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Outline
● Overview of Weddell gyre and oceanographic time 

series

● Extra-polar climate modes and their regional impacts

● Mechanisms of interannual variability:

● 1) Modulation of dense shelf water production
● 2) Spin-up of Weddell gyre and increased export

● Extension of results to the MOC(?)



  

Bottom water production and export

●Bottom waters are formed around 
Antarctica's margins and spread 
into the global abyssal ocean

●Southern limb of the global 
overturning circulation

●Moderates global heat, carbon, 
and freshwater budgets

●Formal definition for this study: 
WSBW is bottom water with θ < 
-0.7ºC (restricted to Weddell 
basin)
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WSBW outflow moorings



  

WSBW outflow moorings

● Equipped with series of thermistors and current meters (we focus on 
deepest sensors, ~4500 m at M3)

● Positioned at steep escarpments to sample boundary current and minimize 
effects of gyre movement



  

Mooring data

● 8 year record (longer now!) – first record long 
enough to record interannual variability



  

Mooring data

● Strong seasonal variability (cold pulse in austral winter coincident with 
velocity and shear maxima)

● Implies export is episodic (gravity current export in austral spring with travel 
time of ~5 months to mooring; related to seasonal cycle of winds and Ekman 
transport) 



  

Mooring data

● But also distinct interannual variability:

● Anomalously cold pulses in 1999, 2002.

● No cold pulse in 2000

● Increased salinification of cold pulse between 1999-2002 



  

Large-scale climate forcing

● Processes of formation and export are related 
to regional (Weddell) atmospheric forcing

● Regional atmospheric forcing is largely 
controlled by extra-polar climate variability
● ENSO (e.g., Yuan, 2004; Martinson and Iannuzzi, 

2003)
● SAM (e.g., Lefebvre and Goosse, 2005)
● But it is not a simple story...



  

Large-scale climate forcing

● Joint influence in Western Weddell via Amundsen SLP anomaly 
and dipole anomalies in wind/sea ice (EN/-SAM or LN/+SAM)

● Potential for modulation of impact

Southern Annular Mode (SAM)El-Niño – Southern Oscillation (ENSO)



  

● Favorable phase relationship of ENSO/SAM leads to stronger, 
more persistent dipole anomalies in winds and sea ice.

● Explanation: anomalous transient momentum fluxes in the 
Pacific reinforce the circulation anomalies in the midlatitudes, 
altering the circulation to maintain the ENSO teleconnection 
(Fogt et al., 2011).

Large-scale climate forcing

La Niña / neutral SAM SLPa composite La Niña / +SAM SLPa composite



  

Large-scale climate forcing

➔ The period of our hydrographic time series is dominated by 
favorable ENSO/SAM phase relationships.

Solid:  SAM (Marshall et al., 2003)
Dashed:  NINO34



  

Large-scale climate forcing

➔ The period of our hydrographic time series is dominated by 
favorable ENSO/SAM phase relationships.

●MEOF analysis to capture 
coherent climate variability 
and obtain “most relevant” 
forcing index over the 
1997-2007 period.

●EOF 1 (22% variance) 
shown

●Clearly represents 
simultaneous La Niña / 
+SAM variability



  

Time scale(s) of forcing

● Lagged-correlation analysis between WSBW temperature time 
series and climate indices to establish time-scale(s) of forcing.

Correlogram PC1 with M3 bottom 
temperature (solid) and M2 bottom 
temperature (dashed)



  

Time scale(s) of forcing

● Lagged-correlation analysis between WSBW temperature time 
series and climate indices to establish time-scale(s) of forcing.

14-20 month: 
ENSO and 'non-annular' SAM
→ Time scale for dense water production

0-6 month: 
'Annular' SAM
→ Time scale for export



  

Mechanism I: Production

● Wind anomaly is associated with ENSO/SAM related dipole-
pattern of anomalies.

● Controls summertime coastal polynya area and wintertime 
production of dense water. 



  

Mechanism I: Production
Correlation coefficients

Color:  WSBW temperature / Sea ice concentration

Vectors:  WSBW temperature / wind

M2 temperature lags 17 months M3 temperature lags 14 months



  

Mechanism I: Production
Stronger wind, 
more ice 

Weaker wind, 
less ice 

Solid: shelf sea ice conc. anomaly
Dashed: merid. wind anomaly

WSBW
θ-anom.

*If southward wind persists, no HSSW is formed (Timmerman et al., 2002)

*



  

Mechanism I: Production
● In particular, the 1999-2002 period is dominated by the very 

strong 1997/1998 El-Niño.

● Ronne polynya extended 3 x 105 km2, the largest extent in the 
satellite record.

● Anomalously large glut of HSSW observed to be produced 
(Nicholls and Østerhus, 2004).

● Salinity of WSBW increases through 2002, consistent with 3.5 
year residence time on shelf (Gill, 1973).  



  

Mechanism II: Export

● WSBW temperature weakly 
correlated with SAM at 0-6 
month lag.

● Stronger westerlies and 
increased cyclonic forcing may 
'spin-up' the Weddell gyre.

● Baroclinicity: isopycnals slump 
at slope which may facilitate 
export.

● Also, enhanced cyclonic forcing 
increases cross-slope flux at 
zero lag (seen in high-res 
model; Kerr et al. 2012).

Meredith et al., 2008



  

Mechanism II: Export

● Use gyre-averaged wind-stress curl as proxy for gyre spin-up.

● Cross-gyre XCTD sections suggest domed pycnocline 1/2002, 
flat pycnocline 1/2005.



  

Mechanism II: Export

● Why should we see an increase in gyre 
baroclinicity on O(months) when geostrophic 
adjustment time scales are O(years)?

● One idea: Meredith et al., 2011
Appeal to response of bottom Ekman layer to 
barotropic changes in deep boundary current 
on sloping topography:  τ = 0.5 c

d
-1 N-1 S-3/2 ~ 54 

days.



  

Mechanism II: Export

● Another (new) idea:  Su et al., 2014

● Wind stress curl drives Ekman pumping in gyre interior.
● Sloping isopycnals lead to baroclinic instability and rapidly 

responding mesoscale eddy buoyancy fluxes in the 
boundary.

● Point of digression:  Gyre can respond rapidly to wind forcing.



  

Synthesis

● ENSO / non-annular SAM dipole anomalies can modulate 
production of shelf water the year before a pulse is exported.

● Annular SAM related wind anomalies can increase efficacy of 
export.

➔ Construct 2-stage multiple linear regression:
(NINO34, SAM index, ADP index) → (shelf sea ice concentration, 
shelf offshore wind, gyre wind stress curl) → WSBW temperature 
anomaly.

➔ Agreement is best over period of strongest climate forcing and 
favorable-phasing of ENSO/SAM.

r = 0.66



  

Potential relation to MOC

● WSDW is derived from WSBW and leaves the Weddell through 
sills and passages into the Scotia Sea and ultimately the global 
ocean.

● Stronger gyre → less dense
(warmer) classes of WSDW
escape.

● Isopycnal excursions of 100 m
(0.04 ºC) possible

● Warming downstream? Solid: stronger gyre 
Dashed: weaker gyre



  

Potential relation to MOC

● Warming trend is observed in abyssal Atlantic (Johnson and 
Doney, 2006; shown) and in other basins (Purkey and Johnson, 
2010).

● WSDW-source properties do not contain similar trends.

● Related to observed trend in the SAM?

Δθ(2000s-1990s)



  

Conclusions

● Strong interannual variability in WSBW temperature is observed 
to covary with ENSO and SAM related variability.

● Dipole related anomalies modify summer open-water area over 
the shelf, which dictates the amount of subsequent freeze, shelf 
water formation and amount of cold-end member available for 
export.  

● This process is only effective if the dipole teleconnection mechanism is 
strong (IE, favorable phase relationship between ENSO/SAM).

● SAM related wind-stress curl can spin up the Weddell gyre and 
facilitate export of cold water from the shelf, affecting the 
volume and timing of export on short (< 5 month) time scales.

● Superposition of many time scales (teleconnection, advection, 
shelf residence, baroclinic adjustment) can lead to interesting 
and complicated responses in WSBW properties and transport.
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