCG events at high latitudes.

Adding additional powers and products to this set of

climate variables does not substantially reduce AIC or

change the fitted values. So, we take this model (line 5 of

Table 1) as our TCG index and explore its properties in

more detail in the next section.

4. Properties of the index

a. Climatological spatial distribution and basin-
integrated values

We now examine the properties of the TCG index

developed in the previous section, focusing on physically

relevant characteristics such as spatial distributions and

basin-integrated values. Many of the important features

of the index can be seen by examining its annually in-

tegrated values shown in Fig. 3. For the most part, there

is reasonable agreement, both in spatial structure and in

magnitude, between the observations and the indices.

However, the magnitude of the NCEP TCG index is

weak in the Atlantic main development region. The

region of maximum observed density of TCG events

in the Northern Pacific extends farther equatorward than

is seen in either of the indices. Neither index matches

FIG. 2. The solid line shows bh as a function of h9 fit using values

of the absolute vorticity in the interval (h9 2 0.5, h9 1 0.5); error

bars represent the 95% confidence intervals. The light dashed line

is the value of bh obtained using all the data. The dark dashed line

corresponds to using min (h, 3.7) rather than h in the regression.
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the observed values in the Arabian Sea and the southern

part of the North Indian Ocean. Values of the indices in

the South Pacific are too large compared to observations

while values in the eastern Pacific are too weak. Zonal

sums of the observations and indices in Fig. 3d show

that the NCEP TCG index, and to a lesser extent the

ERA TCG index, is too weak in the Northern Hemi-

sphere. The agreement in the Southern Hemisphere

between the zonal sums of the observations and indices

masks what we show later are off-setting biases in the

annual cycle. Both indices show small but nonzero like-

lihood of TCG on the equator. For comparison we also

show zonal sums of the GPI based on NCEP and ERA

data.

We examine the seasonal cycle of the TCG index by

comparing the basin-integrated climatology of the TCG

index with that of the observations; basin domains are

defined in Table 2. Figure 4 shows that the TCG index

captures the overall TCG seasonal structure in all basins

to some extent. No scaling is applied to the basin-

integrated TCG index values; the differing basin sizes

and differing areas of grid points at different latitudes

are included as an offset in the Poisson regression as

described previously. For the most part, TCG indices

based on the NCEP and ERA data have similar prop-

erties. In the Southern Hemisphere, the TCG index

representation of the active season is not active enough,

and its representation of the inactive season is too active.

Failure to capture the peak activity is seen in the South

FIG. 3. Number of (a) observed TCG events over the 40-yr climatology period and TCG indices

based in (b) NCEP and (c) ERA data. (d) Zonal sums of the observations and indices.

TABLE 2. Domain definitions used for basin integrations.

Northern Hemisphere (NH) 08–408N

Southern Hemisphere (SH) 08–408S

South Indian (SI) 308–1008E

Australian (Aus) 1008–1808E

South Pacific (SP) 1808–1108W

North Indian (NI) 408–1008E

Western North Pacific (WNP) 1008E – 1808

Central North Pacific (CNP) 1808–1408W

Eastern North Pacific (EMP) 1408W to American coast

Atlantic (Atl) American coast to African

coast
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Indian and Australian Basins; peak activity is over-

estimated in the South Pacific basin consistent with Fig.

3. TCG index values are too large in all of the Southern

basins during the inactive austral winter period. The two

peaks in the North Indian seasonal cycle are reproduced.

In the central North Pacific, the TCG index overestimates

the amplitude during active season and has its maximum

value about a month too late in the calendar year. The

peak amplitude of the TCG index in the eastern North

Pacific is too weak and phased about a month too late in

the calendar year.

Figure 4 also shows the hemispheric and basin-

integrated number of observed storms and index when

the reanalysis relative humidity is used. In this case, the

ERA-based index is too active during the peak seasons

in the Northern Hemisphere, especially during August

in the western North Pacific, central North Pacific, and

Atlantic. In the Southern Hemisphere totals, the ERA

relative humidity-based index is comparable to obser-

vations during the active phase while NCEP relative

humidity–based index is too weak. This behavior can be

understood from the differing seasonal cycles of NCEP

and ERA relative humidity shown in Fig. 1.

The observed and modeled number of TCG events

per year for the January–March (JFM) and August–

October (ASO) seasons using NCEP and ERA data,

respectively, are shown in Figs. 5a,b and 6a,b. Peak sea-

son spatial distributions of the TCG index are similar to

observations. ERA has a more active development re-

gion in the Atlantic. NCEP has a more active western

North Pacific basin. The negative bias of the TCG index

in the eastern North Pacific and positive bias in the South

Pacific is apparent in both datasets. Figures 5e,f and 6e,f

show the impact of using reanalysis relative humidity.

When using NCEP relative humidity, the NCEP-based

index is weaker in the western and eastern North Pacific

regions. In contrast, the ERA-based index is stronger in

most basins when ERA relative humidity is used.

Using PI in the Poisson regression rather than relative

SST leads to basin-integrated index amplitudes that are

too low in the Northern Hemisphere and phased too late

in the Southern Hemisphere as shown in Fig. 7. This

phasing problem is seen in all Southern basins. The

problem of low basin-integrated amplitude is the worst

in the western North Pacific peak season. Figures 5g,h

and 6g,h show that the impact of using PI on the spatial

pattern is mostly in its amplitude, with overall index

amplitudes being too high in the Southern Hemisphere

and too low in the Northern Hemisphere.

If absolute vorticity rather than clipped absolute

vorticity is used in the index, the Northern Hemisphere

integrated August value is too high, primarily because

of it being too high in the Western North Pacific and

Atlantic as shown in Fig. 8. Using absolute vorticity

rather than clipped absolute vorticity reduces the overall

Southern Hemisphere peak values owing to the re-

duction in the South Indian and Australian Basins.

Figures 5i,j and 6i,j show that if absolute vorticity rather

than clipped absolute vorticity is used, the TCG index is

too large on the equator and extends too far northward

in the Atlantic and western North Pacific during ASO.

Further spatial details for ASO are shown in Fig. 9. Use

of the clipped absolute vorticity improves the spatial

pattern in the Southern Hemisphere during JFM by

shifting positive values of TCG off of the equator and

narrowing the spatial distribution latitudinally.

We now compare the new TCG index with the GPI

from Camargo et al. (2007a). As mentioned before,

the NCEP PI and ERA PI have systematically different

amplitudes and, therefore, so do the GPI values that

depend on the third power of PI. We find separate

multiplicative constants for the NCEP GPI and ERA

GPI so that the area-weighted GPI best fits (in the sense

of minimizing the sum of squared errors) the observed

number of TCG events. Figure 10 shows that overall

GPI is too high in the Southern Hemisphere especially

during the inactive season. The GPI peak occurs about

a month later in the South Indian basin. Amplitudes of

the GPI in the western North Pacific and Atlantic match

observations well during the active season but are too

strong during the inactive months. Presumably, the im-

posed scaling of the GPI leads to better fitting in the

Northern Hemisphere (where the total number of storms

is larger) at the expense of fitting the Southern Hemi-

sphere. Given the somewhat arbitrary scaling of the GPI,

it is difficult to say whether the GPI is too small in the

Northern Hemisphere or too large in the Southern

Hemisphere. A more precise statement is that the dif-

ference in the number of storms in the Northern and

Southern Hemispheres is too small in the GPI. Figures

5k,l and 6k,l show that GPI spatial patterns extend too far

poleward, are too close to the equator (features that are

consistent with Fig. 3d), and show less difference between

JFM and ASO amplitudes.

b. Dependence on climate variables

A method for examining the dependence of observed

TCG and the TCG index on the individual climate vari-

ables is to compute ‘‘marginal’’ functions of a single vari-

able. Marginal functions are constructed by averaging

over all the variables except one. For instance, we define

the marginal function Nh(h9) for absolute vorticity by

N
h
(h9) 5 hN(h

i
, H

i
, T

i
, V

i
)i, where

i satisfies: (h9� d) # h
i

# (h9 1 d); (11)
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FIG. 4. Basin-integrated climatology (number of TCG events per year). The term RA-RH indicates results from

the Poisson regression model with reanalysis 600-hPa relative humidity rather than SSM/I column-integrated relative

humidity.
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FIG. 5. Observed and modeled TCG peak season maps based on NCEP data. The term RA-RH indicates use of the

reanalysis relative humidity; PI indicates use of PI rather than relative SST; AV indicates use of absolute vorticity

rather than clipped absolute vorticity; GPI indicates use of GPI. Color scale as in Fig. 3 with maximum value of 10.
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FIG. 6. As in Fig. 5, but for ERA data.
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h�i denotes average. Analogous marginal functions can be

defined for relative humidity, relative SST, and vertical

shear. The number of TCG events has a log-linear de-

pendence on the climate variables in the Poisson re-

gression model. However, the dependence of the marginal

function on the individual variables may not be log linear

because of the correlations between the climate variables.

Most of the correlations and hence much of the behavior

of the marginal functions can be inferred from the latitude

dependence of the zonally averaged climate variables.

FIG. 7. As in Fig. 4, but with PI indicating the results from the Poisson regression model with PI rather than relative SST.
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Figure 11a shows the dependence of Nh(h9) on vor-

ticity as well as a histogram of the values of vorticity. In

all the marginal function calculations, the range of the

variable in question is divided into 50 equally spaced

bins. For small values of absolute vorticity, the marginal

function is an increasing function of absolute vorticity.

For vorticity greater than about 4, it is a decreasing

function. The explanation for this latter behavior is

FIG. 8. As in Fig. 4, but with AV indicating the results from the Poisson regression model with absolute vorticity

rather than clipped absolute vorticity.
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primarily in the fact that absolute vorticity increases as

one moves poleward, and therefore, on average, the

largest absolute vorticity values are found at high lati-

tudes where low SST values make TC formation un-

likely. The dashed line in Fig. 11a shows the behavior for

a model based on absolute vorticity rather than clipped

absolute vorticity. Not using clipped absolute vorticity

leads to an index that does not respond strongly enough

to small values of absolute vorticity near the equator and

responds too strongly to large values of absolute vor-

ticity.

The marginal function for relative humidity is mostly

an increasing function of relative humidity (Fig. 11b).

However, the number of TCG events decreases for

relative humidity near 80% and there are no TCG

events for higher values of relative humidity. This be-

havior can be understood by noting that relative hu-

midity has its largest values on average near the equator

and at high latitudes, both regions where there are few

TCG events. What seems to be a nonlinear (in log) de-

pendence is really a reflection of the correlation of rel-

ative humidity with other variables; near the equator

relative humidity is on average a decreasing function

of latitude while absolute vorticity is increasing. At high

latitudes, relative humidity is an increasing function of

latitude while relative SST is decreasing.

The marginal function for relative SST is an increasing

function of relative SST except for the very highest

values of relative SST where there are no TCG events

(Fig. 11c). This regime corresponds to locations near the

FIG. 9. Zoom in of Figs. 5i,j and 6i,j. The term AV is as in Fig. 8.
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equator where absolute vorticity is small and there are

few TCG events.

For very small values of vertical shear, the index

marginal function for vertical shear decreases little as

vertical shear increases, and the observed number of

storms actually increases slightly (Fig. 11d). This be-

havior is explained by the fact that in the tropics zonally

averaged vertical shear is an increasing function of lat-

itude, thus reductions in vertical shear may correspond

to moving closer to the equator and not conditions that

FIG. 10. As in Fig. 4, but with GPI indicating the area-weighted and scaled GPI.
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are more favorable for TCG. As vertical shear increases

further, the marginal function decreases. The ‘‘heavy

tail’’ poorly described by the Poisson model may be due

to subtropical storms that can form in a high shear en-

vironment (Evans and Guishard 2009; Guishard et al.

2009), presumably in many cases deriving energy from

the shear via baroclinic eddy dynamics (Davis and

Bosart 2003).

c. Decomposition of the seasonal cycle

The form of the index as the exponential of a sum of

factors allows easy quantification of the importance of

each of the factors. Figure 12 shows the seasonal cycle of

the basin-averaged individual factor anomalies; anom-

alies are with respect to the annual average. In an overall

sense, relative SST variation has the biggest impact on

the seasonal cycle followed by vertical shear and finally

relative humidity; clipped absolute vorticity has little

contribution to the seasonal cycle. In the eastern North

Pacific, vertical shear has a larger contribution to the

seasonal cycle than does relative SST. For the most part,

the seasonal cycles of the three factors are in phase.

However, the behavior in the North Indian Basin with

its two maxima is more complex with relative SST

playing a minor role compared to vertical shear (Gray

1968; Evan and Camargo 2011). There, the reduction in

vertical shear results in the premonsoon maximum. The

increase in relative humidity following the start of the

monsoon is offset by increases in vertical shear and

the number of storms decreases. The reduction in ver-

tical shear and continuing high relative humidity results

in the second maximum.

d. Interannual variability

We now examine how well the TCG index developed

with climatological data can reproduce basin-averaged

interannual variability. We consider the period 1982–

2001, a period when TCG observations are good. Since

SSM/I data is not available during this period, we use an

index based on reanalysis relative humidity. The Poisson

regression model is fit to climatological data (line 6

Table 1) and applied to interannual data.

Tables 3 and 4 show the correlation between the ob-

served and modeled basin-integrated seasonal (3-month)

total number of TCG events based on NCEP and ERA

data, respectively; Tables 5 and 6 show root-mean-

squared (RMS) errors. Correlations were computed only

for seasons whose average number of TCG is greater than

one; correlation is a poor measure of association for

Poisson variables with small expected values. Monte

Carlo calculations show that the 95% significance level

for correlation between two Poisson variables depends

strongly on their mean value when the mean value is less

than one. As the mean value increases, the Poisson var-

iables become approximately Gaussian and the 95%

significance level for correlation approaches that for

Gaussian distributed variables, which for sample size 20

is 0.377. Here, we conservatively consider correlations

greater than 0.4 to be significant. The NCEP-based index

has 19 season basins with significant correlations while

the ERA-based index has 15. For the most part, the TCG

indices based on the two datasets show similar correlation

levels and seasonality. Neither the NCEP nor the ERA

index shows any significant interannual correlation in the

North Indian basin. However, NCEP has some significant

FIG. 11. Number of observed (thick line) and modeled (thin

lines) tropical cyclones per year as a function of (a) absolute vor-

ticity, (b) relative humidity, (c) relative SST, and (d) vertical shear.

The solid (dashed) thin line is the model with the minimum (h, 3.7)

(h) as a predictor. Histograms show the distribution of values of the

climate variables.
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correlations in the Australian region during austral sum-

mer while ERA does not. Correlation levels are roughly

comparable to those found in Camargo et al. (2007a)

using GPI and different observed genesis data. The RMS

errors of the ERA-based index are considerably larger

than those of the NCEP-based index, especially in the

WNP during boreal summer. The large errors in the

ERA-based index can be attributed to the behavior of

the ERA 600-hPa relative humidity; Daoud et al. (2009)

found large devations in 850-hPa relative humidity data

from NCEP and ERA over the North Atlantic Ocean.

Figure 13 shows the NCEP and ERA July–September

(JAS) 600-hPa relative humidity averaged over the box

1208E–1808, 08–308N. Prior to 1972 the two analyses agree.

After 1972, the ERA relative humidity exhibits greater

variability and exceeds its 1961–2000 climatological value.

FIG. 12. Anomalies of the contributions of the clipped AV, RH, T, and V to the log of the TCG index.
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Consequently, during the period 1982–2001, the ERA-

based index presents values considerably larger than its

1961–2000 climatological value.

Much of the interannual variability is related to

El Niño–Southern Oscillation (ENSO). The common

period for the NCEP reanalysis and ERA is 1958–2002.

For the purpose of compositing, the 11 years with the

highest values of the three-month Niño-3.4 index were

classified at El Niño years and the 11 years with the

lowest values as La Niña years. Table 7 shows the years

selected for the composites. Figure 14 shows the NCEP

and ERA based El Niño–La Niña composite difference

maps for JFM and ASO. In JFM, the El Niño–La Niña

composite shows a decrease in the western North Pacific

and an increase in the central North Pacific, an equa-

torward shift in the South Pacific, and a decrease in the

Australian Basin. In ASO, the El Niño–La Niña com-

posite shows a reduction in the North Indian, western

North Pacific, and Atlantic basins, and increases in the

central North Pacific and eastern Pacific basins. As

shown in Camargo et al. (2007a) for GPI, these shifts in

the TCG ENSO composites reflect well the observed

TCG behavior in the various basins for JFM and ASO.

5. Discussion: The role of vorticity

The superior performance of the clipped vorticity

relative to vorticity itself is an unexpected result, which

may have some significance for our understanding of the

physics of the genesis process. It is well known that a fi-

nite background low-level absolute vorticity is necessary

to the genesis process, as is immediately evident from

the fact that genesis almost never occurs within a few

degrees of the equator. The precise dependence of the

probability of genesis on the value of the background

vorticity is less clear. It is plausible, but by no means

obvious, that once the vorticity reaches some sufficient

value, it no longer is a rate-limiting factor and other

aspects of the environment (such as thermodynamic

parameters and vertical shear) become more critical.

Our results suggest that this is in fact the case.

This conclusion is most likely dependent on the choice

of averaging time used to define the environmental

TABLE 3. Correlations between seasonal basin-integrated ob-

served number of TCG events and TCG index based on NCEP

data. Seasons averaging less than one TCG event per year are not

included. Correlations . 0.4 are in bold.

SI Aus SP NI WNP CNP ENP Atl

JFM 20.14 0.46 0.43 — — — — —

FMA 0.15 0.5 0.49 — 0.4 — — —

MAM 20.047 0.38 0.69 20.04 0.39 — — —

AMJ 20.051 0.13 — 20.13 0.22 — 0.23 —

MJJ — — — 20.16 0.52 — 0.072 0.075

JJA — — — — 0.36 — 0.11 0.27

JAS — — — — 0.097 0.45 0.33 0.59

ASO — — — 0.0077 0.0068 0.69 0.54 0.56

SON 0.22 — — 20.34 0.046 0.85 0.68 0.38

OND 0.065 0.29 — 20.22 0.28 — 0.39 0.4

NDJ 0.22 0.44 0.7 20.035 0.22 — — —

DJF 20.016 0.34 0.5 — 0.18 — — —

TABLE 4. As in Table 3, but for ERA data.

SI Aus SP NI WNP CNP ENP Atl

JFM 20.45 0.26 0.38 — — — — —

FMA 0.19 0.26 0.49 — 0.44 — — —

MAM 20.13 0.16 0.76 0.14 0.38 — — —

AMJ 20.15 20.091 — 0.21 0.14 — 0.011 —

MJJ — — — 0.19 0.62 — 0.059 0.42

JJA — — — — 0.34 — 0.14 0.6

JAS — — — — 0.43 0.29 0.31 0.57

ASO — — — 20.016 0.12 0.63 0.38 0.54

SON 0.19 — — 20.31 0.19 0.82 0.42 0.28

OND 0.087 0.21 — 20.36 0.19 — 0.29 0.43
NDJ 20.11 0.35 0.68 20.17 0.095 — — —

DJF 20.36 0.11 0.33 — 0.025 — — —

TABLE 5. RMS difference between seasonal basin-integrated

observed number of TCG events and TCG index based on NCEP

data. Seasons averaging ,1 TCG event per year are not included.

SI Aus SP NI WNP CNP ENP Atl

JFM 3.3 3.1 2.3 — — — — —

FMA 2.4 3.1 2.2 — 1.4 — — —

MAM 1.7 2 1.5 0.9 1.6 — — —

AMJ 0.92 1.2 — 1.2 2.6 — 1.5 —

MJJ — — — 1.4 2.9 — 3.6 2

JJA — — — — 3.3 — 4.6 2.8

JAS — — — — 3.7 1.1 4.8 2.6

ASO — — — 1.7 3.7 0.95 3.4 3.2

SON 1.1 — — 1.3 3.2 0.81 2.5 3

OND 1.8 1.7 — 1.4 2.7 — 1.4 1.9

NDJ 2.5 2.3 1.8 1.1 2.5 — — —

DJF 3.3 2.9 1.9 — 2.3 — — —

TABLE 6. As in Table 5, but for ERA data.

SI Aus SP NI WNP CNP ENP Atl

JFM 3.2 9.4 4.1 — — — — —

FMA 2.3 6.8 3.6 — 2 — — —

MAM 2.4 5.4 2.5 1.9 3.6 — — —

AMJ 1.6 4.2 — 2.3 7.3 — 3 —

MJJ — — — 2.4 12 — 4 3.5

JJA — — — — 17 — 6.2 5.8

JAS — — — — 18 3.3 6.4 6.7

ASO — — — 3.8 16 3.3 5.7 5

SON 1.3 — — 3.3 11 2.2 3.5 3.1

OND 2 6.5 — 2.6 7.4 — 2 1.5

NDJ 2.6 9.5 2.9 1.3 4.9 — — —

DJF 3 10 3.7 — 3.5 — — —
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fields. On daily time scales, it is certain that the existence

of a preexisting tropical depression makes genesis more

likely compared to the absence of a depression, and it

seems likely that the vorticity of the depression, which

presumably in many cases exceeds 4 3 1025 s21, is one

of the factors that makes it so. Nonetheless, inasmuch

as it is useful to quantify the probability of genesis based

on monthly mean fields, our finding indicates that the

probability of genesis does not increase further with low-

level absolute vorticity once that variable reaches a

threshold value. If one were to use the index derived

here—or any similar one derived from monthly or cli-

matological data—for prediction on shorter time scales,

it would be important to reconsider this issue and per-

haps to modify the derivation of the index to account for

the time scale dependence of the vorticity influence.

6. Summary and conclusions

The likelihood of tropical cyclone genesis (TCG) be-

ing observed depends on features of the large-scale cli-

mate. Therefore, changes in climate because of either

natural or anthropogenic causes can lead to changes in

the likelihood of TCG. Given the incompleteness of the

theoretical understanding of TCG, empirical indices are

a useful way of encapsulating observed relations between

TCG and large-scale climate variables. Here, in the spirit

of earlier work (Gray 1979; DeMaria et al. 2001; Royer

et al. 1998; Emanuel and Nolan 2004), we construct

a TCG index that is a function of climate variables and

whose size reflects the probability of genesis.

We construct the index by developing a Poisson re-

gression between the observed monthly number of storms

over a 40-yr period and the monthly climatological values

of the climate variables. An attractive feature of this ap-

proach is that it is objective and hence easily applicable to

other datasets. Moreover, the regression methodology

provides a natural framework for selecting the variables

to be used in the index and assessing the performance of

the index. Initially, we take as predictors in the index:

absolute vorticity at 850-hPa, 600-hPa reanalysis relative

humidity, relative SST, and vertical shear between the

850- and 200-hPa levels; relative SST is the difference

between the local SST and the mean tropical SST.

The Poisson regression assumes a log-linear relation

between the number of TCG events and the climate

variables. This assumption is equivalent to assuming

that the sensitivity, as measured by the logarithmic

partial derivative, of the number of storms to changes in

the individual climate variable is constant. We find that

the data do not support this assumption for absolute

vorticity. In particular, the sensitivity of the number of

TCG events to absolute vorticity is roughly constant and

FIG. 13. The JAS 600-hPa relative humidity averaged over the box 1208E-1808, 08–308N from

the NCEP (dark) and ERA (gray) datasets. Dashed lines indicate the 1961–2000 average.

TABLE 7. Years used to form ENSO composites.

JFM ASO

El Niño La Niña El Niño La Niña

1958 1968 1963 1964

1966 1971 1965 1967

1969 1974 1969 1970

1970 1976 1972 1971

1973 1985 1976 1973

1977 1986 1982 1974

1983 1989 1986 1975

1987 1996 1987 1978

1992 1999 1991 1988

1995 2000 1994 1998

1998 2001 1997 1999
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nonzero for values of absolute vorticity less than 4 3

1025 s21, while for values of absolute vorticity greater

than 4 3 1025 s21, it is close to 0. This property of the

data suggests the use of the ‘‘clipped’’ absolute vorticity,

defined as the absolute vorticity itself when that quantity

is below a threshold and the threshold value otherwise.

We find that use of the clipped absolute vorticity in the

TCG index improves the fit of the regression and results

in more realistic spatial distributions with fewer TCG

events near the equator and at high latitudes. Besides

the practical value of this result for improving the per-

formance of the index, it suggests a physical interpre-

tation that is relevant to our understanding of the genesis

process: while greater low-level ambient (monthly mean)

vorticity increases the probability of genesis up to a point,

beyond that point it does not continue to do so. While it is

likely that increases in local vorticity on the daily time

scale would still be a positive factor in genesis, our result

may indicate that on a monthly mean basis, once vorticity

is sufficiently large, it tends to be the case that other

factors (either thermodynamics or vertical shear) become

rate limiting.

We make a limited exploration of some alternative

predictors in the index. We examine the impact of using

SST or PI rather than relative SST and of using satellite-

based column-integrated relative humidity rather than

the reanalysis products. Using climatological data, rel-

ative SST and SST contain nearly the same information,

and indices based on them are very similar. However,

relative SST allows better for changes in the mean cli-

mate, though perhaps still not optimally. PI also depends

on the mean climate and has been observed to be well

correlated with relative SST (Vecchi and Soden 2007a;

Swanson 2008), a result with a straightforward physical

basis (Ramsay and Sobel 2011). However, relative SST

is considerably simpler to compute and understand than

PI, and in fact, we find that relative SST performs better

in the index than PI. The relative advantage of using

satellite-based column-integrated is mixed compared to

using reanalysis humidity at a single level, with a modest

positive (negative) impact seen with respect to the NCEP

(ERA) reanalysis product.

Overall the TCG index reproduces much of the ob-

served basin-integrated seasonality and spatial patterns.

FIG. 14. Differences between El Niño and La Niña TCG index composites.
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The index also reproduces well the observed marginal

dependence of the number of TCG events on the in-

dividual climate variables. This dependence is not log

linear owing to the correlations between variables. For

the most part, the NCEP- and ERA-based indices have

similar properties and common deficiencies. There are

errors in the details of the spatial structure in the Northern

Pacific. Index values are too small in the Arabian Sea. The

observed number of TCG events in the South Pacific is

smaller than that predicted by the index. The magnitude

of the NCEP-based TCG index is weak in the Atlantic

main development region. Comparison with the GPI,

a TCG index based on PI (Emanuel and Nolan 2004;

Camargo et al. 2007a) shows that the index developed

here has better performance and avoids the complexity of

associated with PI.

Developing the TCG index using climatological data

results in an index that fits the climate–TCG covari-

ability contained in the seasonal cycle and in different

geographical regions. Applying the index to interan-

nually varying climate data, we show that the index is also

able to reproduce some interannual variability and spatial

shifts because of ENSO. Future work will apply the index

to simulated climate change scenarios.
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