Climate impact on interannual variability of Weddell Sea Bottom Water

Darren C. McKee, LDEO/CU

Connecting the Tropics to the Polar Regions NOR NO ATMOSPHER Mini-conference at LDEO 06/02/14

OF ARTMENT OF CO

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY | EARTH INSTITUTE

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, C05020, doi:10.1029/2010JC006484, 2011

Climate impact on interannual variability of Weddell Sea Bottom Water

Darren C. McKee,^{1,2} Xiaojun Yuan,¹ Arnold L. Gordon,^{1,2} Bruce A. Huber,¹ and Zhaoqian Dong³

Outline

- Overview of Weddell gyre and oceanographic time series
- Extra-polar climate modes and their regional impacts
- Mechanisms of interannual variability:
 - 1) Modulation of dense shelf water production
 - 2) Spin-up of Weddell gyre and increased export
- Extension of results to the MOC(?)

Bottom water production and export

Depth: Bottom

- •Bottom waters are formed around Antarctica's margins and spread into the global abyssal ocean
- Southern limb of the global overturning circulation
- Moderates global heat, carbon, and freshwater budgets
- •Formal definition for this study: WSBW is bottom water with θ < -0.7°C (restricted to Weddell basin)

Potential Temperature (°C)

Bottom water production and export

WSBW outflow moorings

WSBW outflow moorings

- Equipped with series of thermistors and current meters (we focus on deepest sensors, ~4500 m at M3)
- Positioned at steep escarpments to sample boundary current and minimize effects of gyre movement

Mooring data

 8 year record (longer now!) – first record long enough to record interannual variability

Mooring data

- Strong seasonal variability (cold pulse in austral winter coincident with velocity and shear maxima)
- Implies export is episodic (gravity current export in austral spring with travel time of ~5 months to mooring; related to seasonal cycle of winds and Ekman transport)

Mooring data

- But also distinct interannual variability:
 - Anomalously cold pulses in 1999, 2002.
 - No cold pulse in 2000
 - Increased salinification of cold pulse between 1999-2002

- Processes of formation and export are related to regional (Weddell) atmospheric forcing
- Regional atmospheric forcing is largely controlled by extra-polar climate variability
 - ENSO (e.g., Yuan, 2004; Martinson and Iannuzzi, 2003)
 - SAM (e.g., Lefebvre and Goosse, 2005)
 - But it is not a simple story...

El-Niño – Southern Oscillation (ENSO)

Southern Annular Mode (SAM)

- Joint influence in Western Weddell via Amundsen SLP anomaly and dipole anomalies in wind/sea ice (EN/-SAM or LN/+SAM)
- Potential for modulation of impact

La Niña / neutral SAM SLPa composite

La Niña / +SAM SLPa composite

- Favorable phase relationship of ENSO/SAM leads to stronger, more persistent dipole anomalies in winds and sea ice.
- Explanation: anomalous transient momentum fluxes in the Pacific reinforce the circulation anomalies in the midlatitudes, altering the circulation to maintain the ENSO teleconnection (Fogt et al., 2011).

→ The period of our hydrographic time series is dominated by favorable ENSO/SAM phase relationships.

- •MEOF analysis to capture coherent climate variability and obtain "most relevant" forcing index over the 1997-2007 period.
- •EOF 1 (22% variance) shown
- Clearly represents simultaneous La Niña / +SAM variability
- → The period of our hydrographic time series is dominated by favorable ENSO/SAM phase relationships.

Time scale(s) of forcing

 Lagged-correlation analysis between WSBW temperature time series and climate indices to establish time-scale(s) of forcing.

	θ Anomaly at M3		θ Anomaly at M2	
	r	Lead	r	Lead
NINO3.4	-0.41, 89%	21, 99%	-0.73, 97%	21, 99%
SAM	+0.38, 98%	14, 99%	+0.54, 99%	20, 99%
ADP	+0.48, 99%	15, 99%	+0.71, 99%	17, 98%

Correlogram PC1 with M3 bottom temperature (solid) and M2 bottom temperature (dashed)

Time scale(s) of forcing

 Lagged-correlation analysis between WSBW temperature time series and climate indices to establish time-scale(s) of forcing.

- Wind anomaly is associated with ENSO/SAM related dipolepattern of anomalies.
- Controls summertime coastal polynya area and wintertime production of dense water.

Correlation coefficients

Color: WSBW temperature / Sea ice concentration

Vectors: WSBW temperature / wind

M2 temperature lags 17 months

M3 temperature lags 14 months

^{*}If southward wind persists, no HSSW is formed (Timmerman et al., 2002)

- In particular, the 1999-2002 period is dominated by the very strong 1997/1998 El-Niño.
- Ronne polynya extended 3 x 10⁵ km², the largest extent in the satellite record.
- Anomalously large glut of HSSW observed to be produced (Nicholls and Østerhus, 2004).
- Salinity of WSBW increases through 2002, consistent with 3.5 year residence time on shelf (*Gill*, 1973).

- WSBW temperature weakly correlated with SAM at 0-6 month lag.
- Stronger westerlies and increased cyclonic forcing may 'spin-up' the Weddell gyre.
- Baroclinicity: isopycnals slump at slope which may facilitate export.
- Also, enhanced cyclonic forcing increases cross-slope flux at zero lag (seen in high-res model; Kerr et al. 2012).

Meredith et al., 2008

Use gyre-averaged wind-stress curl as proxy for gyre spin-up.

 Cross-gyre XCTD sections suggest domed pycnocline 1/2002, flat pycnocline 1/2005.

- Why should we see an increase in gyre baroclinicity on O(months) when geostrophic adjustment time scales are O(years)?
- One idea: *Meredith et al.*, 2011 Appeal to response of bottom Ekman layer to barotropic changes in deep boundary current on sloping topography: $\tau = 0.5 c_d^{-1} N^{-1} S^{-3/2} \sim 54$ days.

- Another (new) idea: Su et al., 2014
 - Wind stress curl drives Ekman pumping in gyre interior.
 - Sloping isopycnals lead to baroclinic instability and rapidly responding mesoscale eddy buoyancy fluxes in the boundary.

Point of digression: Gyre can respond rapidly to wind forcing.

Synthesis

- ENSO / non-annular SAM dipole anomalies can modulate production of shelf water the year before a pulse is exported.
- Annular SAM related wind anomalies can increase efficacy of export.
 - → Construct 2-stage multiple linear regression: (NINO34, SAM index, ADP index) → (shelf sea ice concentration, shelf offshore wind, gyre wind stress curl) → WSBW temperature anomaly.

→ Agreement is best over period of strongest climate forcing and favorable-phasing of ENSO/SAM.

Potential relation to MOC

- WSDW is derived from WSBW and leaves the Weddell through sills and passages into the Scotia Sea and ultimately the global ocean.
- Stronger gyre → less dense (warmer) classes of WSDW escape.
- Isopycnal excursions of 100 m (0.04 °C) possible
- Warming downstream?

Solid: stronger gyre Dashed: weaker gyre

Potential relation to MOC

• Warming trend is observed in abyssal Atlantic (*Johnson and Doney*, 2006; shown) and in other basins (*Purkey and Johnson*, 2010).

- WSDW-source properties do not contain similar trends.
- Related to observed trend in the SAM?

Conclusions

- Strong interannual variability in WSBW temperature is observed to covary with ENSO and SAM related variability.
- Dipole related anomalies modify summer open-water area over the shelf, which dictates the amount of subsequent freeze, shelf water formation and amount of cold-end member available for export.
 - This process is only effective if the dipole teleconnection mechanism is strong (IE, favorable phase relationship between ENSO/SAM).
- SAM related wind-stress curl can spin up the Weddell gyre and facilitate export of cold water from the shelf, affecting the volume and timing of export on short (< 5 month) time scales.
- Superposition of many time scales (teleconnection, advection, shelf residence, baroclinic adjustment) can lead to interesting and complicated responses in WSBW properties and transport.